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ABSTRAK 

Proses penghabluran adalah salah satu kaedah untuk memisahkan komponen pepejal-
cecair dalam industri kimia dan farmaseutikal kerana hasil hablur yang berkualiti tinggi 
dapat dihasilkan. Kriteria utama bagi hasil hablur selalunya dinilai dari segi taburan saiz 
hablur. Bagi mendapatkan taburan saiz hablur yang dikehendaki, kawalan lebihan 
tepuan boleh digunakan untuk mengawal komposisi pada set titik yang ditetapkan. 
Selalunya, kaedah yang digunakan adalah berdasarkan kaedah cuba dan jaya bagi 
mendapatkan trajektori set titik tetapi ia tidak menjamin untuk mendapatkan taburan 
saiz hablur yang diperlukan. Selain itu operasi penghabluran hanya melibatkan 
fenomena penghasilan nuklei dan tumbesaran hablur dengan mengabaikan kesan 
percantuman dan pemecahan. Oleh itu, objektif utama kerja ini adalah untuk membina 
gerak kerja berdasarkan model yang sistematik bagi keupayaan kawalan dalam proses 
penghabluran secara penyejukan berkelompok. Melalui gerak kerja ini, ia mampu untuk 
meramal parameter setiap kinetik untuk mewakili proses penghabluran, menghasilkan 
set titik melalui peramal taburan saiz hablur yang telah dilanjutkan secara analitikal dan 
menguji kemampuan kawalan seperti penjejakan set titik, penolakan gangguan dan 
analisis ketidakpastian untuk mencapai kawalan yang jitu. Aplikasi bagi gerak kerja 
secara model ini dijalankan menggunakan dua kajian kes yang berbeza. Kajian kes yang 
pertama melibatkan penghabluran potassium sulfat bagi kes yang melibatkan 
kebergantungan suhu pada penghasilan nuklei dan tumbesaran hablur. Selain itu kesan 
percantuman dan pemecahan dikaji dalam kes kajian kedua iaitu penghabluran sukrosa. 
Bagi kedua-dua kajian kes, parameter untuk setiap kinetik telah diramal dengan 
ketepatan yang baik semasa simulasi gelung terbuka. Berdasarkan set titik yang telah 
dihasilkan daripada peramal CSD secara analitikal yang telah dilanjutkan, kawalan 
yang digunakan berjaya memastikan operasi berada pada set titik yang diperlukan dan 
sasaran taburan saiz hablur berjaya di capai semasa simulasi gelung tertutup. Kawalan 
yang telah dibina untuk kedua-dua kajian kes kemudiannya menjalani penjejakan set 
titik dan penolakan gangguan. Pencapaian yang baik telah diperolehi berdasarkan 
kemampuan kawalan untuk menjejaki perubahan set titik dan menolak gangguan yang 
diperkenalkan semasa operasi dijalankan. Keupayaan kawalan dinilai seterusnya 
melalui analisis ketidakpastian. Dalam analisis ini, 6 input parameter tidak pasti bagi 
penghasilan nuklei dan tumbesaran hablur dipilih dalam kajian kes potassium sulfat dan 
11 input parameter tidak pasti bagi penghasilan nuklei, tumbesaran hablur, percantuman 
dan pemecahan digunakan dalam kajian kes sukrosa. Melalui analisis ketidakpastian ini, 
kawalan yang dicadangkan bertindak secara agresif untuk mengekalkan operasi dan 
pada akhirnya variasi taburan saiz hablur yang rendah telah diperolehi untuk kedua-dua 
kajian kes. Ini menunjukkan proses kawalan yang dibina telah berjaya diuji untuk kes 
kebergantungan suhu pada penghasilan nuklei dan tumbesaran hablur serta kes kesan 
percantuman dan pemecahan yang membuktikan keupayaan dan kebolehpercayaan 
kawalan yang telah dibina untuk proses penghabluran ini. 
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ABSTRACT 

Crystallization process is one of the methods for separating solid-liquid components in 
the chemical and pharmaceutical industries due to the fact that high quality of crystal 
products can be obtained. The main specifications of the crystal product are usually 
given in terms of crystal size distribution (CSD). In order to obtain the desired CSD, the 
supersaturation control can be applied to maintain the concentration at the desired set-
point. Usually current practices point to trial and error method in order to find the set-
point trajectory but it does not guarantee the achievement of the desired CSD. In 
addition, the crystallization operation usually involves only nucleation and crystal 
growth phenomena by neglecting the effects of agglomeration and breakage. Therefore, 
the main objective of this work is to develop a systematic model-based framework for 
robust supersaturation control in batch cooling crystallization. Through this framework, 
it is possible to predict the kinetic parameters for representing the crystallization 
operation, to generate set-point using extended analytical CSD estimator and to perform 
robustness testing such as set-point tracking, disturbance rejection and uncertainty 
analysis for achieving robust control. The applications of the model-based framework 
have been demonstrated through two different case studies. The first case study 
involves the potassium sulphate crystallization for the case of temperature dependence 
in nucleation and crystal growth. Meanwhile the effects of agglomeration and breakage 
is investigated on the sucrose crystallization case study. For both case studies, the 
necessary kinetic parameters are accurately predicted under open-loop simulation. 
Based on set-points generated from the extended analytical CSD estimator, the 
controller is successfully maintained the operation at the required set-point and the 
desired target CSD is achieved under closed-loop simulation. The developed controller 
for both case studies are then undergoing set-point tracking and disturbance rejection 
testing where a good performance has been obtained by judging the ability of the 
developed controller to adapt the set-point changes and its ability to reject the 
disturbance introduced to the operation. The robustness of the controller is further 
evaluated using uncertainty analysis. In this analysis, 6 uncertain input parameters of 
nucleation and crystal growth are used for potassium sulphate case study and 11 
uncertain input parameters of nucleation, crystal growth, agglomeration and breakage 
are employed for sucrose crystallization. Through uncertainty analysis, it is shown that 
the proposed controller is performed aggressively to maintain the operation and in the 
end less variability of the CSD is obtained for both case studies. This shows that 
supersaturation control has been successfully developed and tested for the case 
temperature dependence in nucleation and crystal growth as well as the effects of 
agglomeration and breakage indicating a robust and reliable of the developed controller 
for this crystallization process. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Motivation and Problem Statement 

Crystallization is a solid-liquid separation process in which mass transfer of a 

solute from a liquid solution to a pure solid crystalline phase occurs (Myerson, 2002). 

Crystallization is a homogenous process where the solid particles are formed at the end 

of the process. Homogenous phase refers to a substance that contains only one kind of 

compounds or one element. The main specifications of the crystal product is high 

purity, a specific crystal size distribution (CSD), crystal size and shape as shown in 

Figure 1.1 (Zarabad and Rezvani, 2018; Perez-Calvo et al., 2016; Aamir, 2010).  

 

Figure 1.1 Example of crystal product  

Source: Aamir (2010) 

At the industrial level, crystallization is often applied in the chemical industries 

as a method for purification and as a method for producing the crystalline materials at 

the desired size and shape (Wang et al., 2018). In addition the crystallization process is 

also applicable in the production of salts and active pharmaceutical ingredients (API) 

(Baino and Fiume, 2018; Gao et al., 2017; Derdour et al., 2017). Technically, 
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crystallization process can be divided into three methods which are cooling, 

evaporation, and anti-solvent addition (Lenka and Sarkar, 2018). The most common 

approach is by using the cooling method. The main advantage of cooling method is 

quality of the end product particularly the crystal size can be achieved consistently and 

thus it is widely used in the chemical and pharmaceutical industries (Artusio and 

Pisano, 2018; Ghadipasha et al., 2018; Abbas and Romagnoli, 2007). In crystallization 

process, batch cooling operation is often conducted rather than continuous because this 

allows greater operation flexibility and shorter process development (Powell et al., 

2016). The main driving force in the crystallization process is the supersaturation which 

drives the solid phase out of the crystallization solution. During the crystallization 

process there are also nucleation and crystal growth phenomena which have direct 

influences on the final crystal product. Both nucleation and crystal growth are function 

of supersaturation and thus maintaining the supersaturation level is the main challenge 

in the crystallization process.  

 

Figure 1.2 Solubility curve and metastable zone 

Source: Myerson (2002) 

In many crystallization processes, the main problem is how to obtain a uniform 

and reproducible crystal size distribution (CSD) (Perez-Calvo et al., 2016; Vetter et al., 

2014; Park and Yeo, 2012;  Widenski et al., 2010). In order to achieve a uniform and a 

desired CSD, it is essential to maintain the crystallization operation at its set-point. 

Usually the set-point is targeted within the metastable zone which is bounded by the 

saturation (solubility curve) and metastable concentrations (supersolubility curve) as 

shown in Figure 1.2. This is due to the fact that if the crystallisation operation exceeds 

the metastable concentration then, the high supersaturation is expected which results in 
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excessive nucleation. The excessive nucleation is undesirable in the crystallisation 

operation because the new crystals produced usually are considered fine particles at 

relatively small size. The production of these new crystals also affect the downstream 

process which is fouling problem. If the crystallization operation is operated below or 

near saturation line then the low or zero supersaturation is achieved and low crystal 

growth is expected. As consequence a crystal product at relatively small size is obtained 

by the end of operation. 

For the purpose of maintaining the operation, a supersaturation control is often 

applied to drive the process within the metastable zone in order to enhance the control 

of the CSD (Gao et al., 2017; Amini et al., 2016; Gernaey et al., 2012). In order to 

implement the supersaturation control in the crystallization process, the set-point 

trajectory needs to be designed to lie within the metastable zone. Here the set-point 

trajectory, which in fact consists of both the supersaturation and the total batch time 

needed to complete the crystallization operation, can be determined using an analytical 

CSD estimator (Samad et al., 2013). Analytical CSD estimator is used to generate 

supersaturation set-point that yields a target CSD, given the initial seed distribution and 

growth kinetics of the crystallization system. The analytical CSD estimator is 

computationally efficient and can be applied for size independent and size dependent 

growth for one-dimensional processes. However, the main drawback of this approach is 

it only applicable for the crystallization process dominated by the crystal growth 

phenomena and neglecting the effect of agglomeration or breakage. In crystallization 

process, it is important to consider the agglomeration or breakage phenomena because 

the crystal particles tend to merge with other crystal particles due to stirring and may 

break due to the collision between particles during the operation. As a result major 

fundamental problems like limited operation flexibility, non-linear behaviour and 

inconsistent product quality cannot be addressed and solved adequately (Acevedo et al., 

2018; Wohlgemuth and Schembecker, 2013).  

Robustness of the controller is another issue that needs to be considered in 

achieving a consistent crystal product. The robust control usually can be defined as a 

controller that is able to work and adapt to the uncertain input ranges for the process 

(Cao et al., 2018). Based on the uncertain input ranges, the dynamic behaviour of the 

operation is changed and as consequence the product variability is expected. Therefore 
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a robust control needs to counteract this change and still achieve the target product by 

the end of operation. For example the uncertain input presence in the crystallization 

process may come from the kinetic parameters. Usually the exact value of kinetic 

parameters for nucleation and crystal growth expressions are estimated from model 

identification together with confidence interval. This confidence interval provides the 

possible range of each parameters where the use of these values will ultimately causing 

the variability of the CSD obtained in the end of the crystallization operation. Therefore 

there is a degree of uncertainty around the values of nucleation and crystal growth that 

needs to be considered for developing a robust control in order to achieve consistent 

product quality.   

In this study, the agglomeration and breakage are included in the crystallization 

model in order to study the effects of agglomeration and breakage on the crystal size 

distribution. Thus a full mathematical model consists of the population balance 

equations (PBE), overall mass balance, energy balances as well as nucleation, crystal 

growth, agglomeration and breakage models are needed for simulation of crystallization 

process. The analytical CSD estimator is extended for covering the effects of 

agglomeration and breakage. This estimator is then used to generate the set-point 

trajectory for crystallization process. A Proportional-Integral (PI) controller is then 

employed to maintain the supersaturation at the set-point trajectory. In order to study 

the robustness of controller, Monte Carlo simulation is applied for evaluating the 

uncertainty analysis based on the input uncertainties from nucleation, crystal growth 

agglomeration and breakage. 

1.2 Objectives of this Work 

The objectives of this work consists of: 

a) To perform open-loop simulation for predicting crystallization operations and 

estimating kinetic parameters such as nucleation, crystal growth, agglomeration 

and breakage.  

b) To extend the analytical CSD estimator for covering the effects of 

agglomeration and breakage in crystallization operation and the temperature 

dependence case in nucleation and crystal growth phenomena. 
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c) To control supersaturation using Proportional-Integral (PI) controller in the 

closed-loop simulation based on the set-point generated from the extension of 

analytical CSD estimator. 

d) To evaluate the robustness of supersaturation control that is capable to deal with 

set-point tracking and disturbance rejection as well as to counteract the effects of 

input uncertainties in the nucleation, crystal growth, agglomeration and 

breakage parameters. 

1.3 Scopes of Work 

The following is the scopes of this work: 

a) Identifying suitable mathematical model for representing crystallization 

operations and phenomena such as nucleation, crystal growth, agglomeration 

and breakage. 

b) Development of model identification for predicting kinetic parameters such as 

nucleation, crystal growth, agglomeration and breakage. 

c) Performing open-loop simulation of crystallization process for understanding the 

crystallization operation and validating the estimated kinetic parameters. 

d) Extension of original analytical CSD estimator for covering the effects of 

agglomeration and breakage in crystallization operation and the temperature 

dependence case in nucleation and crystal growth phenomena. 

e) Development of model-based optimization incorporating the extended analytical 

CSD estimator for generating the optimal set-point. 

f) Simulation, analysis and validation of the optimal set-point obtained from the 

analytical CSD estimator for achieving the desired CSD using supersaturation 

control in the closed-loop simulation. 

g) Robustness analysis of the developed supersaturation control in terms of set-

point tracking and disturbance rejection  

h) Uncertainty analysis using Monte Carlo simulation on the closed-loop 

simulation of crystallization process in order to analyze controller robustnesss in 

counteracting the effect of input uncertainties and reducing the variability of the 

CSD.  
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1.4 Significance of the Study 

The main specification of crystal product usually is evaluated based on the CSD. 

In this work, the effects of agglomeration and breakage are included together with 

nucleation and crystal growth phenomena. Thus the final CSD obtained by including all 

of the phenomena are more accurate which is essential particularly in pharmaceutical 

crystallization. The extended analytical CSD estimator covering the effects of all 

phenomena is important in order to generate the required set-point trajectory. This 

extended analytical CSD estimator is generic and can be widely applied for the case of 

agglomeration and breakage in crystallization operation as well as the temperature 

dependence case in nucleation and crystal growth phenomena. The supersaturation 

control preferable PI controller is then developed for maintaining the supersaturation at 

the desired set-point which subsequently producing the target CSD. 

In addition, the robustness of controller in crystallization process is also 

included in this work. Two different analyses are used. Firstly the common testing in 

the forms of set-point tracking and disturbance rejection. In this setting, the ability of 

the controller to follow the changes of set-point and to adapt the introduction of 

disturbance are evaluated for base case controller performance. Secondly the robustness 

of controller is tested using uncertainty analysis based on Monte Carlo method. 

Through uncertainty analysis, the effects of input uncertainties such as nucleation, 

crystal growth agglomeration and breakage are evaluated and its impact on the final 

CSD is assessed. Thus the robustness of controller is judged based on its ability to 

maintain the supersaturation at its set-point and counteract the effects of input 

uncertainties in order to consistently produce the desired CSD. 

1.5 Thesis Layout 

The structure of the remainder of the thesis is outlined as follows: 

Chapter 2 provides a review of literature studies involving the fundamental of 

crystallization process, mathematical modelling of the crystallization process and 

finally the operation and control of crystallization process. Chapter 3 provides the 

systematic model-based framework for robust supersaturation control in batch cooling 

crystallization process. In this chapter, a step-by-step procedure of the model-based 

framework is explained in detailed in terms of development of mathematical model, 
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model identification, generation of set-point using extended analytical CSD estimator, 

closed-loop control and uncertainty analysis. Chapter 4 discussed the application of the 

systematic model-based framework for robust supersaturation control in batch cooling 

crystallization process. Two case studies are selected for demonstrating the model-

based framework which consists of potassium sulphate and sucrose crystallization 

process. Finally Chapter 5 presents the conclusions obtained in this work and some 

suggestions for future work. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1 Fundamental of Crystallization Process 

Crystallization process is a separation process to form solid crystals from a 

liquid solution (Geankoplis, 2003). It is one of the widely used method for purification 

of substances (Gao et al., 2017). The fundamental to drive solid crystals from a liquid 

solution is supersaturation which is defined as the state where the concentration of 

substance exceeds the solubility of the substance solution at the given temperature. In 

crystallization process, the supersaturation behaviour is essential in determining the 

quality of crystal products in terms of final CSD, the shape and the crystal size obtained 

at the end of the operation. The constitutive model for measuring supersaturation 

usually is divided into three types namely the degree of supersaturation, supersaturation 

ratio and relative supersaturation. The expressions for all supersaturation model are 

shown in Table 2.1. The saturation concentration (solubility) is represented in the 

polynomial form as: 

3
1

2
111 TdTcTbac iiii

sat +++=  2.1 

Table 2.1 Summary of supersaturation constitutive model 

Phenomena  Equations References 

Degree of supersaturation satccc −=∆  Myerson (2002) 

Supersaturation ratio 
satr
c

c
S =  Myerson (2002) 

Relative supersaturation 
sat

sat

c

cc
S

−
=  Nagy and Aamir (2012) 
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Usually the supersaturation condition is obtained by manipulating the 

temperature in the liquid solution which can be achieved through cooling, evaporation, 

anti-solvent addition or combination cooling and anti-solvent addition (Myerson, 2002). 

