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ABSTRACT

In this paper, a collocation method which based on polynomial approxi-
mation of Taylor's series is proposed to approximate the solution of frac-
tional pantograph di�erential equations (FPDE). The collocation method
with truncated Taylor's polynomial is shown to be an applicable tech-
nique in solving FDDE. Some examples of the non-linear fractional pan-
tograph di�erential equations are solved and compared with the exact so-
lution to con�rm the accuracy and applicability of the collocation method
with Taylor's polynomial.

Keywords: Collocation Method, Taylor Polynomials, Fractional Pan-
tograph Di�erential Equations.
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1. Introduction

Fractional calculus is a calculus of derivative and integral which are widely
used to study the behaviour of real phenomena in science and engineering (see
Wang (2013)). It becomes important in recent years as the fractional calculus
can explain the complex system with non-linear behaviour and long term mem-
ory. Fractional pantograph di�erential equation (FPDE) is a class of functional
di�erential equations with a proportional delay which is capable of modeling
the systems that subject to the memory or after e�ects. It has gained pop-
ularity in various areas of science and engineering, namely in material and
mechanics (see Agarwal et al. (2010)), dynamics of viscoelastic materials (see
Benchohra et al. (2008)), wave propagation (Butzer and Westphal (2000)),
systems identi�cation, electromagnetism (Goren�o et al. (2002)), visco-elastic
materials (Koeller (1984)), signal processing, continuum and statistical (Lak-
shmikantham (2008)), spherical �ames (Saeedi et al. (2013)), �uid mechanics
(Rabiei and Ordokhani (2019)) and anomalous di�usion (Loh et al. (2018)).

Fractional models are more consistent with the real phenomena than the
integer models (Doha et al. (2014)). It is due to the fact that fractional deriva-
tives and integrals enable to describe the memory and hereditary properties
inherent (Doha et al. (2014)). Due to its complexity of the delay argument and
fractional form, the analytical solution of FPDEs is hard to be found. Hence
there is a growing interest in researching numerical methods for solving FPDEs.
Amongst of the cited works by Isah and Phang (2018) who proposed an op-
erational matrix of derivative with Genocchi polynomials, Heris and Javidi
(2017) who presented fractional backward di�erential formulas with periodic
and antiperiodic conditions and Xu and Lin (2016) who considered a simpli�ed
reproducing kernel method.

In this paper, a Taylor collocation method is proposed for solving FPDEs.
The solutions are obtained in terms of fractional order Taylor's series. A matrix
representation of the collocation method of fractional pantograph di�erential
equation via Taylor's polynomials are derived. The results obtained indicate
good performance compare to the existing methods in the literature. The
generalized FPDEs is given by

Diαu(x) =

m∑
r=1

Pr(x)u(qrx− c) + g(x) 0 ≤ x ≤ T (1)

subject to initial condition

m−1∑
n=0

aniu
n(c) = ζi (2)
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where ani, qr, c are the real or complex coe�cients, while Pr(x) and g(x) are
given continuous function in the interval [0,T]. A collocation method of FPDE
with the following Taylor polynomial

uN (x) =

N∑
i=0

(x− c)iα

Γ(iα+ 1)
(Diα)(c) (3)

is introduced.

The remaining part of the paper is organized as follows: Section 2 de�nes
the fractional derivative of Riemann Liouvile and Caputo. Both derivatives are
important approaches to generalize the notion of di�erentiation to fractional
orders. The fundamental relation of the derivatives is carried out in Section 3.
A method of the solution is presented in Section 4. In Section 5, examples of
FPDEs are solved and compared with the reported works that have been done
by previous researchers. Conclusion remarks are provided in Section 6.

