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Abstract 
Novel matrix based on numerical technique of collocation method via truncated ortho 

exponential polynomial (OECM) is proposed to approximate the solution of pantograph 
differential equations. The applicability, reliability, and efficiency of the methodology are 
examined by applying the method to the pantograph differential equations. The comparison is 
made between the existing reported results and the present results. The proposed method shows 
good agreement with the existing reported method, hence indicate collocation method via 
truncated ortho exponential polynomial (OECM) is able to numerically simulate pantograph 
differential equations. 
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1. Introduction 

Pantograph differential equations is referred to the differential equations with the existence of 
delay argument in the state variables. It plays a vital role in explaining various types of biological 
and physical phenomena. Such equations evolve in industrial applications (Chelyshkov, 1987 
and Slobodan Trickovic and Miomir Stankovic, 2003) and have been widely used in the 
economy, electrodynamics, control and biology (Chelyshkov and Liu, 2001). A polynomial type 
of OEP also has practical applications in the area of science and engineering, such as heat 
conduction problems (Ibrahim and Bokhari, 2011), electric circuits theory (Dmitriyev, 2013), 
thermoelasticity and thermo viscoelasticity (Mokriv and Oliyamik, 1989), diffraction problems 
(Yashiro, et. al, 2000)), hydrometeorology (Cizek, 1960) and vibration analysis (Yegao et. al, 
2013). Pantograph differential equations belong to a specific type of delay differential equations 
(DDEs) (Karimi Vanani and Aminataei, 2009). The complexity arises due to the existence of 
delay terms that resulting to the exact solution of Pantograph differential equations is hard to be 
found. Recently, research on proposing numerical methods for simulating the solutions of 
Pantograph differential equations are amongst of the interest. The proposed methods include the 
differential transform method (Xie et. al, 2011), the pseudospectral methods (Ishtihaq et. al, 
2009), the quadrature and interpolation procedures (Bica, 2011), the Adomian decomposition 
method (Evan and Raslan, 2005), the collocation methods (Brunner and Hu, 2007) and the 
variation iteration method (Xumei Chen and Linjun Wang, 2010). This research is aimed to 
propose a ortho exponential collocation method for solving Pantograph differential equations. 
Ortho exponential polynomial is defined as 

  (1) 

The generalized form of the Pantograph equation is 
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  (2) 

subject to the initial condition 

   (3) 

where  and  are functions over the interval  and  are 
constants. 

Fundamental Matrix Relation 

Consider  

  (4) 

where 

 

The solution of (2) in OEP form is expressed as 

  (5) 

The notation and   can be written as 

 =   (6) 

where 

 and  

The relationship of can be expressed as 

  (7) 

where 

  

and 

 

The derivative is defined by 

 

where  Then,  derivative of can be written as 
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  (8) 

By using equations (6) - (8) we have 

  (9) 

Equation (9) represents the non-delay part of the equation (2). It can be converted to the 
matrix form. For the delay part, we only need to replace  in the equation (9) such 
that 

  (10) 

where  

  

 

and 

  (11) 

 
2. Method of the Solution 

Pantograph differential equation (2) is written as 

  (12) 

Let the collocation points are defined as 

 

By applying the collocation points, the fundamental pantograph equation (12) can be written 
in the form of 

  (13) 

The matrix involves in equation (13) are 
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Rewriting equation (13) yield 

 Or    (14) 

where 

  (15) 

for and subject to the initial condition 

 

Write the above equation in matrix form as 

  or [ ]       
 (16) 

where  

 

To compute the approximate result of Pantograph differential equation (2) with the initial 
condition (3), we interchange the row of (16) by the last  rows of the matrix (14) such that the 
modified augmented matrix is obtained as 

  (17) 

If the 

rank =rank[ ]=  

then we can write  

 

Now the matrix A is uniquely determined, which implies that the Pantograph differential 
equation (2) with the initial condition (3) has an approximate solution by truncated OEP (5). 