Cooling crystallization is defined as the formation of solid with sensible and consistent 

properties of a solution, where its parameter, the solubility line is highly sensitive to 

decrease the temperature. It is widely used in pharmaceutical, petrochemical and 

semiconductor industry. It is often conducted in batch operation rather than continuous 

operation because it allows flexibility for changing product demand and product 

scheduling (Yamba et al., 2008). In this case, the physical system consists of one or 

more solute dissolve in a solvent. For a crystallization process to occur, the system must 

be in supersaturated condition where the entire solvent is no longer able to dissolve in a 

solution and reach the solubility limit. Figure 2.1 shows the supersaturation generated 

by cooling method. The crystallization process usually takes place in the metastable 

region where this region is bounded by saturation (solubility) curve (indicated as curve 

AB in Figure 2.1) and the metastable (nucleation) curve (represented as CD).  

 

Figure 2.1 Supersaturation in crystallization processes 

Source: Geankoplis (2003) 

 

Initially the solution begins at point ‘a’ in the unsaturated condition. Due to the 

cooling, the temperature of crystallization process is decreased and the solution is then 
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moved from point ‘a’ to ‘b’ on the saturation curve where the solution now become 

saturated condition. The solution is then past the saturation curve due to the further 

cooling and move to the metastable region where the solution is now under 

supersaturated condition. In the metastable region, the crystal particles will be produced 

and start to grow where the supersaturation acts as the main driving force to move the 

solute in the solution into crystal particles. In order to achieve a specified crystal 

products, it is important to maintain the operation inside the metastable region. This is 

due to the further cooling which subsequently reducing the crystallization temperature, 

the solution tends to reach metastable curve at point ‘c’ and past beyond point ‘c’ to ‘d’ 

under labile region. Once the solution in the labile region, it is not possible to obtain a 

desired crystal products anymore because in this region the crystallization occurs 

spontaneously where a various size and shape of crystal particles are generated from 

nucleation and crystal growth. Based on the cooling method, the temperature profile of 

cooling crystallization process is much easier to be obtained since the compound 

(solute) tends to be more soluble in hot liquid (solvent) than they are in cold liquids.  

Evaporation is another method to create supersaturation. Unlike cooling method 

where the temperature is decreased slowly to reach supersaturation condition, the 

evaporation method employ the concept of solvent removal. As shown in Figure 2.1, 

the solution starts at point ‘a’, move to point ‘e’ to become saturated and enters the 

metastable region due to the solvent removal from the solution by evaporation method. 

Normally the solution is measured by its concentration where there will be two 

components available in the solution namely the solute and the solvent. When the 

solvent in the solution is starting to evaporate, then solute concentration is definitely 

increased. This is the concept used in the evaporation method. Nevertheless the solution 

needs to be kept under metastable region similar as cooling method to promote the 

growth of crystal particles. Once the solution past beyond point ‘f’ and move to point 

‘g’, the solution usually will be dissolved again and back to the point ‘a’ for 

recrystallization process.  

The supersaturation can be generated using addition of another solvent in the 

solution. This method is called anti-solvent addition. In this method, the solubility of 

the solute concentration is reduced by using the anti-solvent. Assuming the initial 

solution at point ‘a’ in the Figure 2.1 where only solute and one solvent available in the 
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solution. The solute in the solution is able to crystallize when the saturation (AB) and 

metastable (CD) curves is moved downwards in Figure 2.1. Both curves are possible to 

be moved by adding anti-solvent into the solution where the solubility of the solution is 

reduced gradually. In order to achieve this condition the anti-solvent should be miscible 

with the other solvent in the solution, have a direct influence on the solubility of the 

solute and different polarity with the other solvent in the solution. Anti-solvent 

crystallization has been widely used to crystallize pharmaceutical products, which are 

generally sensitive to degradation by heating and frequently have polymorphism 

occurrence (Giulietti et al., 2001). However this approach is suitable only for thermally 

sensitive product in pharmaceutical application when it needs to be conducted at low 

operating temperature. In addition the use of additional solvent also involves the cost of 

anti-solvent separation at the end of the crystallization operation (Konstantakou et al., 

2017). 

2.2 Phenomena in Crystallization Process 

The solute in the solution starts to crystallize once the solution in the metastable 

region. In this region there will be several phenomena occurring such as nucleation, 

crystal growth, agglomeration or breakage during the operation. The details of all 

phenomena occurring during crystallization are explained in the next section. 

2.2.1 Nucleation 

Nucleation can be defined as the formation of new crystal particles (which 

subsequently grow). Nucleation is a phenomena whereby a dust particle, a tiny seed 

crystal starts a crystallization process. Nucleation can occur in the labile zone, where 

there is no crystal growth occurring in that zone. It poses a large energy barrier, which 

is easier to overcome at a higher level of supersaturation (Mesters, 2007). In the 

metastable region, when the solution become supersaturated condition, the solute in the 

solution begins to form a solid state. The molecules of solute starts to appear and merge 

to form clusters. This clusters then form a nuclei due to the nucleation phenomena as 

shown in Figure 2.2. This nuclei is usually stable and will be growth into bigger size 

due to the crystal growth.  
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Figure 2.2 Growth of nuclei 

Source: Myerson (2002) 

The nucleation phenomena can be classified as primary and secondary nucleation as 

shown in Figure 2.3. A primary nucleation occurs when new solids are formed from 

clear liquid at high supersaturation whereas secondary nucleation is a new crystal 

formed that are generated from seed crystals at low supersaturation (Geankoplis, 2003). 

 

Figure 2.3 Nucleation phenomena classification 

A primary nucleation can be divided into two types namely homogeneous and 

heterogeneous. The homogeneous primary nucleation occurs under pure bulk solution 

where no other particles are present and nucleation occur as a result of fluctuation of the 

concentration in the liquid. The heterogeneous primary nucleation occurs when the 

nuclei are produced from the presence of foreign particles due to the effect of impurities 

in the liquid. Meanwhile, secondary nucleation is production of new crystals that are 

induced by seed crystals at low supersaturation level in the case of seeded 

crystallization where the seed crystals are added once the solution in the supersaturated 

condition. In addition the secondary nucleation can be generated due to collisions with 

the impeller in the pump, vessel wall, initial breeding, fluid shear and contact with other 

crystals (Yamba et al., 2008). In order to achieve the desired CSD, usually the seeded 



13 

crystallization is preferred where the seed crystals is able to grow until it reaches the 

desired crystal particles. Thus the secondary nucleation is normally used to determine 

the production of new crystals during the seeded crystallization process. The summary 

of model equations to represent the nucleation in the crystallization processes is shown 

in Table 2.2. Based on Table 2.2, the primary nucleation used by Marchal et al. (1988) 

is only for the unseeded crystallization. For the seeded crystallization process, the 

secondary nucleation models need to be employed. Based on Table 2.2, there are many 

types of secondary nucleation model and the selection of secondary nucleation model is 

depending on the level of supersaturation, consideration of agitation rate and total 

crystal mass. In this work, the level of supersaturation is based on the normal 

supersaturation (S) and the effect of agitation rate is included in order to cover the 

effects of agglomeration and breakage. Thus secondary nucleation model as suggested 

by Quintana-Hernandez et al. (2004) is the most suitable model to be used in this work. 

Table 2.2 Summary of nucleation kinetic model equation in crystallization process 

Phenomena  Equations References 

Primary 

Nucleation 


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





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

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
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bSkB =  Aoun et al. (1999) 
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Shi et al. (2006) 
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Dirksen and Ring (1991)  
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Eek (1995)  
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2.2.2 Crystal Growth 

Crystal growth is the series of processes where an atom or a molecule is 

incorporated into the surface of a crystal, causing an increase in size of crystal particles. 

These different processes can be summarized into four steps (Cubillas and Anderson, 

2010): (1) the transport of atoms through the liquid solution; (2) attachment of atoms to 

the surface; (3) movement of atoms on the surface; and (4) attachment of atoms to 

edges and kinks. Since these different steps normally occur in series, the slowest 

process will control the overall crystal growth. Growth is also referred to the deposition 

of solid material on existing crystals. Growth together with nucleation can determine 

the number of crystals and their size distribution even without the consideration of 

another two phenomena such as agglomeration and breakage (Rao et al., 2007). Growth 

and nucleation can take place through several mechanisms and their rate can be directly 

related to the degree of supersaturation (Everett, 1976). There are several kinetic 

models for crystal growth rate in the crystallization processes used by other researchers 

as summarized in Table 2.3.  

Table 2.3 Summary of crystal growth kinetic model equation in crystallization 
process 

Phenomena  Equations References 

 

Crystal growth 

rate (size 

independent 

growth) 

 

 

( )gg CkG ∆=  Wibowo et al. (2006)  
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= exp  Canning and Randolph (1967) 

g
gkG σ=  Jones et al. (2008)  

q
rpm

g
g NSk=G  Quintana-Hernandez et al. 

(2004) 

Crystal growth 

rate (size 

dependent 

growth) 

( )pg
g LSkG γ+= 1  Aamir et al. (2010) 
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Based on Table 2.3, there are two types of crystal growth models which consist of size 

independent growth and size dependent growth. In this work the crystal particles are 

assumed to be grown independently and thus the size independent growth model is 

selected. Similar to the nucleation model, the selection of crystal growth model is 

depending on the level of supersaturation, consideration of agitation rate and total 

crystal mass. Thus size independent crystal growth model as suggested by Quintana-

Hernandez et al. (2004) is the most suitable model to be used in this work. 

2.2.3 Agglomeration and Breakage 

Another two phenomena take place in the crystallization process is 

agglomeration and breakage. Agglomeration is formed when the growing crystals 

collide with each other, then the particles will stick together to form a new particle. 

Generally, agglomeration is related to higher supersaturation and can be operated in the 

unstable zone. For example, if they are more particle in the batch crystallization, the 

probability of collision will be increased, and thus agglomeration will be more 

extensive (Yamba et al., 2008). To minimize agglomeration, supersaturation should be 

limited. There are two approaches to describe the effect of agglomeration in the 

crystallization process (Wang and Dong, 2006): (1) agglomeration as a kind of crystal 

growth (disobey the McCabe’s ∆L law); and (2) differences of agglomeration from 

crystal growth (obey the McCabe’s ∆L law). The McCabe’s ∆L law refers to the states 

that geometrically similar crystals of the same material suspended in the same solution 

grow at similar linear rate (Canning and Randolph, 1967). In a kinetic model of the 

crystallization process, agglomeration has been expressed as shown in Equation (2.2) 

(Yamba et al., 2008). 

( )3
ji LL +=β  2.2 

Where β is the agglomeration rate of the crystals and L is the crystal length. 

Agglomeration is rarely discussed in the literature that is involved together with 

nucleation and crystal growth due to the lack of available models and phenomena 

understanding in the literature. However, agglomeration phenomena is equally 

important in the crystallization process because the crystal particles tend to merge with 

other crystal particles due to stirring effect. Therefore the number of crystal particles 

will be reduced and the size of crystal particles will be increased due to the merging of 
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crystal particles. As a result, the CSD obtained in the end of crystallization process will 

be different in the case of agglomeration. Meanwhile breakage also defined as erosion 

describes the phenomena where particles split up into a smaller pieces (Laloue et al., 

2007). Particle breakage creates fine crystal fragments and can affect the products 

crystal size distribution. The breakage process is determined by two opposing factors 

which are the mechanical strength of the crystals and the applied breaking forces. 

Usually the breakage function provides the fragment sizes of the broken particle as 

reported by Borsos and Lakatos (2012) and the kinetic model can be expressed in the 

following form: 

( ) ( ) ( )22
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


−= LLLbLb brbr  

          2.3 

Where b is the exponent of secondary nucleation rate, L is the crystal length, δ is 

delta function and λ is the sizes of parent crystals. Based on Equations (2.2) and (2.3), 

the rates of agglomeration and breakage are determined based on the individual crystal 

particles and there is a need to measure the length of each crystal particles for rate 

calculation which makes the calculation becomes complex and complicated. Usually, 

the agglomeration and breakage occur simultaneously in the crystallization process due 

to its kinetic relationship in the process. In the work of Quintana‐Hernandez et al. 

(2004), the agglomeration and breakage phenomena is quantified as one kinetic model 

as a function of a kinetic constant, supersaturation, total crystal mass generated in the 

operation and the effects of agitation as shown in Table 2.4. The kinetic model is called 

as the production-reduction term which represents the birth and death rates that are 

generated by the agglomeration, breakage, aggregation, crystal contact, crystal shaft 

contact and attrition.  

Table 2.4 Production-reduction model in crystallization process 

Phenomena  Equations References 

Production-reduction 

term 

r
rpmNkcM

aSak=α  Quintana-Hernández et al. 

(2004) 
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2.3 Types of Operation in Crystallization Process 

Production process in the chemical industry can be carried out in several ways 

which are batch, continuous or semi-continuous (in which certain parts are done 

continuously and some in batch form). The selection of operation mode is very 

important to meet specified product requirements and changing market demands. The 

batch process is a single or multi-stage (batch-to-batch) process in which a certain 

quantity of inputs such as raw materials are fed into the reactor unit under specified 

operating conditions that is suitable for obtaining the desired product. In the batch 

reactor, the solution is prepared before the process takes place where no feed or product 

removal during the crystallization operation as shown in Figure 2.4. At the end of the 

operation the product is removed from the reactor and it then undergoes the suitable 

separation and processing stages to achieve the required level of purity (Spina et al., 

2018; Zhang et al., 2017). The quality of the end product can also be controlled by the 

addition of appropriate separation stages between the various other stages as required.   

 

Figure 2.4 Jacketed batch cooling crystallization process  

Source: Zhang et al. (2017) 

The continuous process is where the raw materials are fed into the system at a 

constant rate and at preset ratios and at the same time a constant extraction of outputs 

(product) is implemented. This process is characterized by a constant process taking 

place in each section of the processing stage. Thus, the concentration of reactants and 

products at every stage in the system is in a durable state and control of the process is 

done by maintaining the concentrations (Wang et al., 2017). In the continuous process, 
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all the stages are carried out simultaneously and the overall time required for the 

process is shortened (Zhang et al., 2017). In summary, the batch and continuous 

processes can be compared as shown in the Table 2.5. 

Table 2.5 Comparison between batch and continuous process 

Specification Batch process Continuous process 

Types of materials Can be used with all types of 

materials  

Easier for use with 

flowing materials  

Installation size Small installations with 

significant savings in land  

Large installations and 

big investment in land 

Reactor Changes occur in the 

concentration of materials 

with time 

Conditions are constant 

with time at all locations 

(durable conditions) 

Feeding raw materials Raw materials are fed before 

the start of the reaction 

Constant feeding of raw 

materials during the 

entire reaction process 

Control system Manual and automatic 

control can be applied 

Manual and automatic 

control must be used. 

Products Extraction of materials can 

be done after finishing all 

the actions in the reactions 

Continuous extraction of 

products at all times 

during the entire process 

Trouble shooting A fault or dealing with a 

batch requiring “repair” does 

not cause problems in the 

other stages. 

The installations are 

interconnected, so a fault 

in one causes a stoppage 

in all the others.   

Quantities produced Preferable when production 

of small quantities of a 

specific material is planned. 

Preferable for large scale 

production. 

Variety of products in 

plant 

Preferable when the plant 

produces a wide variety of 

materials. 

Preferable for a central 

and permanent product. 

Product development 

stage 

Preferable when the process 

is relatively new and still 

unfamiliar.   

Preferable after the 

conclusion of all the 

stages of grossing-up and 

economic feasibility 

tests. 
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Based on the comparison in Table 2.5, the batch process is preferable due to its ability 

to reflect changing product demand, a proper control can be used to maintain the 

operation, operation feasibility and its flexibility on the process condition.  