2. Preliminaries

2.1 Fractional Derivative

The fundamental de�nitions and the properties of fractional calculus that
will help us to calculate the fractional derivative are presented in this section.
There are many fundamental de�nitions in literature for fractional derivatives
(see Kilbas et al. (2006), Wang (2013)). One of them which is important is Rie-
mann Liouville's approach. Although it provides the basis of the development
of the theory in fractional calculus, it is di�cult to be applied when dealing
with initial value problem. To handle such problems, Caputo's de�nition which
is a modi�cation of Riemann�Liouville de�nition was introduced. We �rst give
the de�nition of Riemann-Liouville integral, in which the fractional integral
operator I of a function g(x) is de�ned as follows.

2.2 De�nition 1

The Riemann Liouville integral I of fractional order α of g(x) is given by

Iαg(x) =
1

Γ(α)

∫ x

0

(x− τ)α−1g(x)dτ x > 0, α ∈ R+ (4)
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where Γ(.) is a Gamma function. The fractional derivative of order α > 0 due
to Riemann Liouville is de�ned by

(Dα
I g)(x) =

(
d

dx

)m
(Im−αg)(x) (α > 0,m− 1 < α < m). (5)

Two basic properties of Riemann Liouville's fractional integral Iα are:

IαT βg(x) = Iα+βg(x), α > 0, β > 0

IαT β =
Γ(β + 1)

Γ(α+ β + 1)
xα+β .

2.3 De�nition 2

The fractional derivative Dα of g(x) in Caputo's sense

Dαg(x) =
1

Γ(n− α)

∫ x

0

(x− τ)n−α−1g(n)(τ)dτ n− 1 < α ≤ n, n ∈ N (6)

The properties of Caputo fractional are:

DαC = 0, C is constant

Dαxβ = 0, β ≥ dαe

Dα
c (x− c)β Γ(β+1)

Γ(β+1−α) (x− c)β−α, β ∈ N
⋃
{0}, β ≥ dαeorβ ∈ N, β > bαc

where dαe is the smallest numbers greater or equal than α and bαc is the
largest numbers less or equal than α.

3. Fundamental Matrix Relation

In this section, we propose a fundamental matrix relation of the solution
u(x) in (1) subject to the initial condition (2) de�ned by the truncated of
Taylor's polynomial (3). In matrix form, u(x) in equation (1) de�ned by a
truncated Taylor's series (3) can be written as

u(x) = XM0A (7)

where X is a matrix function which depend on x and de�ned as

X = [1 (x− c)α (x− c)2α (x− c)3α · · · (x− c)Nα]
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M0 =



1
Γ(1) 0 0 · · · 0

0 1
Γ(α+1) 0 · · · 0

0 0 1
Γ(2α+1) · · · 0

...
...

...
. . .

...
0 0 · · · · · · 1

Γ(Nα+1)

 ; A =



D0αu(c)
D1αu(c)
D2αu(c)
D3αu(c)

...
DN−1αu(c)
DNαu(c)


.

The matrix representation of the function Dαu(x) will become

Dαu(x) = XM0A

The function DαX, can be computed as

DαX = [1 Dα(x− c)α Dα(x− c)2α Dα(x− c)3α · · ·Dα(x− c)Nα]

= [0 Γ(α+1)
Γ(1)

Γ(2α+1)
Γ(α+1) (x− c)α Γ(3α+1)

Γ(2α+1) (x− c)2α · · · Γ(Nα+1)
Γ((N−1)α+1) (x− c)Nα]

= XM1

where

M1 =



0 Γ(α+1)
Γ(1) 0 0 · · · 0

0 0 Γ(2α+1)
Γ(α+1) 0 · · · 0

0 0 0 Γ(3α+1)
Γ(2α+1) · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · Γ(Nα+1)
Γ((N−1)α+1)

0 0 0 0 · · · 0


and

X = [1 (x− c)α (x− c)2α · · · (x− c)(N−1)α].

By the same way, the matrix representation of D2αu(x) can be obtained as

D2αu(x) = XM2M0A. (8)

Similarly, for any ith, it can be written as

Diαu(x) = XMiM0A (9)
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where

Mi =



0 0 · · · Γ(α+1)
Γ(1) 0 · · · 0

0 0 · · · 0 Γ(2α+1)
Γ(α+1) · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 0 · · · Γ(N−i+1α+1)
Γ((N−i)α+1)

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0


.