 
3. Errors Bound 

The accuracy of the method can be determined by using the residual errors and error bounds. 
The truncated Ortho exponential polynomials is approximated solution of equation (2), when the 
function  and its derivatives are substituted in equation (2). The resulting equation must be 
satisfied approximately that is for  we have 

   (18) 

where is referred to the absolute error and  (  is a positive integer). As max 

 (  is a positive integer) is defined, then the limit defined for is increased before 
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the difference in at each and every point becomes lesser than the recommended  The 
absolute error can be calculated by 

 

 

 

The absolute error decreases, if , when the size of increases. 

 
4. Numerical Results 

Some nonlinear Pantograph differential equations are presented in this section to validate the 
applicability, accuracy, reliability and efficiency of the present numerical technique.  

Example 1 (Feng, 2013) 

Consider multi pantograph differential equation 

  (19) 

with the initial condition . Figure 1 presents the graphical visualization of the exact 
and numerical solutions of Example 1. The simulated results are computed for  and 

 over the interval [0, 1].  

  
Figure 1: Exact and Numerical Results of Example 1 

Table 1 shows the exact and numerical solutions of Example 1 for  and  over 
the interval [0, 1] with a step size of 0.2. The increasing number of N leads to good agreement of 
approximation solutions compared with the exact solution as indicated by low values of the 
absolute error.   

Table 1:  Exact Solution, Numerical Solution and Absolute Error of Example 1 
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0 1 1 1 0 0 
0.2 0.818730 0.841406 0.840880 0.022767 0.022157 
0.4 0.670320 0.710016 0.709671 0.039690 0.039351 
0.6 0.548812 0.601630 0.512100 0.052820 0.052520 
0.8 0.449329 0.512100 0.512100 0.062771 0.062462 
1 0.367879 0.437182 0.437182 0.069300 0.069300 

 

Example 2 (Xing, 2006) 

Let consider 

  (20) 

subject to the initial condition and is the exact solution of equation 
(20). Table 2 shows the comparison results of Example 2 that has been simulated by using 
OECM and Legender and Haar Wavelet methods. The simulated results are obtained over the 
interval [0, 1] with a step size of 0.125. Based on Table 2, it can be concluded that the solution 
obtained using OECM are in good agreement with the exact solution. The proposed method has 
similar performance with Legender method and perform better than Haar Wavelet method.  

Table 2: Exact and Numerical Solutions obtained via OECM, Legender Method and 
Haar Wavelet Method of Example 2 

 
Exact Solution, 

 
Legender 
(Xing, 2006) 

Haar Wavelets 
(Xing, 2006) 

OEP Collocation 
Method 

0 1 1 1 1 
0.125 0.855345 0.855345 0.855345 0.855345 
0.25 0.731616 0.731616 0.731612 0.731616 
0.375 0.625784 0.625784 0.625778 0.6257840 
0.5 0.535261 0.535261 0.535255 0.535261 
0.625 0.457833 0.457833 0.457824 0.457833 
0.75 0.391606 0.391606 0.391597 0.391606 
0.875 0.334958 0.334958 0.334949 0.334958 
1 0.286505 0.286505 0.286496 0.286505 

Graphical visualization of the absolute error of Example 2 is illustrated in Figure 2. It can be 
seen that OECM show low values of the absolute error, hence the prediction quality of the 
numerical solution obtained via OECM is confirmed.  

x ( )u t
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Figure 2: Absolute Error of the Numerical Solution of Example 2 via Legender, 

Haar Wavelet and OECM. 

Example 3 (Xing, 2008) 

Consider the following Pantograph differential equation 

 (21) 

with the initial condition  and the exact solution is 

 

Figure 3 shows the graphical visualization of the exact, Homotopy Perturbation Method and 
OECM. It can be concluded that the approximated result shows good agreement with the exact 
solution compare than the Homotopy Perturbation Method result. 

 
Figure 3: Comparison of HPM and OECM result of Example 3. 
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5. Figure 4: Absolute Error of the Numerical Solution of Example 3 via 

Homotopy Perturbation Method and OECM. 
The absolute error of the present result shows low values of error hence indicate the solution 

obtained via OECM has better performance than the HPM results. 

 
6. Conclusion 

A numerical technique of collocation method with ortho exponential polynomial is presented 
to approximate the numerical solution of Pantograph differential equations. Numerical examples 
show that the numerical solution obtained via OECM produce good agreement of the results, 
hence demonstrate efficiency of this method in approximating the solution of Pantograph 
differential equations. 
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