2.4 Modeling of Crystallization Process 

In the simulation work, mathematical model is widely used to represent the 

necessary process. In the crystallization process, usually the mathematical model 

consists of dynamic balance equations which are combined with constitutive models 

describing the phenomena such as nucleation, crystal growth, agglomeration and 

breakage as well as saturation concentration, mass and heat transfers involved with the 

crystallization process (Samad et al., 2011). Generally, the dynamic balance equations 

involve the population balance equation for representing the CSD, mass balance for 

predicting the change of solute concentration and energy balance for estimating the 

dynamic behavior of temperature in the solution.  

2.4.1 Population Balance Equation 

The main equations used to model the crystallization process is the population 

balance equation, which describes the state of the CSD (Hu et al., 2005). The type of 

population balance equation (PBE) engaged is usually a hyperbolic partial differential 

equation (PDE), which also includes the crystallization kinetics phenomena. The 

general form of PBE is shown below (Hulburt and Katz, 1964): 

( ) ( ) ( )
( )DB
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tLf nn −+
∂
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∂
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Where fn is the population density, L is the length scales of crystal, G refer to the crystal 

growth rate phenomena, B represent the birth rate of crystal and D is the death rate of 

crystals. The terms birth (B) and death rate (D) can be represented as: 

brbraggaggnuc DBDBBDB −+−+=−  2.5 

Where the birth rate of crystal, B usually is formed by nucleation, nucB , agglomeration 

of crystal particles, aggB  or from the breakage of crystal particles, brB . Meanwhile the 
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death of crystals are usually caused by agglomeration, aggD  and breakage, brD . In the 

work of Quantina-hernandez et al. (2004), the birth and death rates of crystal generated 

by agglomeration and breakage can be represented as production-reduction term, α . 

Thus, Equation (2.5) can be simplified as 
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Where the production-reduction term, α  as shown in Table 2.4 can be 

substituted in Equation (2.6) as shown in Equation (2.7). 
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If there is no agglomeration and breakage is assumed in the crystallization 

process, Equation (2.7) is simply reduced to Equation (2.8) as shown below: 
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Usually the solution of the generic PBE requires numerical solution techniques 

and the most common solution of these PBE is using standard method of moments and 

method of classes techniques (Samad et al., 2011) as shown in Figure 2.5. The 

population balance equations (PBE) are transformed to a system of ordinary differential 

equation (ODE) by applying the standard method of moments and the method of classes. 

Both methods are capable to perform the operation for unseeded and seeded 

crystallization process as well as size independent and size dependent crystal growth 

except standard method of moments only capable to solve for the case of size 

independent growth rate only. 
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Figure 2.5 PBE solution techniques based on process operation characteristics  

Source: Samad et al. (2011) 

2.4.1.1 Method of Moments 

The standard method of moments is originally developed by Hulburt and Katz 

(1964) is very popular and and its application has been reported by many researchers 

(Nagy et al., 2008; Paengjuntuek et al., 2008; Fujiwara et al., 2002; and Shi et al., 2006). 

The approach of this method is to convert the partial differential equations (PDE) that 

represent the population balance into a set of coupled ordinary differential equations 

(ODEs) for the n-moments considered (Samad et al., 2011). The advantage of this 

method is the ease of solution, since the ODE solvers are readily available (Samad et al., 

2011). However, the PBE including the size dependent growth functions or 

agglomeration and breakage terms may cause convergence problems because of closure 

of the respective moment equations (Gimbun et al., 2009). In addition the size 

distribution of crystal particles cannot be obtained from this method which represent the 

major lacking point of this method. 

2.4.1.2 Method of Classes 

The methods of classes are different compared to method of moments where the 

partial differential equations (PDE) are sectioned along the size domains into finite 

classes. This method overcomes the problem encountered with the standard method of 
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moments as it permits the discretization of the growth functions along the size domains 

and thereby able to deal for case of size independent and size dependent crystal growth. 

Moreover, this method allows phenomena such as agglomeration and breakage to be 

implemented within the solution of PBE (Samad et al., 2011). In addition the 

distribution of crystal particles at various size can be estimated using this method. A 

disadvantage of this method is the accuracy of the simulated behavior depends on the 

number of discretization points and also the computational effort. The higher number of 

discretization points used to construct the CSD then the higher accuracy of CSD is 

obtained but high computational time is also expected. However, this problem can be 

overcome with the availability of faster computers and more efficient numerical solvers 

(Amini et al., 2016; Abbas and Romagnoli, 2007; Puel et al., 2003).  

2.4.2 Overall Mass Balance 

The overall mass balance used in the crystallization process is developed to 

determine the rate of change of the solute concentration as shown in Equation (2.9). 
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Where ρc is crystal density, V is volume mw is the mass of solvent and L is the 

characteristic length. Meanwhile kv is the shape factor where the value is depending on 

crystal shape (Samad et al., 2011). For example the value for sphere shape is π/6 and for 

cube shaped crystal is 1. The Equation (2.9) is in the form of integro-differential 

equation and can be solved using standard method of moments and method of classes 

(Samad et al., 2011) as shown in Equations (2.10) and (2.11).  
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2.4.3 Energy Balances 

 The energy balances for the crystallization process can be divided into the 

energy balance inside the crystallizer and the energy balance for the cooling jacket. The 
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energy balance for accounting the rate of change of crystallizer temperature is shown in 

Equation (2.12). 
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Where ∆Hc is the heat of crystallization, U1 is the heat transfer coefficient and A1 is 

crystallizer internal area. Similar to the overall mass balance, the energy balance inside 

the crystallizer is also in the form of integro-differential equation. The solution of this 

equations using standard method of moments and method of classes (Samad et al., 

2011) are shown in Equations (2.13) and (2.14).    
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Meanwhile the energy balance for cooling jacket is shown in Equation (2.15) as 

suggested by Quantina-hernandez et al. (2004). 
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2.5 Operation and Control 

In order to achieve high purity and uniform crystal size distribution (CSD), 

normally the operation of crystallization process must lies within the metastable zone 

which is bounded with saturation (solubility) curve and metastable (nucleation) curve as 

shown in the Figure 2.6. In order to crystallize the solution, the system must be in the 

supersaturated condition where the entire solute is no longer able to dissolve in the 

solution. In the metastable zone, the crystal will be formed and grow due to the 

supersaturation that occurs during the process. However in many crystallization 

processes, the main problem is to determine the control trajectory (set-point) inside the 

metastable zone. This is due to the fact that if the crystallization is operated near to the 

saturation (solubility) curve then low supersaturation is obtained. Supersaturation have 

a direct relationship on the nucleation and crystal growth rate. A low supersaturation 
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level will results into low nucleation rate which is preferable because less production of 

new crystals at relatively low size. However a longer operational time is required to 

obtain the desired size of crystal particles because of the low rate of crystal growth. 

Another scenario is when the crystallization is operated near the metastable curve, then 

a high level of supersaturation is expected. Thus the crystal particles will grow steadily 

according to the rate of crystal growth but excessive nucleation is also expected where a 

large number of crystal particles will be produced which is not preferable in the 

crystallization process. Therefore a suitable approach to generate the necessary set-

point is needed in order to obtain a uniform and reproducible crystal size distribution 

(CSD). 

 

Figure 2.6 Operating region for crystallization process  

Source: Fujiwara et al. (2005) 

One of the early works for generating the desired trajectory in batch cooling 

crystallization process is using the cooling policy as shown in Figure 2.7 (Hojjati and 

Rohani, 2005; Myerson, 2002; Jones and Mullin, 1974). The cooling policy which 

includes natural, linear and controlled cooling policy is often applied to generate 

temperature profile for producing the crystal products (Bohlin and Rasmuson, 1992; 

Nakamura et al., 2007). In the natural cooling policy, the temperature of the solution is 

cooled down steadily until the end of operation. Although natural cooling mode is very 

easy to operate but it has never been able to obtain product crystals at the desired size 

(Dunuwila and Berglund, 1997). This is because in the natural cooling policy usually a 

high supersaturation is obtained in the beginning of the operation since the temperature 
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is dropped quickly but low supersaturation level is achieved by the end of the operation. 

Therefore a large number of crystal particles will be generated in the beginning but in 

the end all of these particles will not be grown sufficiently due to the low 

supersaturation during the end of operation which contributing to the low crystal growth 

rate. In addition a high supersaturation usually happens when the solute concentration is 

crossing the metastable limit into the labile region, thereby promoting uncontrolled 

crystallization and the formation of fines which is often undesirable since they may be 

difficult to filter, dry and package. In order to overcome a large production of crystal 

particles, linear cooling policy is introduced where the cooling rate is decreased 

linearly. This approach is able to reduce the production of crystal particles at relatively 

low size but the supersaturation obtained using this method is low which contributing to 

the low size of crystal particles. 

 

 

Figure 2.7 Cooling policy for crystallization process 

Source: Myerson (2002) 

Previous works have shown that through the use of a controlled cooling policy, 

as opposed to a natural or linear cooling policy, a larger mean size diameter size of 

crystal particles can be obtained and less number of crystal particles due to the 

nucleation can be achieved. This is due to the cooling rate for this policy is decreased 

based on the cubic function. The low supersaturation in the beginning of the operation 

and a sufficient supersaturation level for adequate growth of crystal in the middle of 
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operation makes this approach better than natural or linear cooling policy. Therefore 

controlled cooling policy is commonly applied for optimization of batch crystallization 

(Simone et al., 2017; Shiau and Lu, 2004; Jones and Mullin, 1974). In order to reflect 

the changes of product specification this policy is combined with optimization 

techniques to generate the optimal model-based design approach. In this approach 

usually the objective function for optimization is specified for example to maximize the 

mean crystal size of crystal particles or to reduce the production of crystal particles due 

to the nucleation (Amini et al., 2016; Fujiwara et al., 2005). Then the optimization 

algorithm is implemented together with a detailed mathematical model for 

crystallization process to generate the optimal temperature profiles for achieving the 

specified objective function (Wang and Ward, 2016).  

However most of the works only concern with the objective to maximize mean 

crystal size and mean size diameter or to minimize production of new crystal particles 

(Hemalatha et al., 2018; Bhoi et al., 2017; Amini et al., 2016, Nagy et al., 2008). Only 

limited works in literature can be found on achieving the distribution of crystal particles 

in the form of CSD. Usually the mean crystal size and mean size diameter can be 

calculated using standard method of moments considering it is a simple method and 

easier to solve. However the CSD cannot be determined using the standard method of 

moments and it requires discretization method such as method of classes. The CSD 

from method of classes is depending on the number of discretized equations. The higher 

the number of discretized equations then the higher accuracy of the CSD. The major 

drawback using this method is if the optimization algorithm is performed together with 

the mathematical model using method of classes, then high computational times is 

expected which sometimes leads to failure of reaching the specified objective function. 

Therefore the performance of optimal model-based approach depends on the 

mathematical model equations (Cao et al., 2017; Nagy et al., 2008).       

Alternative to optimal model-based approach is by using model-free (or direct 

design) approach where analytical CSD estimator can be employed to generate the set-

point trajectory (Aamir, 2010). The analytical CSD estimator originally developed by 

Aamir (2010) and further extended by Samad et al. (2013) is based on the assumption 

of constant supersaturation throughout the entire batch operation and can be applied for 

size independent and size dependent growth for one- and two-dimensional 
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crystallization processes as shown in the Table 2.6. The analytical CSD estimator is 

selected based on the characteristic selection for example size independent growth or 

size dependent growth. There are two main equations in the analytical CSD estimator 

namely final CSD and final characteristic length in the case of one-dimensional 

crystallization process. Notes that the final characteristic width is only applicable for 

two-dimensional case.  

Table 2.6 Analytical CSD estimator for one- and two-dimensional crystallization  

Characteristic Analytical model equations 
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Source: Samad et al. (2013) 
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Based on the informations of target final CSD, initial seed of CSD and the 

growth kinetics of the crystallization process, the possible candidates of set-point which 

consists of supersaturation and total crystallization time can be estimated. In the 

analytical CSD estimator, the optimal supersaturation set-point (Ssp) and the total 

crystallization time (tc) can be obtained by minimizing the sum of squares of relative 

errors between the predicted CSD obtained from the analytical estimator and the desired 

target CSD (Samad et al., 2013) as shown in Equations (2.16) - (2.19). 
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Subject to: Ssp, tc 

max,min, spspsp SSS ≤≤  2.17 

maxmin ttt c ≤≤  2.18 

maxft cc
batch

≤  2.19 

 

Where N is the number of discretization points, fn,i is the predicted CSD that is 

obtained from the analytical CSD estimator and fn.i target is the desired target CSD, ct, batch 

is the expected solute concentration at the end of the batch and cf, max represents the 

maximum acceptable solute concentration at the end of the batch to achieve the 

required yield. Subsequenty the optimal supersaturation set-point is used as a trajectory 

that needs to be maintained during the entire batch operation using a suitable feedback 

control in order to achieve the desired target CSD. This approach is relatively simple 

and efficient. The main advantage is the set-point generated by analytical CSD 

estimator is directly corresponding to the target CSD indicating that by maintaining the 

operation at its set-point by feedback control then the desired CSD can be achieved. 

This reduces the needs for trial-and-error approach which is often applied during 

experimentation works. However, the main drawback of this approach is it is only 

applicable for the crystallization process dominated only by the crystal growth 
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phenomena and thus neglecting the effect of agglomeration or breakage. In addition the 

crystal growth kinetic (kg) in the estimator neglects the dependence of temperature and 

thus the parameters are assumed constant. In some cases, particularly in the 

pharmaceutical crystallisation, the crystal growth kinetic is dependent on the 

temperature of crystallisation operation and thus the kinetic must be extended. 

Therefore there is a need to extend the current analytical CSD estimator in order to 

overcome these limitations.      

2.6 Robustness Issue 

Although a proper feedback control system can be developed to maintain the 

operation at the set-point trajectory in crystallization process but usually the developed 

control is sometimes capable to work only under specific crystallization operation 

(Yang et al., 2014). Also often the controller needs to be designed again when the 

specification of the operation or the product is changing indicating the controller is not 

robust enough to adapt the changes (Sin et al., 2009). Therefore robustness issue of 

controller is one of the problem in crystallization process where a suitable approach 

needs to be implemented for producing robust control. One of the simplest method is to 

test the control based on set-point tracking and disturbance rejection (Saengchan et al., 

2011). Through set-point tracking, a various of set-points are introduced at different 

times during the crystallization operation then the performance of the developed 

controller is observed based on its ability to follow and maintain the operation based on 

the changes of set-points. Meanwhile for the disturbance rejection, a change of input is 

implemented on the crystallization operation. For example the input of cooling jacket 

temperature is disturbed during the crystallization operation. This change will 

ultimately change the crystallization operation particularly the behavior of crystallizer 

temperature, solute concentration and CSD of crystal product. Therefore the controller 

must good enough to adapt this change and rectify the operation back to the set-point 

trajectory. If the controller is not able to handle both of these changes then the 

controller needs to undergo a tuning procedure until the performance of the controller is 

satisfied. 

Another factor which can be considered for testing the robustness of controller 

is parameter uncertainty (Samad and Saleh, 2016; Saengchan et al., 2011, Sin et al., 

2009). Usually the parameter uncertainty in crystallization process presences in the 
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kinetic model equations such as nucleation, crystal growth rate, agglomeration and 

breakage (Saengchan et al., 2011). The kinetic coefficients of these equations normally 

are estimated based on experimental data such as solubility data, solute concentration 

data or crystallizer temperature data. All of these data are collected during experiment 

works and sometimes there are considerable errors during the data measurement. In 

order to consider these errors, a confidence interval can be calculated during parameter 

estimation which the acceptable range of values is determined as a good estimates of 

the unknown parameter. For example, the coefficient of crystal growth kinetic (kg) is 

estimated as 1.44 ± 0.08 from parameter estimation. The good estimate of this 

parameter is 1.44 and the confidence interval which is based on 95% reliability is 0.08. 

This indicates that the reliable value for this parameter is in the range of 1.36 – 1.52 

where this range provides the uncertainty of the parameter. As consequence, the use of 

this range will contribute to the variability of the CSD by the end of the operation 

(Forgione et al., 2015). Therefore the developed controller needs to be able to handle 

the effect of this range and to reduce the variation of the CSD.  

For considering the parameter uncertainty in the crystallization process, 

uncertainty analysis can be applied in order to measure the uncertainties and minimize 

the risk of not achieving the target CSD specifications. This is actually a part of good 

modeling practice (GMoP) to allow improvement of the usage and the reliability of the 

model within process monitoring and control applications (Sin et al., 2009). In the 

uncertainty analysis, the input uncertainty which consists of estimated parameters used 

in the mathematical model will be propagated and the effects on the model output will 

then be evaluated. The uncertainty analysis leads to probability distributions of model 

predictions, which are then used to infer the mean, variance and percentiles of model 

predictions (Sin et al., 2009). One of the widely used methods to perform uncertainty 

analysis is Monte Carlo method (Samad and Saleh, 2016). Monte Carlo method or 

probability method is a technique used to understand the impact of uncertainty in many 

areas such as financial, project management, and costing as well as engineering area. In 

some cases such as crystallization process, it is possible to estimate a range of values 

for input parameters during parameter estimation. Based on the range of estimated 

values, random value is selected for each parameters and the Monte Carlo simulation is 

performed to generate the model output. Here the required number of Monte Carlo 

simulation will be set by the user. Usually the higher number of Monte Carlo simulation 
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will produce more accurate propagation of input data on the model output. The 

advantages of Monte Carlo analysis is the extensive sampling from the ranges of the 

uncertain variables, and a surrogate model is not needed to obtain the uncertainty results 

unlike the other uncertainty techniques such as Taylor series in differential analysis or 

Response Surface Methodology (RSM) (Sin et al., 2009).  