4. Method of Solution

The fundamental matrix equation corresponding to equation (1) is pre-
sented in this section. Let de�ne collocation points as follows

xi =
i

N
i = 0, 1, 2, 3, · · · , n− 1. (10)

By using the collocation points, the system of matrix equations (1) is trans-
formed as (

XMjM0 −
m−1∑
r=1

PrXBq,cxiMjM0

)
A = G(xi) (11)

where

W = XMiM0 −
m∑
r=0

PrXBq,c(xi)M0 (12)

X =


1 (x0 − c)α (x0 − c)2α · · · (x0 − c)Nα
1 (x1 − c)α (x1 − c)2α · · · (x1 − c)Nα
1 (x2 − c)α (x2 − c)2α · · · (x2 − c)Nα
...

...
...

. . .
...

1 (xN − c)α (xN − c)2α · · · (xN − c)Nα

 ,

P =


pr(x0) 0 0 · · · 0

0 pr(x1) 0 · · · 0
0 0 pr(x2) · · · 0
...

...
...

. . .
...

0 0 0 · · · pr(xN )

 ,
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Bq,c =


(qrx0 − c)0α 0 0 · · · 0

0 (qrx1 − c)1α 0 · · · 0
0 0 (qrx2 − c)2α · · · 0
...

...
...

. . .
...

0 0 0 · · · (qrxN − c)Nα


and

G =



g(x0)
g(x1)
g(x2)
g(x3)
...

g(xN−1)
g(xN )


.

Hence, equation (13) corresponding to equation (1) can be written in the
form of

ZA = G or [Z;G]; Z = [zi,j] i, j = 0, 1, 2, · · · , N (13)

Z = TMiM0 −
m∑
r=0

PrTBq,cM0. (14)

We produce the representation of the equation (2) in matrix i = 0, 1, · · · ,m−1

Yi = X(c)MkM0 = [yi0 yi1 yi2 · · ·yiN ] = [ζi]. (15)

The unknown values of the fractional Taylor coe�cients

Dkα
∗ u(c), k = 0, 1, · · · , N

related with the approximate solution of the problem (1) with initial condition
(2) can be found by replacing the mth row matrix in [Yi; ζi] by the �rst m row
of the matrix in (12). Hence, the augmented matrix is

Malaysian Journal of Mathematical Sciences 161



Bilal, M. et al.

[Z̄; Ḡ] =



z00 z01 z02 · · · z0N ; g(t0)
z10 z11 z12 · · · z1N ; g(t1)
z20 z21 z22 · · · z2N ; g(t2)
...

...
...

. . .
... ;

...
z(N−m)0 z(N−m)1 z(N−m)2 · · · z(N−m)N ; g(t(N−m))
y00 y01 y02 · · · y0N ; ζ0
y10 y11 y12 · · · y1N ; ζ1
y20 y21 y22 · · · y2N ; ζ2
...

...
...

. . .
... ;

...
y(m−1)0 y(m−1)1 y(m−1)2 · · · y(m−1)N ; ζm−1


.

(16)
In another form of matrix equation we have

Z̄A = Ḡ. (17)

If det Z̄ 6= 0, then Z̄ is an invertible matrix and we can write equation (1) as

A = (Z̄)−1Ḡ. (18)

The matrix A is uniquely determined and the solution of (1) is determined by
truncated Taylor series

uN (x) =

m∑
i=0

(x− c)kα

Γ(kα+ 1)
(Dkαy)(c).