2.7 Concluding Remarks 

Crystallization is a widely used technique in various chemical-based product 

industries especially in the production of pharmaceutical and chemicals. The driving 

force for crystallization process is supersaturation. It can be achieved by different 

operating approaches which are cooling, evaporation and anti-solvent addition. Some of 

the techniques can be combined to achieve the supersaturation in the crystallization 

operation. In this work, batch cooling of crystallization method is chosen instead of 

evaporation and anti-solvent addition since the process offer flexbility compared to the 

another methods. 

Population balance equation (PBE) has been accepted as the most fundamental 

model for constructing CSD of crystal particles. The PBE is a balance that has been 

used for distribution in particle size, location and other state variables. A lot of methods 

are available to solve the PBE. The most suitable method is the method of classes 

(MOC) which is able to solve the problem related to size independent or dependent 

growth, agglomeration and breakage phenomena. The PBE together with overall mass 

and energy balances can be combined with the desired phenomena such as nucleation, 

crystal growth agglomeration and breakage to represent the crystallization process and 

be used as a tools for simulation, operation and control of the crystallization process. 

Usually in many crystallization processes the main problem is to obtain a 

uniform and reproducible crystal size distribution (CSD). Thus, supersaturation control 

is often applied to drive the process that lies in the metastable zone in order to enhance 

the control of the CSD. In order to implement supersaturation control in the 

crystallization process, the set-point trajectory needs to be designed to lie within the 

metastable zone. Here the set-point trajectory, which in fact consists of both the 

supersaturation and the total batch time needed to complete the crystallization 

operation, can be determined using an analytical CSD estimator as highlighted in the 
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work of Samad et al. (2013) and Nagy and Aamir (2012). The analytical CSD estimator 

is computationally efficient in kinetic mathematical model equation and can be applied 

for size independent and size dependent growth for one-dimensional crystallization. 

However the current estimator needs to be extended for covering the effects of 

temperature dependency in the kinetic rates as well as agglomeration and breakage 

phenomena. 

Lastly, in order to achieve a robust control to adapt a reflect changing product 

demands and crystallization operation, a robustness analysis needs to be performed. 

Here the robustness analysis can be performed in two ways. Firstly the developed 

controller needs to be tested in terms of set-point tracking and disturbance rejection. 

Secondly through the uncertainty analysis. Both features are essential as testing tools to 

produce the robust controller for crystallization process. The developed robust 

controller will ensure the process can be maintained at desired set-point under the 

influence of disturbances for producing consistent CSD in the end of the operation. 
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CHAPTER 3 

 

 

METHODOLOGY FOR ROBUST SUPERSATURATION CONTROL IN 

BATCH COOLING CRYSTALLIZATION PROCESS 

3.1 Introduction 

  In this chapter, the systematic model-based framework for robust 

supersaturation control in batch cooling crystallization is presented. A general step-by-

step procedure has been included in this model-based framework to allow the user to 

study the crystallization operation under open-loop and closed-loop conditions. In 

addition, an extension of new generic analytical crystal size distribution (CSD) 

estimator that is applicable for all necessary phenomena such as nucleation, crystal 

growth, agglomeration and breakage as well as temperature dependency in the kinetic 

rate has been included to provide an accurate set-point trajectory for supersaturation 

controlled in the crystallization process in order to achieve the target CSD. In addition 

the robustness analysis is also included in the model-based framework to deal with the 

controller robustness issue. 

3.2 Systematic Model-based Framework for Robust Supersaturation Control 

in Batch Cooling Crystallization Process 

 A systematic model-based framework for robust supersaturation control in batch 

cooling crystallization process has been developed as shown in Figure 3.1. The model-

based framework consists of eight main steps to allow the systematic development of a 

wide range of crystallization phenomena for different operational case study. 
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Problem Definition (Step 1)

Process and Product 
Specifications (Step 2)

Development of 
Mathematical Model (Step 3)

Model Identification (Step 4)

Open-loop Simulation     
(Step 5)

Set-point Generation (Step 6)

Closed-loop Simulation  
(Step 7)

Reach Target?

Robustness Analysis (Step 8)

Final CSD

Yes

No

 

Figure 3.1 Systematic model-based framework for robust supersaturation control in 
batch cooling crystallization process
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3.2.1 Problem Definition (Step 1) 

 The first step is the problem definition where the specific objective of 

crystallization process to be studied is defined. For example, the objective could be to 

study the dynamic behavior of crystallization process, to develop supersaturation 

control for achieving the desired target CSD or to evaluate the robustness of 

supersaturation controller. 

3.2.2 Process and Product Specifications (Step 2) 

The process and product specifications in Step 2 represents the selection of 

characteristics and specification of the crystallization process. In the process 

specification as shown in Figure 3.2, the user needs to select three main specifications 

which consists of to study crystallization process with or without the effects of 

agglomeration and breakage, in the case of size independent or size dependent crystal 

growth and finally for temperature independent or dependent study. The product 

specification is usually the target crystal properties in the form of CSD, mean crystal 

size and mean size diameter. 

 

Figure 3.2 Specification of one-dimensional crystallization process
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3.2.3 Development of Mathematical Model (Step 3) 

In this step, the development of the mathematical model to represent the 

crystallization operation and phenomena is explained. The mathematical model for 

crystallization process can be divided into two types which are dynamic balances and 

constitutive model equations. The dynamic balance equations consists of the crystal 

population to represent the CSD, overall mass for solute concentration and energy for 

temperature behavior in crystallization process. The constitutive model equations 

contain a set of models for describing the crystallization phenomena such as nucleation, 

crystal growth rate, agglomeration, breakage as well as its chemical and physical 

properties such as saturation concentration, metastable concentration, total crystal mass 

and CSD formulation. 

3.2.3.1 Population Balance Equation Model (PBE) Formulation 

In this study, the population balance equation (PBE) model involves only for 

one-dimensional cases as shown in Table 3.1. In this step, the PBE is transformed into a 

system of ODE by applying the standard method of moments and the method of classes. 

Table 3.2 shows the solution of PBE using standard method of moments.  

Table 3.1 Generic equation for one-dimensional PBE 

Equation 
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Table 3.2 Solution equations of one-dimensional PBE using method of moments 

Method of moments 

Size independent growth 
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The method of moments consists of 5 equations which are zeroth moment (µ0) 

for calculating the total number of crystal particles produced from nucleation 

phenomena, first moment (µ1) for estimating the total length of crystal particles, second 

moment (µ2) for predicting the total area of crystal particles, third moment (µ3) for 

computing the total crystal mass and finally the fourth moment (µ4) is used for 

obtaining the mean size diameter of crystal particles. This method is actually 

calculating the total values of crystal particles at the end of the operation. In this method, 

it can be used for unseeded and seeded crystallization operation but it is only applicable 

to size independent characteristic only. Furthermore, the method cannot be used to 

cover the effects of agglomeration and breakage. In order to overcome these 

weaknesses, another method is included in this step which is the method of classes as 

shown in Table 3.3.  

Table 3.3 Solution equations of one-dimensional PBE using method of classes 

Method of Classes 
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The method of classes can be used for size independent or dependent growth, unseeded 

or seeded operation as well as to include the agglomeration and breakage phenomena. 

The term classes in this method is referring to the number of discretization point. For 

example, if the CSD is targeted to be achieved at a characteristic length of 1000 µm. 

Then by assuming the size of each class is 2 µm then the number of discretization point 



38 

is 500 indicating that 500 equations will be used for method of classes. In this method, 

the number of discretization points need to be selected with caution. If less number of 

discretization point is selected, then less number of equations in the method of classes is 

needed but sometimes it will lead to the inaccuracy of CSD obtained by the end of the 

operation. However, if the number of equations is too high then a long computational 

time is expected. Therefore the accuracy of this method is measured based on selected 

number of discretization points and the computational effort to solve the equations. 

However, this problem can be overcome with the availability of faster computer 

(Samad et al., 2011; Abbas and Romagnoli, 2007; Costa et al., 2005). 

3.2.3.2 Overall Mass Balance Formulation 

The overall mass balance equation involves the general balance equation of the 

total or component mass of any system that is used to describe and design almost every 

process in the chemical system. The overall mass balance equation will be depending 

on the PBE solution either using standard method of moments or method of classes as 

shown in Table 3.4. 

Table 3.4 Overall mass balance for one-dimensional crystallization 

Types Equations 

Generic equations 
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3.2.3.3 Energy Balance Formulation 

The concept of energy balance formulation is similar to the mass balance 

formulation where a balance of energy is important in solving many problems involving 

the change of temperature during the operation. Similarly like overall mass balance, the 

final equation for energy balance depends on the solution of PBE. Table 3.5 lists the 

energy balance equation for one-dimensional case study. 
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Table 3.5 Energy balance for one-dimensional crystallization 

Types Equations 

Generic equations 
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3.2.3.4 Cooling Jacket Energy Balance Formulation 

In the batch cooling crystallization process, it is assumed that the jacketed batch 

crystallizer is used. Therefore the cooling jacket energy balance equation for one-

dimensional case is similar for both method of moments and method of classes as 

shown in the Table 3.6. 

Table 3.6 Cooling jacket energy balance for one-dimensional crystallization 

Generic equation 

( ) ( ) ( )wexwwwinpwwinw
w
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3.2.3.5 Selection of Constitutive Equations 

The constitutive equations involve the kinetic phenomena and solubility model 

such as nucleation, crystal growth rate, supersaturation, metastable concentration, 

saturation concentration, agglomeration, breakage as well as its physical properties of 

crystallization process such as total crystal mass and CSD. The list of constitutive 

equations is shown in the Table 3.7. 
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Table 3.7 List of constitutive equations for the one-dimensional model of 
crystallization 

Types Equations                        References 

Saturation concentration 3
1

2
111 TdTcTbac iiii

sat +++=                 Shi et al. (2011) 

Metastable 
concentration 

3
2
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Shi et al. (2011) 
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q
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Samad et al. (2011) 
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Samad et al. (2011) 
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3.2.4 Model Identification (Step 4) 

The model identification has been included in the model-based framework in 

order to estimate the kinetic parameters of crystallization operation (nucleation, crystal 

growth, agglomeration, breakage) and also to calculate the confidence interval for each 

estimated parameters. For model identification, the objective function for parameter 

estimation takes the following form: 
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Where [ ]rkakqgkpjbk agb ,,,,,,,,,,=θ  is the sets of parameters for the nucleation, crystal 

growth, agglomeration and breakage. Meanwhile w  is the weightage used for 

temperature, concentration, supersaturation and total crystal mass. The value of w  is 

assumed in the range of 0.1 to 1 (Nagy and Aamir, 2012). Based on Equation (3.1), it 

requires the experimental data for temperature, solute concentration, supersaturation 

and total crystal mass. The experimental data can be obtained from the experimental 

works or from published literature (for example the potassium sulphate experimental 

data is taken from Shi et al., 2006). However, in some cases it is not possible to obtain 

all the necessary data. Therefore the compulsory data needed to perform model 

identification is temperature and solute concentration experimental datas. In this work, 

the model identification is developed in the Matlab modelling software using least 

square method as a solver to estimate the necessary kinetic parameters. 

3.2.5 Open-loop Simulation (Step 5) 

The mathematical model developed in Step 3 will be combined and simulated 

with model identification in Step 4 under open-loop condition. In this step the model 

validation is performed where the predicted dynamic behavior data using estimated 

kinetic parameters is compared with experimental data taken from literature works. If 

the data is matching then the model is validated and the estimated kinetic parameters 

are indeed reliable. In the case of mismatch data, then the model identification is 

performed again until the simulated data is matching with experimental data or the 

kinetic model for nucleation or crystal growth rate needs to be changed with other types 

of model. 
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3.2.6 Set-point Generation (Step 6) 

In this step, a systematic procedure to generate the set-point necessary for 

achieving the target CSD is introduced. Previously, the original analytical CSD 

estimator for one-dimensional crystallization process has been developed by 

incorporating the growth kinetics without considering the effects of agglomeration and 

breakage phenomena as well as temperature dependence in the kinetic rates. In this 

work, the original analytical CSD estimator has been extended to cover the effects of 

agglomeration and breakage as well as temperature dependence case for assessing its 

influence on the performance of the final CSD. In order to represent the effects of 

agglomeration and breakage, the production-reduction term (α) as shown in Table 2.4 is 

used. Meanwhile the Arrhenius expression is employed for covering the effects of 

temperature dependence. The derivation of the extended analytical CSD estimator is 

shown below. Population balance equation (fn) incorporating production-reduction term, 

α for one-dimensional case is shown in Equation (3.2). 

 

Population balance equation: 

( ) ( ) ( )[ ]
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xnxxxn
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tLftLGd

dt

tLdf ,,,
 

3.2 

In the case of size independent growth rate, Equation (3.2) can be rewritten as: 

α=+
x

n
x

n

dL

df
G

dt

df
 

3.3 

The expression for size independent growth with the effects of agitation is given by: 

r
rpm

g
gx NSkG =  3.4 

The supersaturation is assumed to be constant which is possible in a controlled 

crystallization and supersaturation expression is given by: 

sat

sat

c

cc
S

−
=  

3.5  

Notes that relative supersaturation is used in Equation (3.5). However the degree of 

supersaturation or supersaturation can be used in the same way as relative 

supersaturation. Differentiating Equation (3.4) with respect to characteristic length 

gives: 



43 

0=
x

x

dL

dG
 

3.6  

Introduce ( ) ( ) ( )( )ZtZLftLf xnxn ,, =  and by applying chain rule give:  

dZ

df

dt

df

dZ

dt

dL

df

dZ

dL nn

x

nx =+  
3.7  

Comparing Equation (3.7) and (3.3), gives: 
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By assuming 000 == Zt  , Equation (3.13) can be simplified as: 

Zt =  3.14 

Since dZdt = , Equation (3.9) becomes: 
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Substitute Equation (3.4) into (3.15) gives: 
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( ) ( )00 ttNSkLL r
rpm

g
gxx −=−  3.19 

By assuming 00 =t , Equation (3.19) can be simplified: 

( ) tNSkLL r
rpm

g
gxx =− 0  3.20 

Rearranging Equation (3.20) gives: 

tNSkLL r
rpm

g
gxx += 0  3.21 

Equation (3.21) represents the final expression for calculating characteristic length of 

crystal particles. Since dZdt = , thus: 

α=
dt

df n  
3.22 

Integrating Equation (3.22) with limits: 
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3.23 

( ) α=− 0nn ff  3.24 

α+= 0nn ff  3.25 

 

Where Equation (3.25) represents the final equation for calculating the CSD. In this 

derivation, the analytical CSD estimator is successfully developed for considering the 

effects of agglomeration and breakage in the case of temperature independence. For 

temperature dependence, the kinetic model for temperature dependence crystal growth 

rate as shown in Table 3.7 is used and substituted into Equation (3.4). The derivation is 

then repeated. The extended analytical CSD estimator is summarized in Table 3.8 

where it is applicable for the case of with or without agglomeration and breakage as 

well as temperature independence or temperature dependence. 

 In order to generate the optimal supersaturation set-point using the extended 

analytical CSD estimator, three conditions must be taken into accounts which are the 

initial seed of crystals (fn0,i), a target CSD (fn,i target) and a kinetic data for the growth and 

agglomeration-breakage must be available. Usually, the initial seed of CSD and target 

CSD are supplied in the form of normal, lognormal or bimodal distribution (Samad et 

al., 2013). Meanwhile the kinetic data is obtained from model identification step. Based 

on analytical CSD estimator, the candidate of set-points which are the supersaturation 
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set-point (Ssp) and total crystallization time (tc) can be generated and the optimal set-

point is obtained based on model-based optimization as shown in Equations (2.16)-

(2.19). 

Table 3.8 New extension of analytical CSD estimator expressions for one-
dimensional crystallization 

Characteristic Analytical model equations 
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3.2.7 Closed-loop Simulation (Step 7) 

In this step, the mathematical model is then simulated under closed-loop 

condition. In the closed-loop condition, a Proportional-Integral (PI) control as shown in 

Equation (3.26) is proposed to maintain the solute concentration based on set-point 

generated in Step 6. The PI control is the most suitable controller and widely used for 

maintaining the concentration in crystallization process (Samad et al., 2011, Nagy et al., 

2008, Fujiwara et al. 2008). Based on literature, it is proven that the PI controller is 

performed better than the Proportional (P) controller and also produce similar 

performance as Proportional-Integral-Derivative (PID) (Fujiwara et al., 2008). 

( ) ( ) 







++= ∫ dtteteKyy

t

I
cmm

0

1

τ                                                                                       3.26 

Where my is the current measured variable and my is the previous measured 

variable. cK and Iτ are the controller parameters for proportional and integral actions. 

Meanwhile ( )te is the error between set-point variable and measured variable. For 

crystallization process, the set-point variable is supersaturation and the measured 

variable is solute concentration. In order to calculate the controller parameters for PI 

controller, dynamic response from open-loop simulation is performed. Based on 

dynamic response, the process reaction curve in the form of first order plus time delay 

is constructed. Then the values of cK and Iτ are calculated using Internal Model Control 

(IMC) tuning method (Samad et al., 2011; Nagy et al., 2008). The mathematical model 

of crystallization process is then simulated under closed-loop simulation and the 

performance of controller is analyzed. Two important criterias are measured in the 

closed-loop simulation. Firstly the performance of PI controller to follow the given set-

point trajectory and secondly the achievement of target CSD. In this closed-loop 

simulation, the set-point trajectory has been generated from extended analytical CSD 

estimator where theoretically if the operation is maintained at the set-point, the target 

CSD could be achieved. Thus the ability of PI controller to maintain the operation at the 

generated set-point is analyzed. If indeed the operation has been maintained at its set-

point then the final CSD obtained is compared with the target CSD. If these two 

criterias are not met then the controller will undergo the tuning process until both 

criterias are obtained.  
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3.2.8 Robustness Analysis (Step 8) 

Step 8 introduces the controller testing in terms of its robustness. Two types of 

testing will be conducted which consists of controller performance based on set-point 

tracking and disturbance rejection as well as uncertainty analysis involving Monte 

Carlo procedure. 

3.2.8.1 Set-point Tracking and Disturbance Rejection 

 The performance of PI controller is tested based on its ability to track the 

changes of set-point and the presence of disturbance. For set-point tracking, three 

different set-points are employed in order to test the PI controller. Meanwhile two small 

fluctuations in cooling jacket temperature are introduced during the crystallization 

operation for disturbance rejection. A good controller must be able to adapt the changes 

of set-point and to reject the disturbance introduces during the crystallization operation. 

3.2.8.2 Uncertainty Analysis  

The PI controller is further tested based on uncertainty analysis. In this work, 

uncertainties are considered in the input parameters of the kinetic models such as 

nucleation, crystal growth, agglomeration and breakage. The value of each parameters 

are determined from the model identification step. The suitable range of uncertainty for 

each parameter is obtained from the upper and lower bound of kinetic parameters which 

can be obtained from the confidence interval. The Monte Carlo procedure is then 

implemented in order to propagate different sources of uncertainties in the model 

prediction. The Monte Carlo procedure involves three sub-steps: (1) sampling of 

uncertainties; (2) Monte Carlo simulations; and (3) evaluation of output uncertainties.  

Sampling of Uncertainties 

The next step concerns with the number of sampling specifications. Since there is no 

suitable approach to determine the appropriate number of sampling, 5 differents number 

of sampling are used in this work for example it may consists of 25, 50, 100 and 150 

samples. The combination of input uncertainties are then generated based on 5 

differents number of sampling. For example, 5 differents combination for input 

uncertainties are generated for 5 number of sampling where these 5 differents 
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combination are then used for Monte Carlo simulation. In order to generate this 

combination, a Latin-Hypercube sampling method (LHS method) can be applied 

(Gunawan et al., 2004; Helton and Davis, 2003). Based on each samples, the mean, 

standard deviation and Monte Carlo error as shown in Equations (3.27)-(3.29) are 

calculated. Here the best number of sampling is determined based on the lowest Monte 

Carlo error. Usually the lowest Monte Carlo error indicates that the input uncertainties 

are successfully propagating on the output prediction.  

N
X i

iX∑
=  

3.27  

( )
N

XX
SD

∑ −
=

2

 
3.28 

  

N
MC

samples

error

σ
=

 3.29 

Monte Carlo Simulation 

In this step, the Monte Carlo simulation is performed based on the best number of 

sampling. For example, if the best number of sampling is 100 then the mathematical 

model of crystallization process is simulated for 100 times using 100 different 

combination of input uncertainties using Monte Carlo simulation.  

Evaluation of Output Uncertainties 

The model output from Monte Carlo simulation is then evaluated in terms of the model 

output variation. In this work, the severity of uncertainty is measured based on the 

spread of the data. The higher spread of the data indicating the high uncertainty is 

presence. In the uncertainty analysis, the closed-loop simulation is repeated using 

different combinations of input uncertainties based on the number of sampling. Thus it 

will affect the behavior of crystallization process particularly solute concentration, 

temperature and final CSD. This contributes to the spread of data in the end of 

operation if the controller not able to counteract the effects of input uncertainties. Thus 

the influence of input uncertainties is concluded as dominant and high (Sin et al., 2008). 

The main focus is the impact of input uncertainties on the CSD where the low 
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variability of the CSD is preferred. In this case, the performance of PI controller is 

analyzed in terms of its ability to maintain the concentration at the set-point for 

different combinations of kinetic parameters. Subsequently the variability of the CSD is 

then checked in this evaluation. If spread of the CSD data is small then it can be 

concluded that the PI controller is robust enough to counteract the impact of input 

uncertainties. In the case large variation of CSD is obtained then the PI controller needs 

to be retuned and Monte Carlo simulation will be performed again in order to improve 

its robustness. 

In the end the outcome of this work is that the final target CSD is achieved with less 

variability through closed-loop simulation using a robust PI controller developed in this 

study.  

3.3 Concluding Remarks 

In this chapter, a model-based framework for robust supersaturation control in 

batch cooling crystallization process is proposed to achieve the desired target CSD 

using robust control. This model-based framework is generic where it can be applied on 

a wide range of crystallization process. The features of this model-based framework 

consists of mathematical model development, model identification, set-point 

generation, open- and closed-loop operations as well as robustness analysis for 

controller. The set-point for achieving the target CSD is generated using analytical CSD 

estimator where it has been extended to cover the effects of agglomeration and 

breakage as well as the effects of temperature dependence on kinetic rates. In addition, 

the robustness of controller to reduce the variation of CSD is also introduced in the 

model-based framework. This unique feature provides the platform of testing the 

controller performance for counteracting the impact of input uncertainties and at the 

same time achieving the desired target of CSD with less variability.
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CHAPTER 4 

 

 

APPLICATION OF ROBUST SUPERSATURATION CONTROL IN BATCH 

COOLING CRYSTALLIZATION PROCESS 

4.1 Overview 

 The application of the systematic model-based framework for robust 

supersaturation control of batch cooling crystallization process is tested and evaluated 

through two case studies involving potassium sulphate and sucrose crystallization 

processes. The first case study involving potassium sulphate crystallization process has 

been adopted from Shi et al. (2006) where the target CSD is obtained for the case of 

temperature dependence in the nucleation and crystal growth kinetics. Meanwhile 

sucrose crystallization is the selected second case study which has been adopted from 

Quintana‐Hernández et al. (2004). In this second case study, production-reduction term 

is used to represent the effects of agglomeration and breakage and its impact on 

achieving the target CSD is discussed.  

4.2 Application of the Model-based Framework: Potassium Sulphate 

Crystallization Process 

The application of the model-based framework is highlighted using potassium 

sulphate crystallization process. Relevant data for this case study is taken from Shi et al. 

(2006).  

4.2.1 Problem Definition (Step 1) 

 The overall objective for this case study is to design a robust supersaturation 

control for potassium sulphate crystallization process in order to achieve the desired 

target CSD. The target CSD used is taken from Shi et al. (2006) as uniform distribution 

and is expressed as follows:   
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For 487 µm ≤ L ≤ 537 µm: 

( ) ( )( )     4875370032.00, −−= LLLf                                                                              4.1 

For L < 487 µm, L > 537 µm:  

( ) 00, =Lf                                                                                                                       4.2 

The target CSD generated from Equations (4.1) and (4.2) is shown in Figure 4.1.  

 

Figure 4.1 Target CSD for potassium sulphate crystallization 

4.2.2 Process and Product Specifications (Step 2) 

In this step the process specification is one-dimensional crystallization process 

for size independent crystal growth with temperature dependence. It has been assumed 

the effects of agglomeration and breakage is neglected. The chemical system involved 

in this study consists of potassium sulphate as a solute and water as a solvent. The 

jacketed batch crystallizer is assumed for this operation. For the product specification, 

the CSD of potassium sulphate is the target product as shown in Figure 4.1 where the 

mean characteristic length and standard deviation for the target CSD are 512 µm and 

2.8 µm respectively. 

4.2.3 Development of Mathematical Model (Step 3) 
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the assumptions of seeded operation with size independent growth (temperature 

dependence) with neglecting the agglomeration and breakage phenomena. The PBE is 

solved using the method of classes where the size of class (∆Cl) is set at 0.5 µm and the 

number of equations used for method of classes are 1200. The number of equations 

used are based on target CSD in Figure 4.1 where the projected characteristic length for 

CSD is up to 600 µm. Thus if the size of class is set at 0.5 µm, 1200 total number of 

equations should be used in order to meet the projected characteristic length. The 

equations for overall mass and energy balances are selected based on the method of 

classes solution. For the selection of constitutive equations, secondary nucleation is 

assumed, relative supersaturation is employed and the temperature dependence is 

included in the nucleation and crystal growth rate equations. Based on the above 

information, the complete mathematical model for potassium sulphate crystallization 

process is summarized in the Table 4.1. Table 4.2 shows some of the known variables 

taken from Shi et al. (2006) in the mathematical model of potassium sulphate for the 

seeded batch cooling crystallizer. 

Table 4.1 List of model equations for the one-dimensional model of potassium 
sulphate crystallization 

Types Equations 
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balance 
equation 

1,
2 1

1 ==
∆

+ i  BN
Cl

G

dt

dN
nuc

x  

ni  N
Cl

G
N

Cl

G

dt

dN
i

x
i

xi ≤≤=
∆

+
∆

+ − 10
22 1  

ni  N
Cl

G
N

Cl

G

dt

dN
n

x
n

xn ==
∆

−
∆

+ − ,0
22 1  

Overall mass 
balance: solute 
concentration 














−= ∑

=1

3

i

i
xi

w

vc

dt

dN
S

m

vk

dt

dc ρ
 

 
Energy balance ( )w

i

i
xivccp TTAU

dt

dN
SVkH

dt

dT
Vc −−














−= ∑

=

11
1

3ρρ  

Cooling jacket 
energy balance 

( ) ( ) ( )wexwwwinpwwinw
w

pwww TTAUTTAUTTcF
dt

dT
cV −+−+−= 2211ρρ  

Saturation 
concentration 

2632 1014.71046.21029.6 TTc sat −−− ×−×+×=  

Metastable 
concentration 

2632 1010.81046.21076.7 TTcmet −−− ×−×+×=  

Supersaturation 
sat

sat

c

cc
S

−
=  

Nucleation ( ) 3/exp µb
bbnuc SRTEkB −=

   



53 

Table 4.1 Continued 

Types Equations 

Crystal growth 
rate 

( ) g
ggx SRTEkG /exp −=  

Characteristic 
size 2

1−−
= xixi

xi

LL
S  

Total number 
of particles 

nc NNNNN ++++= ...321  

Total crystal 
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Lf ii

xin

∆+∆
= +  

 

Table 4.2 Parameter values of potassium sulphate in batch cooling crystallizer 

Parameter Value Units 

Overall heat transfer coefficient (internal), U1 1800 kJ/m2 h K 

Total heat-transfer surface area (internal), A1 0.25 m2 

Overall heat transfer coefficient (internal), U2 2300 kJ/m2 h K 

Total heat-transfer surface area (external), A2 0.45 m2 

Heat of crystallization, ∆H 44.5 kJ/kg 

Heat capacity of solution, Cp 3.8 kJ/ K kg 

Inlet water flow rate, Fwin  5500 cm3/min 

Exterior temperature, Tex 302 K 

Mass of solvent, M 27.0 Kg 

Density of crystals, ρc 2.66 x 10-12 g/µm3 

Density of water, ρw 1 g/cm3 

Volumetric shape factor, kv 1.5 - 

Operation time, tf 30 min 

Source: Shi et al. (2006) 

The initial seed distribution used for this seeded operation is based on the uniform 

distribution as shown in Equations (4.3) – (4.4). Figure 4.2 shows the initial seed 

distribution obtained from this uniform distribution where the initial mean characteristic 

length is 275 µm (Shi et al., 2006). Here the idea is to use the initial seed as a starting 

point and to grow the seed until it reaches the target CSD as shown in Figure 4.1. 
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For 250 µm ≤ L ≤ 300 µm: 

( ) ( )( )     2503000032.00, −−= LLLf                                                                           4.3 

For L < 250 µm, L > 300 µm:  

( ) 00, =Lf                                                                                                                    4.4 

 

Figure 4.2 Initial seed distribution for potassium sulphate crystallization 

4.2.4 Model Identification (Step 4) 

 In this step the model identification is implemented to predict the kinetic 

parameters of nucleation and crystal growth rate. There are 6 parameters for nucleation 

and crystal growth rate to be predicted which consists of kb, b, Eb/R, kg, g and Eg/R. In 

order to estimate all of these parameters, the experimental datas of temperature and 

potassium sulphate concentration  are available which are taken from Shi et al. (2006). 

The objective function for parameter estimation is shown in Equation (4.5): 
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Subject to: θmin<θ<θmax and model equations in Table 4.1 

Where θ represents the 6 parameters to be estimated, θmin is the lower bound of 

parameters and θmax is the upper bound of parameters. The weightages used for 
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temperature (wT) and potassium sulphate concentration (wc) are 0.5 and 0.2 

respectively. The model identification is then performed in Matlab software and based 

on the simulation the objective function obtained is 4.5 x 10-05. Table 4.3 shows the 

estimated kinetic parameter for potassium sulphate crystallization. The estimated 

kinetic parameters obtained in this work are compared with the value obtained from 

literature and a good agreement has been achieved where the estimated parameters are 

very close with the expected value in literature. This indicates that the developed model 

identification is very reliable and is able to predict the accurate parameters. In addition 

the confidence interval is also calculated in this step and the interval for each 

parameters are shown in Table 4.3.   