4.1 Residual Error

The present section considers the residual error for problem (1) with initial
condition (2). The residual error is a way to measure the e�ciencies of the
corresponding numerical method for the case where the exact result is not
known. The error function can be de�ned as follows

eN (x) = u(x)− uN (x) (19)

where u(x) and uN (x) are the exact and approximate solution of (1), respec-
tively. Substituting uN (x) into (1) leads to

(
DiαuN (x)−

m∑
r=0

pr(x)uN (q, x)
)

= g(x) + ϑN (x) (20)
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where ϑN (x) is the perturbation term that obtained by substituting the com-
puted solution uN (x) into equation (19), i.e.

ϑN (x) =
(
DiαuN (x)−

m∑
r=0

pr(x)uN (q, x)
)
− g(x). (21)

By subtracting equation (21) from (1) and using (19), the error function eN (x)
satis�es

− ϑN (x) =
(
DiαeN (x)−

m∑
r=0

pr(x)eN (q, x)
)
. (22)

5. Illustrative Examples

Several numerical examples are presented in this section to illustrate the ef-
fectiveness of the collocation method with TCM for solving the FPDE. The al-
gorithm to simulate the approximate results are computed in MATLAB R2017b
with double precision and the residual analysis is carried out in Minitab 17.

Example 1

Consider the FPDE in Sherif et al. (2014)

Dαu(x) = −u(x) + u
(x

2

)
+

3x2

4
+

2x2−α

Γ(3− α)
(23)

with u(0) = 0 and the exact solution is u(x) = x2 for α = 1. The exact so-
lution is unavailable for α 6= 1 and we need to compute the residual error to
measure the e�ciency of the method. The numerical results of Example 1 are
summarised in Table 1. The comparison is made with the existing results that
were reported in Sherif et al. (2014). It can be seen that the simulated results
obtained by using the collocation method with Taylor's polynomial produce
low values of the error. This indicates that the proposed method has better
e�ciency compared to the reported method in Sherif et al. (2014).
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Table 1: Result and Error of Example 1 with comparison with Spline Function in Sherif et al.
(2014)

α x Exact Solution Result
by Spline
Function

Error by
Spline
Function

TCM
Result

TCM Error

α = 0.1

0.01 0.0001 0 3.36E-08 0.0001 1.61E-10
0.02 0.0004 7.55819E-05 1.13E-06 0.0004 9.46E-11
0.03 0.0009 0.000265263 1.75E-06 0.0009 6.98E-11
0.04 0.0016 0.000557029 2.13E-06 0.0016 5.64E-11
0.05 0.0025 0.000945615 2.33E-06 0.0025 4.78E-11

α = 0.2

0.01 0.0001 0 3.24E-08 0.0001 6.41E-09
0.02 0.0004 0.000807984 1.16E-06 0.0004 3.97E-09
0.03 0.0009 0.000273582 1.61E-06 0.0009 3.02E-09
0.04 0.0016 0.000560054 1.74E-06 0.0016 2.50E-09
0.05 0.0025 0.000932151 1.62E-06 0.0025 2.16E-09

α = 0.3

0.01 0.0001 0 4.20E-08 0.0001 3.70E-11
0.02 0.0004 8.96535E-05 1.19E-06 0.0004 2.42E-11
0.03 0.0009 0.000287934 1.42E-06 0.0009 1.90E-11
0.04 0.0016 0.000570342 1.24E-06 0.0016 1.60E-11
0.05 0.0025 0.000926655 7.28E-07 0.0025 1.41E-11

α = 0.4

0.01 0.0001 0 6.66E-08 0.0001 4.92E-12
0.02 0.0004 0.000101184 1.18E-06 0.0004 3.37E-12
0.03 0.0009 0.000305454 1.13E-06 0.0009 2.72E-12
0.04 0.0016 0.000583095 5.98E-07 0.0016 2.35E-12
0.05 0.0025 0.000922591 2.61E-07 0.0025 2.10E-12

Example 2

Consider the fractional pantograph di�erential equation in Rahimkhani et al.
(2017)

Dαu(x) = −5

6
u(x) = 4u

(x
2

)
+ 9u

(x
3

)
+ x2 − 1 (24)

subject to initial condition u(0) = 1 and the exact solution is u(x) = 1 + 67x
6 +

1675x2

72 + 12157x3

1296 when α = 1.