Table 4.3 Estimated kinetic parameters for potassium sulphate crystallization 

Parameter kb b Eb/R Eg/R kg g 

Literature value  
(Shi et al., 2006) 

285.01 1.45 7517 4859 1.440 x108 1.50 

This work 284.50 1.45 7515 4788 1.435 x108 1.49 
Confidence interval 5.1 0.09 109 167.2 0.08 x108 0.07 

 

4.2.5 Open-loop Simulation (Step 5) 

Based on the estimated kinetic parameters, the mathematical model as shown in 

Table 4.1 is simulated under open-loop condition using the same operating condition 

from literature to allow model validation. The model is solved using backward 

differentiation formula (BDF) method known as solver ‘ode15s’ which is available in 

the Matlab software. Figures 4.3 and 4.4 show the crystallizer temperature and the 

potassium sulphate concentration profile under the conventional linear cooling strategy 

where the temperature of crystallizer is cooled down linearly from 323 K to 303 K for 

30 minutes operation time. As consequence the potassium sulphate concentration is 

dropped linearly from 0.1742 g potassium sulphate/g water to 0.1372 g potassium 

sulphate/g water at the final time. This is due to the fact that potassium sulphate 

concentration is depends on the temperature behavior. 
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Figure 4.3 Temperature profiles under open-loop condition 

 

Figure 4.4 Potassium sulphate concentration profiles under open-loop condition 

  

Figure 4.5 Supersaturation profiles under open-loop condition 
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Figure 4.4 also shows that the crystallization operation is operated within the 

metastable zone where the potassium sulphate concentration profile lies between the 

saturation concentration and metastable concentration. Meanwhile the relative 

supersaturation obtained is shown in Figure 4.5 where initially the relative 

supersaturation is 0.036 and starts to increase steadily up to 0.053. Based on Figures 4.4 

and 4.5, it is clear indicated that the crystallization process occurs and the relative 

supersaturation level will drive the solute in the solution into seed crystal and grown 

based on nucleation and crystal growth kinetics. The final CSD obtained in this work is 

shown in Figure 4.6 where initially the seed of CSD as shown in Figure 4.2 at mean 

characteristic length of 275 µm has been grown into mean characteristic length of 512 

µm which is matching with desired target set in product specification step. However 

there are two patterns of CSD behavior as shown in Figure 4.6 where the peak on the 

right is the crystals grown from initial seed. The other pattern indicates the crystals 

formed by secondary nucleation as shown on the left of Figure 4.6. Although the seed 

of CSD has been grown to achieve the desired target but the number of crystals 

produced from secondary nucleation is relatively high. This is due to the fact that the 

relative supersaturation is keeps increasing and thus the excessive nucleation is 

expected. The production of these new crystals at relatively low size is not preferable in 

the crystallization process because it will affect the downstream process such as 

fouling. In addition the final CSD obtained is in good agreement with the CSD from 

literature data which indicating the method of classes as a solution of PBE is indeed 

reliable.  
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Figure 4.6 Comparison of CSD under method of classes with linear cooling control 
for potassium sulphate 

In the work of Shi et al. (2006), the standard method of moments is also used for 

determining the total crystal particles using the zeroth moment and third moment for 

calculating the total crystal mass. Both properties can also be determined by using 

method of classes where the expressions relating both properties are shown in Table 

4.1. For example the number of crystals produced from secondary nucleation is able to 

be determined by method of classes considering there is a clear gap between those two 

peaks as shown in Figure 4.6. The comparison of zeroth and third moments obtained 

using method of classes is shown in Figures 4.7 and 4.8. There will be two different 

profiles as shown in Figures 4.7 and 4.8. The first profiles is calculated based on initial 

seed of crystal and another profiles is determined based on crystal particles generated 

from secondary nucleation. Based on the simulation, the total number of crystal seeds 

remains constant at 70 until the end of operation as shown in Figure 4.7. This is due to 

the fact that no agglomeration and breakage is considered and thus the total number of 

crystal seeds is not changing. Meanwhile the total number of crystals formed from 

secondary nucleation at the end of operation is approximately 600 indicating the 

crystallisation process is also dominated by nucleation phenomena. Meanwhile the third 

moment for the seed is initially at 1.6 x 109 and is kept increasing to 9 x 109. However 

there are no third moment at the beginning of the operation for nuclei particles but 

around 9 x 108 is obtained at the end of operation time. The third moment is related 

with the total crystal mass. Thus it is reasonable for the seed to have an initial mass and 
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the total crystal mass for the seed is expected to increase considering the seed will be 

grown into the larger size. Meanwhile initially there will be no crystal particles 

produced by secondary nucleation at the start of operation and the mass of crystal 

particles generated by secondary nucleation is then increased but at lower rate due to 

low size of nuclei crystal particles. Nevertheless, the model has been tested by 

comparing with the results of Shi et al. (2006) and a good agreement has been achieved 

between both methods in terms of the zeroth moment and third moment indicating that 

the method of classes is feasible to be used either for constructing the CSD and for 

calculating the physical properties of crystal particles. 

 

Figure 4.7 Comparison standard method of moments (Shi et al., 2006) and method 
of classes for zeroth moment (This work) 

 

Figure 4.8 Comparison standard method of moments (Shi et al., 2006) and method 
of classes for third moment (This work) 
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4.2.6 Set-point Generation (Step 6) 

Based on open-loop simulation in Step 5, it is clearly seen that the final CSD is 

matching the desired target CSD using the linear cooling profiles. However the main 

drawback using the linear cooling profiles is its inability to control the supersaturation 

level which contributes to the excessive nucleation. In this step, the set-point for the 

controller to be used in the closed-loop simulation is generated using extended 

analytical CSD estimator where the set-point is created on the basis of constant 

supersaturation. Based on the characteristic selection in Step 2, this is seeded operation, 

the effect of agglomeration and breakage is neglected and size independent crystal 

growth where the temperature dependence is included in the kinetic of this process. 

Therefore the analytical CSD estimator selected based on the characteristic selection is 

shown in Table 4.4. 

Table 4.4 Analytical CSD estimator equation for potassium sulphate crystallization 

Characteristic  Analytical model equations 

Size independent 
growth: 

Temperature 
dependence: 
(Arrhenius Equation) 
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In order to demonstrate the application of this analytical CSD estimator, the 

target CSD, initial seed distribution and the kinetic growth parameters as shown in 

Figures 4.1 to 4.2 and Table 4.3 are employed. Theoretically the initial seed distribution 

acts as a starting point where the seed is grown until it reaches the final CSD, which in 

the ideal case should be as close as possible to the target CSD. It is important to remark 

that although arbitrary target CSD can be chosen but the same distribution functions for 

initial seed and target CSD need to be used. The target CSD may not be attained if 

different distribution function is used for initial seed and target CSD. The model-based 

optimization problem in Equations (2.16)-(2.19) is then solved using a sequential 

quadratic programming (SQP) based solver in order to obtain the optimal set-point. The 

optimal set-point consisting of the supersaturation set-point of 0.042 g/g that is to be 

maintained and the total crystallisation time of 30 minutes are obtained. 
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4.2.7 Closed-loop Simulation (Step 7) 

A closed-loop simulation is then performed where a proportional-integral (PI) 

controller has been employed in order to maintain the potassium sulphate concentration 

at the desired set-point where the generated optimal set-point is used as a 

supersaturation set-point for the controller and inlet water temperature as the 

manipulated variable. The diagram for potassium sulphate crystallization is shown in 

Figure 4.9. The concentration is monitored by ATR-FTIR and the temperature is 

monitored by a thermocouple. The inlet water temperature is manipulated by blending 

hot and cold water. Meanwhile the CSD is also monitored by Malvern mastersizer. In 

order to calculate the controller parameters for PI controller, dynamic response from 

open-loop simulation is performed. Based on dynamic response, the process reaction 

curve in the form of first order plus time delay is constructed. Then the values of cK and 

Iτ are calculated using Internal Model Control (IMC) tuning method (Samad et al., 

2011; Nagy et al., 2008). Here the calculated values of cK and Iτ are 60 and 6 x 10-5 

respectively. 

 

Figure 4.9 Potassium sulphate crystallization diagram 

Based on the closed-loop simulation results, it can be concluded that the 

potassium sulphate concentration initially started at 0.1742 g/g was successfully 

maintained at the set-point using the PI controller in Figure 4.10. Approximately 0.1367 

g/g of potassium sulphate concentration remains by the end of the operation as shown in 
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Figure 4.10. Figure 4.11 shows the temperature profiles obtained from closed-loop 

simulation where temperature initially decreased linearly from 323.15 K to 318.15 K 

and then further decreased steadily to the 303.15 K at 30 minutes. Meanwhile the level 

of relative supersaturation is shown in Figure 4.12 where in the beginning of the 

operation the relative supersaturation is 0.04327 and is decreased steadily to the set-

point of 0.042. This is due to the effects of temperature drop based on linear profile 

where the PI controller acts aggressively to maintain the supersaturation at set-point of 

0.042 which results into decrement of supersaturation level. Once the temperature 

profiles decreased steadily then the level of supersaturation is then maintained by PI 

controller until the end of operation. Figure 4.13 shows the total crystal mass obtained 

for this case study where initially 5 g of crystals seed has been increased to 

approximately 390 g by the end of the operation. In this work the total operation time is 

set at 30 minutes for model validation purpose. However the operation time could be 

extended. For potassium sulphate crystallization, if the total operation time is extended, 

the total crystal mass will be increased due to the decrease of solute concentration and 

maintained once the solute concentration reach saturation concentration line. 

 

Figure 4.10 Potassium sulphate concentration profiles in the closed-loop simulation 
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Figure 4.11 Solution temperature profiles in the closed-loop simulation  

 

Figure 4.12 Supersaturation profiles in the closed-loop simulation 

 

Figure 4.13 Total crystal mass obtained in the closed-loop simulation 
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The evaluation of output uncertainties based on the Monte Carlo simulations are 

then implemented based on 125 number of sampling. Figures 4.19 - 4.22 show the 

closed-loop simulation results for potassium sulphate crystallization process obtained 

from Monte Carlo simulation. As shown in Figure 4.19, it is clear the input 

uncertainties in nucleation and crystal growth rate are affecting the behaviour of 

temperature. Initially the effect of input uncertainties is very minimum where only a 

small variation of temperature is observed but the spread of temperature ranging from 

301 K to 305 K is obtained at final crystallization time due to the input uncertainties.  

 

Figure 4.19 Effects of input uncertainties on the temperature for potassium sulphate 
crystallization 

 

Figure 4.20 Effects of input uncertainties on the concentration for potassium sulphate 
crystallization 
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Figure 4.21 Effects of input uncertainties on the inlet water temperature for 
potassium sulphate crystallization 

The effects of input uncertainties on the potassium sulphate concentration follows the 

same pattern as temperature behavior as shown in Figure 4.20. Based on the spread of 

potassium sulphate concentration, the impact of input uncertainties is at minimum at the 

beginning of operation and become dominant by the end of crystallization operation. In 

this case study, the supersaturation set-point is depending on the potassium sulphate 

concentration and saturation concentration (solubility) where the saturation 

concentration is depending on the temperature based on the polynomial expression. 

Since the input uncertainties are affecting the temperature then the saturation 

concentration is also changing which ultimately affecting the supersaturation level. In 

order to maintain the supersaturation set-point, the PI controller is acting aggresively by 

manipulating the inlet water temperature as shown in Figure 4.21. Figure 4.21 shows 

the profiles of inlet water temperature where it has been manipulated smoothly in the 

beginning of operation and then acted vigorously due to the aggresiveness of PI 

controller to deal with the effects of input uncertainties. As consequence, the high 

uncertainties is obtained on the CSD where it can be clearly seen the variability of the 

CSD as shown in Figure 4.22. Based on Table 4.1, the CSD is formed based on 

population balance equation (PBE) where the nucleation and crystal growth rate are two 

phenomena involved for CSD construction. Since the input uncertainties are introduced 

based on these two phenomena, therefore it is understandable the high uncertainty is 

dominant on the final CSD. Although the PI controller is acting aggressively for 

maintaining the supersaturation set-point but the effects of input uncertainties on the 
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CSD are too dominant by judging the wide spread of final CSD as shown in Figure 

4.22.          

 

Figure 4.22 Effects of input uncertainties on the CSD for potassium sulphate 
crystallization. 

Based on the Monte Carlo simulation results, it is shown that the effects of input 

uncertainties are low on the potassium sulphate crystallization and temperature but 

become superior on the final CSD. Since the final CSD is the main product of 

crystallization process, therefore there is a need to reduce the variability of the CSD. 

One of the ways to minimize the effect of input uncertainties is to perform controller 

tuning in order to get the new parameters for the PI controller. Controller tuning refers 

to the calculation of new tuning parameters in order to achieve the best performance of 

the controller. In this work, the adjustment is conducted by determining the new 

controller parameters which consists of proportional gain (Kc) and integral time (τi) 

values. The new PI controller parameters calculated using Internal Model Control 

(IMC) tuning method is shown in Table 4.8.  

 

Table 4.8 New PI controller parameters for potassium sulphate crystallization 

 Original tuning 

parameters 

New parameters after 

retuning 

Proportional gain (Kc) 60 70 
Integral time (τi) 6x10-5 0.0035 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700

fn
 (

N
o

./
µ

m
. 

g
 s

o
lv

en
t)

Length (µm)



75 

 

Figure 4.23 Effects of input uncertainties on (a) CSD obtained from old controller 
parameter, (b) CSD obtained from new controller parameter, (c) CSD 
representation from old controller parameter and (d) CSD representation 
from new controller parameter using mean, 10th percentile and 90th 
percentile 

Based on the new controller tuning parameters, the Monte Carlo simulation is 

performed again and the final CSD obtained is evaluated. Figure 4.23(a) and (b) shows 

the final CSD obtained using old and new controller parameters. It can be clearly seen 

the impact of uncertainty is greatly reduced when using a new controller parameter. 

This indicates that the PI controller using new controller parameter is able to counteract 

the effect of input uncertainties and retuning the controller is able to minimize the 

variability in the final CSD. The representation of uncertainty in terms of mean, 10th 

and 90th percentile values of the final CSD obtained from Monte Carlo simulations is 

shown in Figure 4.23(c) and (d). The presence of uncertainty is clearly shown in Figure 

4.23(c) where the 10th and 90th percentile is further away from the mean of final CSD 

obtained from old controller parameter. After the retuning the PI controller, the 10th and 
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90th percentile is very close to the mean indicating that the uncertainty for CSD is 

minimized and less variability of final CSD is achieved. Based on the uncertainty 

analysis, it can be concluded that the PI controller is robust enough to counteract the 

impact of input uncertainties in the nucleation and crystal growth rate model and 

retuning of controller is the useful way to reduce the effect of input uncertainties on the 

model output. 

4.3 Application of Model-based Framework: Sucrose Crystallization Process 

 For the second case study, sucrose crystallization process is selected to 

demonstrate the target CSD for the case of agglomeration-breakage phenomena is 

achieved using the application of the model-based framework. 

4.3.1 Problem Definition (Step 1) 

In this case study the objective is set to achieve the desired target CSD for 

sucrose crystallization process in the case of agglomeration and breakage. The target 

CSD to be achieved is shown in Equations (4.6) and (4.7) which is based on the 

uniform distribution. Figure 4.24 shows the generated target CSD where the mean of 

characteristic length of CSD is 395 µm and the highest peak of CSD is 2.12 no. of 

particles/µm. g solvent. 

For 370 µm ≤ L ≤ 420 µm: 

( ) ( )( )     370420003500 −−= LLLf .,                                                                              4.6 

For L < 370 µm, L > 420 µm:  

( ) 00 =,Lf                                                                                                                         4.7 
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Figure 4.24 Target CSD for sucrose crystallization 

4.3.2 Process and Product Specifications (Step 2) 

For the process specification, the operation for sucrose crystallization is 

assumed for size independent growth with covering the effects of the agitation rate and 

the effects of agglomeration and breakage phenomena is also considered. The sucrose 

acts as the solute and the solvent selected is water for this process. The final CSD as 

shown in Figure 4.24 is the main target to be achieved for product specification.   

4.3.3 Development of Mathematical Model (Step 3) 

For the development of the mathematical model, the PBE model using method 

of classes is used where the production-reduction term (α) as suggested by Quintana‐

Hernández et al. (2004) is employed for representing the effects of agglomeration and 

breakage. For the purpose of constructing the CSD using PBE, 600 number of equations 

in method of classes are used using 1 µm size of class (∆Cl). The solute concentration, 

energy balance and cooling jacket energy balance are also construced in the same way 

as potassium sulphate crystallization. In terms of constitutive equations, the effect of 

agitation rate is included in the nucleation and crystal growth rate. The list of model 

equations for the sucrose crystallization process is shown in Table 4.9. Meanwhile the 

known variables for this mathematical model is shown in Table 4.10 which has been 

adopted from Quintana‐Hernández et al. (2004). 
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Table 4.9 List of model equations for the one-dimensional model for sucrose 
crystallization 

Types Equations 

Population 
balance equation  
(size 
independent 
growth) 
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2

1
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∆
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dt
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Source: Quintana‐Hernández et al. (2004) 
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Table 4.10 Parameter values for sucrose crystallization  

Parameter Value Units 

Heat capacity of solution, Cps 2.4687 J/g°C 

Density of crystals, ρc 1.588 g/cm3 

Magma volume, V 2230 cm3 

Heat capacity of water, Cpw 4.18 J/g°C 

Volume of water, Vw 820 cm3 

Exterior temperature, Tex 29 °C 

Inlet water flow rate, Fwin  4200 cm3/min 

Mass of water, Mw 800 g 

Mass of solvent, Ms 2528 g 

Volumetric shape factor, kv π/6 - 

Initial temperature, To 70 °C 

Density of water, ρw 1.0 g/cm3 

Overall heat transfer coefficient (internal), U1 1800 kJ/m2 h K 

Total heat-transfer surface area (internal), A1 0.25 m2 

Overall heat transfer coefficient (external), U2 2300 kJ/m2 h K 

Total heat-transfer surface area (external), A2 0.45 m2 

Source: Quintana-hernandez et al. (2004) 

4.3.4 Model Identification (Step 4) 

 For the model identification step, the experimental datas for temperature, 

sucrose concentration, mean size diameter, agitation rate, supersaturation and total 

crystal mass are available (adopted from Quintana-hernandez et al., 2004). These 

experimental datas can be used to estimate the kinetic parameters of nucleation, crystal 

growth rate and production-reduction term. The total kinetic parameters to be estimated 

is 11 parameters which consists of 4 parameters ( )pjbkb ,,,  in nucleation, 3 parameters 

( )qgkg ,,  in crystal growth and 4 parameters ( )rkaka ,,,  in production-reduction term 

respectively. The objective function developed for model identification is shown in 

Equation (4.8).  
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Subject to : All model equations in Table 4.9 and maxmin θθθ ≤≤  

Where [ ]rkakqgkpjbk agb ,,,,,,,,,,=θ  is the set of parameters for the nucleation, crystal 

growth and production-reduction kinetic models, minθ  and maxθ  are the specified lower 

and upper bounds for each parameter respectively. The objective function used in this 

work is based on the minimization of error between calculated data from mathematical 

model and experimental data for temperature, concentration, agitation rate, mean size 

diameter, supersaturation and total crystal mass. The weightage of 0.6 is set for 

temperature (wT), for the sucrose concentration the weightage (wc) used is 0.3, 0.4 is the 

weightage used for mean size diameter (wD), the weightage of agitation rate (wNrpm) is 

0.5 and finally the weightages of supersaturation and total crystal mass are specified at 

0.4 respectively. Based on the simulation performed in Matlab software, the objective 

function for parameter regression is 2.3 x 10-06 which is acceptable tolerance for 

minimizing the error between experimental and calculated data. Tables 4.11 to 4.13 

show the estimated kinetic parameters for sucrose crystallization with the confidence 

interval for each parameters. The estimated values obtained in this work is in good 

agreement with the values from literature indicating a good prediction has been 

obtained from model identification.  