Table 2 illustrates the simulated results of Example 2. For α=1, TCM shows
low values of the error, hence indicate better e�ciency of the method. When
α 6= 1, the exact solution of the equation is not known, thus require to com-
pute the residual as presented in Section 4. The residual error is computed
for N = 75, 45, 25, 9 and the error obtained is used as a reference solution.
With that reference solution we exclude the absolute error (AE) when the
α = 0.95, 0.75, 0.50.
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Table 2: Results and Error for Example 2 with di�erent values of α.

x

Results Errors

α=1 α=0.95 α=0.75 α=0.50 α=1 α=0.95 α=0.75 α=0.50

Exact N=75 N=45 N=25 N=9 N=75 N=45 N=25 N=9

0 1.000000 1.000000 1.000000 1.000000 1.000000 2.00E-15 6.15497E-10 1.3592E-10 1.9984E-15
0.1 2.358686 2.358686 2.636999 4.951775 25.77266673 1.42E-14 6.92957E-08 4.2414E-08 4.4180E-07
0.2 4.238932 4.238932 4.875551 10.40047 66.10073739 2.93E-14 1.28794E-07 8.9202E-08 1.1330E-06
0.3 6.697021 6.697021 7.811405 17.72148 123.43423580 4.35E-14 2.0716E-07 1.5212E-07 2.1150E-06
0.4 9.789235 9.789235 11.51221 27.06577 198.58307480 6.22E-14 3.06175E-07 2.3243E-07 3.4030E-06
0.5 13.57186 13.57186 16.04379 38.57752 292.42240570 9.06E-14 4.26636E-07 3.3142E-07 5.0100E-06
0.6 18.10117 18.10117 21.4715 52.39899 405.84164530 1.21E-13 5.70542E-07 4.5018E-07 6.9530E-06
0.7 23.43345 23.43345 27.86045 68.67102 539.72632030 1.60E-13 7.39831E-07 5.8995E-07 9.2470E-06
0.8 29.62499 29.62499 35.27559 87.53317 694.95137300 2.06E-13 9.37001E-07 7.5184E-07 1.1910E-05
0.9 36.73206 36.73206 43.78173 109.1238 872.37884520 2.34E-13 1.16506E-06 9.3718E-07 1.4950E-05
1 44.81096 44.81096 53.44354 133.5800 1072.85737300 7.11E-14 1.26051E-06 1.1489E-06 1.8380E-05

Example 3

Consider the FPDE in Rahimkhani et al. (2017)

Dαu(x) = −u(x)+0.1u

(
4x

5

)
+0.5Dαu

(
4x

5

)
+(0.32x−0.5)e−0.8x+e−x (25)

for 0 ≤ α ≤ 1. The exact solution is given by u(x) = xe−x. The simulated
results are illustrated in Table 3. Table 3 represents the results and the error
of Example 3. When α=1, TCM for FPDE improve the error, where α do not
have an exact solution, for those value of α we calculate the residual error.
For that problem, we calculate the residual error at a di�erent number of
N = 75, 45, 25, 9, where we have a better residual error, we use it as a reference
solution.

Table 3: Results and Error for Example 3 with di�erent values of α.

x

Results Errors

α=1 α=0.95 α=0.75 α=0.50 α=1 α=0.95 α=0.75 α=0.50

Exact N = 75 N = 75 N = 45 N = 75 N = 75 N = 75 N = 45 N = 75

0 0 0 0 0 0 0 0 0 0
0.1 0.090484 0.090484 0.101910 0.155837 0.229542 2.78E-17 -3.60957E-07 6.33692E-07 3.07125E-06
0.2 0.163746 0.163746 0.176398 0.225374 0.271652 2.22E-16 -2.79096E-07 3.81196E-07 1.26318E-06
0.3 0.222245 0.222245 0.232910 0.267522 0.289870 1.39E-16 -2.38176E-07 2.58127E-07 7.44440E-07
0.4 0.268128 0.268128 0.275439 0.293870 0.297502 3.89E-16 -2.09831E-07 1.84823E-07 5.08182E-07
0.5 0.303265 0.303265 0.306764 0.309895 0.299293 5.00E-16 -1.91855E-07 1.36711E-07 3.76132E-07
0.6 0.329287 0.329287 0.329009 0.318765 0.297508 4.44E-16 -1.87386E-07 1.03364E-07 2.93082E-07
0.7 0.347610 0.347610 0.343864 0.322503 0.293405 3.89E-16 -1.89026E-07 7.95523E-08 2.36749E-07
0.8 0.359463 0.359463 0.352702 0.322488 0.287753 6.66E-16 -1.94398E-07 6.13491E-08 1.96391E-07
0.9 0.365913 0.365913 0.356654 0.319697 0.281052 2.78E-16 -1.87638E-07 4.44758E-08 1.66314E-07
1.0 0.367879 0.367879 0.356652 0.314844 0.273644 4.44E-15 -1.20788E-06 -1.02230E-09 1.4327E-07

In Example 1, the exact solution for the FPDE is unavailable when α =
0.1, 0.2, 0.3, 0.4. However, FPDE solutions were not available in the literature
for computing errors to re�ect the stability and accuracy of the TCM. We used
cubic polynomial to compute the residuals and mean square error (MSE) of
the FPDE at di�erent values of alpha and matrix sizes. The estimated value
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computed through polynomials which provided least MSE, statistical residu-
als (observed value-estimated value), the highest coe�cient of determination
(R2) and most precise prediction interval (PI) were considered as reference or
baseline values for comparison in example 2 and 3 separately. Based on these
baseline values, errors were computed and reported in tables 2 and 3. The ex-
ample of the polynomial with the polynomial equation, (R2) and PI was given
in Figure 1.

Figure 1: Baseline polynomial for computation of error in Example 2

Example 4

Consider the FPDE in

Dα = 1− 2u2(
x

2
), 0 < α ≤ 1, 0 < x ≤ 1 (26)

u(x) = sin(x), − 1 ≤ x ≤ 0.

The exact solution, when α = 1 is u(x) = sin(x)

Table 4: Results and Error for Example 4 with di�erent values of α.

α = 1 α = 0.55

x Exact CWM TCM TCM

0 0 1.23E-22 3.22E-14 5.21E-13
0.125 0.123674733 1.71E-12 2.43E-14 7.65E-13
0.250 0.247403959 2.47E-12 1.62E-14 2.95E-13
0.375 0.366272529 9.36E-12 8.01E-14 5.90E-13
0.500 0.479425538 1.79E-11 4.17E-13 3.82E-11
0.625 0.585097272 1.89E-11 6.28E-13 2.85E-11
0.750 0.68163876 3.04E-12 5.27E-13 2.19E-11
0.875 0.767543502 1.64E-12 3.29E-13 3.21E-11
1.000 0.841470984 4.51E-10 1.11E-13 1.51E-10
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The exact solution is given by u(x) = sin(x). The simulated results are
illustrated in Table 4. Table 4 represents the results and the error of Example
4, when α=1, TCM for FPDE improve the error as we compare with the
reference result in α 6= 1 do not have an exact solution, for those value of α we
calculate the residual error. For that problem, we calculate the residual error
at a di�erent number of N = 0.55, where we have a better residual error, we
use it as a reference solution.

6. Concluding Remarks

In this work, a collocation method based on the truncating of Taylor's
polynomial is presented to solve FPDE. It can be concluded that TCM performs
well as indicated by low values of error obtained in three illustrative examples.
The statistical technique to measure the residual error is applied when the exact
solutions are not available. Taylor's polynomial is more preferable to embeded
in the collocation method since it is easy to program.
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