 

Table 4.11 Estimated nucleation kinetic parameters for sucrose crystallization 

Parameters kb B j p 

Literature values 
(Quintana- Hernandez et al., 2004) 

85.7 0.01 0.005 0.05 

This work 82.4 0.0106 0.0044 0.048 
Confidence interval 7.1743 0.0024 0.0008 0.004 
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Table 4.12 Estimated crystal growth kinetic parameters for sucrose crystallization 

Parameter kg g q 

Literature values  
(Quintana- Hernandez et al., 2004) 

0.000133 1.00 0.5 

This work 0.000101 1.00 0.5 
Confidence interval 0.000051 0.001 0.015 

 

Table 4.13 Estimated production-reduction kinetic parameters for sucrose 
crystallization 

Parameter ka a k r 

Literature values  
(Quintana- Hernandez et al., 2004) 

1.00 0.1 0.09 0.001 

This work 1.00 0.085 0.11 0.001 
Confidence interval 0.01 0.012 0.03 0.0005 

 

4.3.5 Open-loop Simulation (Step 5) 

The open-loop simulation is performed for model validation using the same 

conditions and assumptions from Quintana-hernandez et al., (2004). In this work the 

PBE is solved using the method of classes and method of moments is employed for 

solving the PBE in the literature. The agitation rate for this simulation is set to be fixed 

at 600 rpm for 20 minutes and then the agitation rate is decreased linearly to 100 rpm.  

The open-loop simulation results for sucrose crystallization are shown in Figure 4.25. 

For the sucrose crystallization, the temperature is cooled down from 70 °C to 40 °C 

based on the natural cooling profile. Although the temperature is already dropped but 

the sucrose concentration profiles is still maintained at the beginning of the operation. 

This is due to the fact that this is the unseeded operation where there is no crystal 

particles presence at the initial crystallization operation. Therefore the crystal particles 

are generated by nucleation phenomena known as crystal nuclei. However most of the 

crystal nuclei generated from nucleation kinetic is not stable and will dissolve back to 

the solution which explains the unchanged sucrose concentration profiles in the 

beginning of the operation. The sucrose concentration is starting to decrease at time 

23.4 minutes where the crystal nuclei then start to grow due to the crystal growth rate 

phenomena until the end of the operation. This time is obtained from model simulation 

based on the decrement value of sucrose from 3.16 g sucrose/g water to 3.15 g sucrose/g 

water. Due to the crystal growth, more solute in the sucrose concentration is transferred 
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into the solid crystal particles which contributes to the decrement of sucrose 

concentration. In the end of the operation, 2.33 g sucrose/g water was achieved from 

initially 3.16 g sucrose/g water.  

 

 

 

Figure 4.25 (a) Temperature (b) Concentration (c) Mean size diameter (d) Agitation 
rate (e) Supersaturation (f) Total crystal mass profile of sucrose in water. 

As shown in Figure 4.25, a high supersaturation is obtained in the beginning of 

the operation and low/none supersaturation is observed by the end of the operation. 

Since temperature is dropped rapidly, the saturation concentration is also decreased. 

However the sucrose concentration is still maintained which contributes to the high 

supersaturation of this operation. Due to the high supersaturation, an excessive 

nucleation is expected and at the same time the crystal growth rate is also high which 
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necessitating the growth of crystal nuclei. However at the time of 100 minutes onwards, 

the temperature is starting to maintain at 40˚C until the end of the operation and the 

level of supersaturation is decreasing quickly and approaching zero supersaturation 

level. This indicates that the sucrose concentration is reaching the saturated condition 

and no crystal particles will be produced and grown under this condition. This is the 

main weakness of natural cooling profile where the crystal particles can not be grown 

into desired crystal size due to the insufficient crystal growth rate. In addition a 

production of high crystal particles at relatively low size is also obtained which is not 

preferable in the crystallization process. Based on this simulation, approximately 460 g 

of the total crystal mass and 670 µm of mean size diameter were obtained. Although this 

is the unseeded operation but both total crystal mass and mean size diameter obtained is 

relatively high. This is due to the effects of agglomeration and breakage based on 

production-reduction term. In this operation, the agitation rate is decreased linearly in 

order to reduce the breakage of crystals and at the same time there will be a condition 

where the crystal particles is merging with another crystal particles due to the 

agglomeration. Increasing trends for both total crystal mass and mean size diameter are 

also observed which it can be concluded that this crystallization operation is dominated 

by agglomeration rather than breakage. Based on the simulation results of temperature, 

sucrose concentration, mean size diameter, agitation rate, supersaturation and total 

crystal mass profile, it shows that both simulation and experimental data are in good 

agreement indicating thereby a reliable and validated model are achieved. 

The main weakness of the method of moments is its inability to generate the 

crystal size distribution in the form of crystal population density. Usually the CSD 

generated from method of moments is represented as mean size diameter as shown in 

Figure 4.25. Although approximately 670 µm of mean size diameter is obtained from 

open-loop simulation, this amount is calculated based on the overall summation of the 

crystal particles for all sizes. Therefore it is difficult to identify the exact size of crystal 

particles. In this work, the PBE is solved by using the method of classes. The mean size 

diameter obtained from the method of classes is in accordance with the mean size 

diameter generated from method of moments as shown in Figure 4.25. Therefore it is 

possible to identify the distribution of crystal particles at the various characteristic 

lengths (size). The CSD obtained using method of classes is shown in Figure 4.26 

where the CSD is scattered at various characteristic length ranging from 0 µm to 1500 
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µm. However it is important to note that the CSD obtained in Figure 4.26 is not 

favourable in the crystallization process. This is because the crystal particles are not 

uniform and scattered at various characteristic length which makes it harder for the 

separation process. In order to overcome this problem, seeding can be introduced into 

the operation. 

 

Figure 4.26 Crystal size distribution at final time of 180 minutes 

4.3.6 Set-point Generation (Step 6) 

In order to improve the CSD obtained from open-loop simulation, a seeding 

operation and different cooling strategy are then necessary. In this step, the cooling 

strategy can be generated using analytical CSD estimator. For the case size independent 

crystal growth with agitation rate and covering the effects of agglomeration and 

breakage, the expressions of the analytical CSD estimator is shown in Table 4.14. 

Table 4.14 Analytical CSD estimator for sucrose crystallization 
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For the seeded operation, the initial seed of CSD is specified based on Equations 

(4.9) to (4.10) where Figure 4.27 shows the generated initial seed of CSD. Usually, in 

the case of size independent growth where the effects of both agglomeration and 

breakage are neglected, the peak and the curve shape of the initial and final CSD are 

similar except the mean of the characteristic length is increased due to the size 

independent growth effects (Samad et al., 2013). However, in this case study with the 

incorporation of agglomeration and breakage, both the curve shape of CSD and 

characteristic length are changed. Based on the open-loop simulation, it has been 

observed that the agglomeration is superior than breakage and thereby an increment of 

size is expected. For this reason, the peak of the target CSD should be higher than the 

peak of the initial CSD. For the purpose of this simulation, the highest peak for the 

initial seed is 2/µm. g solvent at a mean characteristic length of 275 µm meanwhile for 

the target CSD is 2.12/µm. g solvent at mean characteristic length of 395 µm. Notes that 

different peak and mean characteristic length can be chosen for achieving the target 

CSD.  

For 250 µm ≤ L ≤ 300 µm: 

( ) ( )( )     250300003200 −−= LLLf .,                                                                              4.9 

For L < 250 µm, L > 300 µm:  

( ) 00 =,Lf                                                                                                                     4.10 

 

Figure 4.27 Initial seed distribution for sucrose crystallization 
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A model-based optimization approach as shown in Equations (2.16) to (2.19) is then 

used to optimize the supersaturation set-point and the total crystallization time in order 

to achieve the desired target CSD. The objective is to minimize the sum of squares of 

the relative errors between the desired target CSD and a predicted CSD obtained 

through the analytical CSD estimator. The set-point generated from the model-based 

optimization is shown in Table 4.15 where in this case, 3 different set-points are 

proposed to achieve the target CSD. 

Table 4.15 Supersaturation set-point values for the seeded sucrose batch cooling 
crystallizer 

Time (min) Supersaturation set-point (g/g) 

150 0.0352 
180 0.0312 
210 0.0281 

  

4.3.7 Closed-loop Simulation (Step 7) 

The next step concerns on the closed-loop simulation where controller 

performance is evaluated for maintaining the set-point at its trajectory. For this purpose, 

all of the generated set-points as shown in Table 4.15 will be tested in the closed-loop 

simulation in order to prove the target CSD can be obtained if it is successfully 

maintained in the specified trajectory. Similarly as previous case study, a PI controller 

has been considered to maintain the sucrose concentration at the desired set-point by 

manipulating inlet water temperature. The diagram for sucrose crystallization is shown 

in Figure 4.28. The concentration is monitored by ATR-FTIR and the temperature is 

monitored by a thermocouple. The inlet water temperature is manipulated by blending 

hot and cold water. Meanwhile the CSD is also monitored by Malvern mastersizer. In 

order to calculate the controller parameters for PI controller, dynamic response from 

open-loop simulation is performed. Based on dynamic response, the process reaction 

curve in the form of first order plus time delay is constructed. Then the values of cK and 

Iτ are calculated using Internal Model Control (IMC) tuning method (Samad et al., 

2011; Nagy et al., 2008). Here the calculated values of cK and Iτ are 60 and 0.16 

respectively. 
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Figure 4.28 Sucrose crystallization diagram 

The closed-loop simulation results obtained are shown in Figure 4.29. The 

sucrose concentration profiles for all closed-loop simulation were successfully 

maintained at the required set-point until the end of the operation indicating a reliable 

performance for PI controller. The sucrose concentration initially at 3.22 g sucrose/g 

water is decreased steadily to 2.40 g sucrose/g water at the end of operation time of 150 

minutes, 180 minutes, and 210 minutes respectively. Figure 4.30 shows the cooling 

strategies used for the closed-loop simulation where the temperature in the 

crystallization process is cooled down from 67 °C to 40 °C. All of the temperatures 

profiles have a same pattern but is decreased at different rate based on the operation 

time. It can be observed that the sucrose concentration is depends on the temperature 

where the sucrose concentration is decreased when the temperature is also decreased 

due to the need to achieve the desired supersaturation level.  
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Figure 4.29 Sucrose concentration profiles in the closed-loop simulation for 
operational time of (a) 150 min, (b) 180 min, (c) 210 min. 

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2
3.3
3.4

0 50 100 150 200 250

C
o

n
ce

n
tr

a
ti

o
n

 (
g

 s
u

g
a

r/
g

 w
a

te
r)

Time (min)

Saturation Conc. Metastable Conc.

Set-point Conc. Sucrose Conc.

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2
3.3
3.4

0 50 100 150 200 250

C
o

n
ce

n
tr

a
ti

o
n

 (
g

 s
u

g
a

r/
g

 w
a

te
r)

Time (min)

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2
3.3
3.4

0 50 100 150 200 250

C
o

n
ce

n
tr

a
ti

o
n

 (
g

 s
u

g
a

r/
 g

w
a

te
r)

Time (min)

(a) 

(b) 

(c) 



89 

 

Figure 4.30 Temperature profiles of sucrose crystallization 

 

Figure 4.31 Final CSD of sucrose crystallization based on different operation times 

Figure 4.31 shows the initial seed and final CSD obtained based on three 

different set-points for sucrose crystallization process. All of the closed-loop simulation 

using three different set-points are successfully reaching the desired target CSD where 

it is matching the shape of target CSD, target mean characteristic length of 395 µm and 

the peak of CSD around 2.12 no./µm per gram of solvent. It is proven that the seeded 

formation for final CSD are tends to agglomerate rather than breakage due to the higher 

peak of crystal size distribution value obtained compare to initial peak of 2 no./µm per 

gram of solvent. Usually the form of the peak remains the same in the case of 

nucleation and crystal growth only. For the case of agglomeration and breakage, the 
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final peak obtained is higher than the initial peak. This means that the number of 

particles is reduced but the characteristic length is increased. Due to agglomeration, 

particles tend to merge with other particles which explain the reduction of number of 

particles. As consequence of agglomeration, the characteristic length of particles will be 

increased when the seed particles are merged with smaller particles. This explains why 

the peak of CSD for agglomeration and breakage is higher than the initial peak of CSD. 

However, the secondary peak is also appeared in the final CSD for all set-points due to 

the nucleation effects that cannot be captured by the analytical estimator. As shown in 

Figure 4.31, the highest secondary peak was obtained when operating the crystallization 

process for 150 minutes (supersaturation set-point of 0.0352). Although the target CSD 

was achieved when operating at this condition however the drawback is higher 

secondary peak was obtained. This is due to the supersaturation set-point at 0.0352 

operated closer to the metastable limit and thus more secondary nucleation has occurred 

in the operation. The secondary nucleation is not favorable in the crystallization process 

because it will produces more crystal particles at lower characteristic length and will 

affecting the growth of crystal seed. Meanwhile supersaturation set-point of 0.0281 and 

total crystallization time of 210 minutes produce lower secondary peak but the total 

crystallization time for this operation is too long compared to the others. This is mainly 

because the crystallizer has been operated close to the saturation line, and under such 

conditions it will take a long time to achieve the target CSD. If the total crystallization 

time is taken into consideration then it will not be very practical since the operating 

costs typically increase the longer the batch runs. As an alternative set-point of 0.0312 

at crystallization time of 180 minutes can be selected due to its reasonable operation 

time while the performance is still acceptable, producing a CSD that is close to the 

target CSD generated by the analytical CSD estimator. Figure 4.32 shows the close up 

of target and final CSD obtained for supersaturation set-point of 0.0321 and 180 

minutes operation time. It is clearly shown that the final CSD has reach the target in the 

end of the operation indicating the generated set-point from the extended analytical 

CSD estimator is indeed reliable and the PI controller successfully maintained the 

operation at the generated set-point to achieve the target CSD. 
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Figure 4.32 Final CSD of sucrose crystallization using 180 minutes operation times 

Meanwhile the total mass of crystal particles is increased from 5 g to 590.79 g in Figure 

4.33 and Figure 4.34 shows the mean size diameter for the sucrose crystallization 

process. The initial mean size diameter for seed crystals is 275 µm and the mean size is 

increased to 614 µm at the end of operation. This is due to the sucrose in the 

crystallization solution has been transferred into a seed crystal based on the effect of 

crystal growth phenomena and thus resulting into the increment of the total crystal mass 

and the mean size diameter of crystal particles. 

 

Figure 4.33 Total crystal mass obtained for sucrose crystallization 
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Figure 4.34 Mean size diameter for sucrose crystallization 

4.3.8 Robustness Analysis (Step 8) 

The PI controller developed for sucrose crystallization is tested for its 

robustness based on its ability to track the changes of set-point, to handle the 

disturbances introduced in the process and to deal with the presence of input 

uncertainties in the uncertainty analysis. The robustness analysis is performed on the 

closed-loop simulation using crystallization time of 180 minutes.  

4.3.8.1 Set-point Tracking and Disturbance Rejection 

In the test of set-point tracking, 3 different set-points consisting of 0.042 g/g, 

0.00165 g/g and 0.048 g/g are introduced at operational time of 50 minutes, 100 

minutes and 140 minutes respectively. Meanwhile for disturbance rejection test, the 

inlet water flow rate (Fwin) is decreased by 5% at 54 minutes, increased by 5% at 87 

minutes and increased by 7.5% at 140 minutes. Figures 4.35 shows the performance of 

PI controller during the set-point tracking. Based on the testing, the PI controller reacts 

well on the change of set-point. However it is noted that the PI controller is a little bit 

slow to react at time of 111 minutes and 150 minutes when the set-point is changed. 

The similar situation is also observed during the disturbance rejection test as shown in 

Figure 4.36 where the PI controller is reacting slowly at time of 87 minutes and 140 

minutes. Once the inlet water flow rate (Fwin) to the crystallization process is altered, 

the temperature profiles is also changed which contributing to the change of set-point. 
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Although the PI controller manage to adapt the new set-point but a delay in reacting is 

observed. This is possibly due to the fact that the value of the integral time constant 

parameter used in the PI controller is too low for this process which contributes to the 

slower response during the changes. In overall it can be concluded that the performance 

of PI controller in the sucrose crystallization process is satisfactory in terms of 

maintaining the crystallization operation at its set-point. However in some conditions as 

shown in Figures 4.35 and 4.36, a slower response of PI controller is observed.  

 

Figure 4.35 Performance of PI controller based on set-point tracking in sucrose 
crystallization process 

 

Figure 4.36 Performance of PI controller based on disturbance rejection in sucrose 
crystallization process 
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4.3.8.2 Uncertainty Analysis 

 In the sucrose crystallization case study, eleven parameters (kb, b, j, p, kg, g, q, 

ka, a, k, r) from the nucleation, crystal growth and production-reduction model 

equations are selected for performing uncertainty analysis. These parameters are chosen 

because all of the phenomena are dominant and have a direct influence on the CSD. The 

parameters estimated from model identification as shown in Tables 4.11-4.13 are used 

where the lower and upper bound values of each parameter are shown in Table 4.16.  

Table 4.16 Input uncertainties for sucrose crystallization 

Parameters Units Values Confidence 
interval 

Lower 
bound 

Upper 
bound 

Nucleation rate 
constant, kb 

No. /cm3.min. 
(g/cm3)j.(rpm)p 

82.4 ±7.1743 75.2257 89.5743 

Nucleation order 
constant, b 

Dimensionless 0.0106 ±0.0024 0.0082 0.013 

Mass order at 
nucleation, j 

Dimensionless 0.0044 ±0.0008 0.0036 0.0052 

Agitation order at 
nucleation, p 

Dimensionless 0.048 ±0.004 0.044 0.052 

Crystal growth 
rate, kg 

cm/min.(rpm)q 0.000101 ±0.000051 0.00005 0.000152 

Crystal growth 
order constant, g 

Dimensionless 1.00 ±0.001 0.999 1.001 

Agitation order at 
crystal growth, q 

Dimensionless 0.5 ±0.015 0.485 0.515 

Production-
reduction rate 
constant, ka 

No. of 
particles/cm3.min. 
(g/cm3)k.(rpm)r 

1.00 ±0.01 1.01 0.99 

Production-
reduction order 
constant, a 

Dimensionless 0.085 ±0.012 0.073 0.097 

Mass order at 
production-
reduction, k 

Dimensionless 0.11 ±0.03 0.08 0.014 

Agitation order at 
production-
reduction, r 

Dimensionless 0.001 ±0.0005 0.0005 0.0015 
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The number of sampling needs to be specified for performing the Monte Carlo 

simulation. The repetitive test using 10, 50, 75, 100 and 125 samples have been 

implemented in order to obtain a suitable number of samples which can be obtained 

based on the lowest Monte Carlo errors as reported by Samad et al. (2013). In this 

procedure, there are three sub-steps that must be taken into account. The Monte Carlo 

error calculated for each different number of samples is shown in Table 4.17. As the 

number of sampling is increased, it is shown that the Monte Carlo error is decreased. In 

this case the 125 number of samples shows the lowest Monte Carlo error. The Monte 

Carlo errors can be further decreased by increasing the number of samples to 150 or 

200 number of samples but the errors obtained in the case of 100 and 125 number of 

samples are relatively similar and thus insignificant decrement of Monte Carlo error is 

expected if the number of samples to 150 or 200 number of samples are used. Therefore 

the evaluation of input uncertainties on the output prediction is performed based on 125 

number of sampling.  

Table 4.17 Monte Carlo error for different number of samples in the sucrose 
crystallization case study 

No. of samples 10 50 75 100 125 

Mean 3.1911 3.0517 2.9546 2.9060 2.8815 
Standard 
deviation 

0.2433 0.3553 0.3575 0.3596 0.3647 

Monte Carlo error 0.0769 0.0502 0.0412 0.0359 0.03236 
 

The effect of input uncertainties on the temperature and sucrose concentration 

based on 125 number of sampling are shown in Figures 4.37 and 4.38 where both 

figures show the profiles of temperature and sucrose concentration based on 125 

number of Monte Carlo simulations. Based on Figures 4.37 and 4.38, it is clearly shown 

that the input uncertainties affecting the temperature and sucrose concentration. For 

both profiles, the impact of input uncertainties is almost negligible at the beginning of 

operation but tends to increase by the end of the operation. It has been observed the 

temperature initially started at 67 °C and cooled down in the range of 35 to 45 °C by the 

end of operation. Meanwhile a variation in the range of 2.34 to 2.5 g sucrose/g water is 

obtained at the end of crystallization time as consequence of input uncertainties. Since 

the temperature profiles is changed then the PI controller needs to be very efficient in 

order to maintain the level of supersaturation. In this Monte Carlo simulation, the 
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supersaturation set-point is fixed at 0.0312 g/g for all 125 number of sampling. Thus a 

PI controller used for maintaining the sucrose concentration is acting aggressively 

towards the end of the crystallization operation in order to follow the specified 

supersaturation set-point which explains the variation of sucrose concentration is 

obtained. This can be seen in the profiles of inlet water temperature as shown in Figure 

4.39 where the inlet water temperature has been manipulated vigorously by PI 

controller in order to deal the effects of input uncertainties.  

 

Figure 4.37 Effects of input uncertainties on the temperature for sucrose 
crystallization 

 

Figure 4.38 Effects of input uncertainties on the concentration for sucrose 
crystallization 
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Figure 4.39 Effects of input uncertainties on the inlet water temperature for sucrose 
crystallization 

 

Figure 4.40 Effects of input uncertainties on the CSD for sucrose crystallization 

The impact of input uncertainties on the CSD is evaluated as shown in Figure 4.40. 

High uncertainty is observed on the CSD obtained at final crystallization time. Based on 

the closed-loop simulation, the final CSD obtained is matching the specified target at 

the peak of 2.12 no./µm per gram of solvent and mean characteristic length of 395 µm. 

However, due to the effect of input uncertainties, the CSD is varied in the range of  

mean characteristic length of 375 µm to 425 µm. In addition the variability of the 

secondary peak is also large due to the secondary nucleation. Therefore it is clearly 
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indicated the impact of input uncertainties is very high on the CSD. This is absolutely 

true considering the input uncertainties involving the nucleation, crystal growth and 

production-reduction phenomena are part of the PBE model equations for constructing 

the CSD. Therefore a different set of parameters for nucleation, crystal growth and 

production-reduction models are directly contributing to the variability of the CSD.  

Although the PI controller is performed aggressively to minimize the effect of input 

uncertainties, but the PI controller only able to directly influence the sucrose 

concentration and temperature profiles. In this case, a low uncertainty level is observed 

based on the temperature and sucrose concentration due to the PI contoller action but it 

is still contributing to the high impact of uncertainty on the CSD. In order to further 

reduce the uncertainty level on the CSD, the PI controller needs to be retuned again for 

reducing or eliminating the effects of input uncertainties on the temperature and sucrose 

concentration. The new PI controller parameters after retuning is shown in Table 4.18.  

Table 4.18 New PI controller parameters for sucrose crystallization 

 Original tuning 

parameters 

New parameters after 

retuning 

Proportional gain (Kc) 60 70 

Integral time (τi) 0.16 0.042 

      

 

Figure 4.41 Effects of input uncertainties on the CSD for sucrose crystallization 
before (left) and after retuning (right) 

Based on the new PI controller parameters, the Monte Carlo simulation is performed 

again using 125 number of sampling. The result of Monte Carlo simulation is shown in 

Figure 4.41 where it is clearly shown the impact of input uncertainties on the CSD has 
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been minimized. Based on the comparison between before and after retuning, the 

variability of the product CSD is greatly reduced. In addition the secondary peak 

obtained after retuning the PI controller parameters shows a significant decrement in 

terms of variability. The small spread in the CSD as shown in Figure 4.39 indicates the 

PI controller ability to minimize the effect of input uncertainties. The impact of input 

uncertainties is further evaluated in terms of mean, 10th percentile and 90th percentile as 

shown in Figure 4.42. The 10th percentile and 90th percentile is selected because it is 

realistic representation for evaluating the data. Before retuning the PI controller, the 

10th and 90th percentile is further away from the mean of CSD (Figure 4.42(left)) and 

this distance has been reduced after retuning the PI controller where the 10th and 90th 

percentile is now very close to the mean of CSD indicating a low extent of uncertainty 

as shown in Figure 4.42(right). Therefore it can be concluded that the PI controller 

developed for sucrose concentration is robust enough to maintain the supersaturation at 

the specified set-point and achieving the target CSD under the presence of input 

uncertainties. 

 

Figure 4.42 Evaluation of input uncertainties on the CSD for sucrose crystallization 
in terms of mean, 10th percentile and 90th percentile before (left) and 
after (right) retuning 

4.4 Concluding Remarks 

The application of the systematic model-based framework for robust 

supersaturation control has been highlighted through the potassium sulphate and 

sucrose crystallization case study where the objective is to achieve the desired target 
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CSD. Through the framework, the necessary mathematical model for both case studies 

are generated and the model identification for estimating the necessary kinetic 

parameters are performed. A good agreement has been achieved during open-loop 

simulation involving both case studies indicating the estimated parameters are reliable. 

The set-point needed to achieve the desired target CSD has been generated using 

analytical CSD estimator where through closed-loop simulation, a PI controller is 

successfully maintaining the operation at its set-point and ultimately producing the 

desired target of CSD for potassium sulphate and sucrose crystallization case study. 

This indicates the extended analytical CSD estimator for covering the effects of 

temperature dependence (in the case of potassium sulphate crystallization) and the 

effects of agglomeration and breakage (in the case of sucrose crystallization) is able to 

generate the necessary set-point that guarantees the production of target CSD. In 

addition the robustness of PI controller is evaluated on two approaches namely the set-

point tracking and disturbance rejection as well as uncertainty analysis. In the test of 

set-point tracking and disturbance rejection, the PI contoller performs very well on both 

case studies but in the uncertainty analysis, the PI controller is not fully able to 

counteract the input uncertainties and as consequence the variability of the CSD is 

obtained in potassium sulphate and sucrose case studies. However the impact of input 

uncertainties are greatly reduced once the PI controller undergoes retuning process. 

After retuning, the variability of the CSD has been greatly reduced where the 10th 

percentile and 90th percentile obtained is very close to the mean of the CSD for 

potassium sulphate and sucrose case studies. This indicates a robust PI controller has 

been successfully developed for maintaining the operation at various set-points and able 

to counteract the effect of input uncertainties and retuning the controller is able to 

minimize the variability in the final CSD. 
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CHAPTER 5 

 

 

CONCLUSIONS 

5.1 Conclusions 

A systematic model-based framework for robust supersaturation control in batch 

cooling crystallization process has been successfully developed in this work. The main 

conclusions that have been obtained are summarized as follows: 

a) The developed framework is a step-by-step procedure and it consists of eight 

main steps. Every steps in this framework has its specific purpose and procedure 

in order to allow an efficient and structured way to cover a wide range of 

crystallization operation. 

b) The mathematical model development is proposed in the framework in order to 

cover a wide range of crystallization operation. For example it is possible to 

develop a crystallization operation involving the phenomena of nucleation, 

crystal growth, agglomeration and breakage. Therefore it is possible to study the 

crystallization operation with or without agglomeration and breakage. For 

agglomeration and breakage, a production-reduction term is adopted from 

Quintana-hernandez et al. (2004) to study the effects of agglomeration and 

breakage on the crystal product. For the PBE solution, the method of classes is 

employed to represent the crystal product. The application of method of classes 

is highlighted in the potassium sulphate and sucrose crystallization case studies 

where this method is capable to generate similar results as method of moments. 

In addition the use of method of classes overcome the limitation of method of 

moments in constructing the crystal size distribution (CSD). 
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c) The model identification is also included as one of the feature in this framework. 

Through this framework, it is possible to predict the kinetic parameters of 

nucleation, crystal growth and production-reduction term. However the use of 

the model identification is depending on the experimental data of temperature, 

concentration, total crystal mass, supersaturation or crystal particles. For 

simplification, experimental data of temperature and concentration must be 

available for parameter estimation. The ability of the model identification is 

illustrated in the case of potassium sulphate and sucrose crystallization. Based 

on the estimation for potassium sulphate crystallization, the 6 kinetic parameters 

for nucleation and crystal growth obtained from model identification is 

matching with the literature data. Meanwhile 11 kinetic parameters of 

nucleation, crystal growth and production-reduction term predicted by model 

identification is also in good agreement with the literature data indicating a 

reliable prediction has been obtained. In addition the confidence intervals also 

calculated for each parameters in both case studies which subsequently be used 

during uncertainty analysis. 

d) The original analytical CSD estimator for predicting the necessary set-point has 

been extended in this work to cover the effects of agglomeration and breakage 

as well as temperature dependence in the kinetic of crystal growth rate. The 

requirement to use this estimator is the information on initial seed of CSD and 

target CSD must be available. In addition the kinetic parameters of crystal 

growth and production-reduction needs to be available as well. For illustrating 

the application of this estimator, target CSDs for potassium sulphate and sucrose 

have been specified in this work. Through the information of initial seed of 

CSD, target CSD and the kinetic parameters obtained from model identification, 

the optimal set-point has been generated for both case studies through model-

based optimization approach. 

e) Through this framework, the crystallization model can be simulated under open- 

and closed-loop operation. Under open-loop condition, the crystallization 

operation can be studied in terms of the behavior of concentration, temperature 

and crystal properties based on natural cooling profile. Meanwhile a PI 

controller is used to maintain the operation based on set-point generated from 
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analytical CSD estimator. Therefore the comparison between open-loop and 

closed-loop can be made and of course a further improvement in terms of 

crystallization operation and crystal particles can be observed under closed-loop 

condition. In this work, the open-loop simulation is used for model validation in 

order to validate the predicted kinetic parameters and for understanding the 

crystallization operation. Based on this understanding, the closed-loop 

simulation is applied where it is concluded that the PI controller is successfully 

maintaining the operation at the generated set-points. The most important 

finding is the final CSD obtained is matching with the specified target CSD for 

potassium sulphate and sucrose crystallization indicating the ability of analytical 

CSD estimator for generating the required set-point which guarantees the target 

CSD. 

f) The robustness of controller is performed based on two different analysis. The 

first analysis concerns with the ability of controller to adapt set-point tracking 

and to reject the disturbance. For both case studies, it has been proven that the 

PI controller is managed to perform adequately during set-point tracking and 

disturbance rejection. Therefore the PI controller performance is further tested 

in uncertainty analysis. In the uncertainty analysis, 6 parameters of nucleation 

and crystal growth have been identified as input uncertainties in potassium 

sulphate crystallization. For sucrose crystallization, 11 parameters of nucleation, 

crystal growth and production-reduction term have been employed. Based on 

the Monte Carlo simulation, a low uncertainty has been obtained in temperature 

and concentration profiles but a high extent of uncertainty is achieved in the 

product CSD. Therefore the PI controller underwent retuning process to increase 

its robustness. Finally the variability of the CSD has been successfully reduced 

using the new tuning controller parameters  indicating a robust PI controller has 

been obtained for both potassium sulphate and sucrose crystallization case 

studies.         

5.2 Recommendations for Future Work 

The application of the systematic model-based framework in this work has been 

successfully highlighted through potassium sulphate and sucrose crystallization 

processes where the robust PI control has been developed to maintain the operation at 
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the set-point generated by extended analytical CSD estimator and a minimum variation 

of product CSD has been achieved under input uncertainties. However there are still 

room for further improvements. The recommendations for future work are summarized 

as follows: 

a) In this research, all of this work carried out based on the simulation work only. 

Although it has been proven the simulation is able to represent the required 

crystallization operation, but it still required the data from experiment. 

Therefore it would be good to perform the experimental work in order to further 

verify the strategy proposed in this work particularly the CSD production. 

b) The procedure proposed in this work is implemented based on the crystallization 

operated on the batch mode. In some of the chemical or pharmaceutical 

industries, a continuous operation or batch-to-batch operation is preferred. In 

order to cover this operation, some of the step in the framework for example 

mathematical model or set-point generation by analytical CSD estimator need to 

be extended. This is also some recommendations for the future work where this 

extension enables flexibility of the framework to deal with the changes of 

operational mode. 

c) In the uncertainty analysis, the input uncertainties considered include the kinetic 

parameters of nucleation, crystal growth and production-reduction term. Other 

than kinetic parameters, the initial seed distribution can be used as source of 

input uncertainties. Usually the initial seed distribution during experimental 

work is prepared based on the sieving process where it can be contributed to 

some extent of uncertainties. Therefore it would be interesting to investigate the 

effect of initial seed distribution on the final CSD in the uncertainty analysis. 
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