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 

Abstract: This paper is devoted to propose the numerical solution pantograph differential 

equations via a new computational approach of Hermite collocation method. The 

convergence of the Hermite collocation method is investigated. The numerical solution of 

pantograph differential equations is obtained in terms of Hermite polynomial. Nonlinear 

pantograph differential equations are solved and compared with the exact solutions to show 

the validity, applicability, acceptability and accuracy of the Hermite collocation method. The 

approximated results show good agreement with the exact solutions, hence indicate good 

performance of the methods in solving the corresponding equations.  

 

Key words : Pantograph differential equations, Hermite polynomial, Collocation method.  

 

1. INTRODUCTION 

 

Many phenomena in applied branches that fail to be modelled by the ordinary differential 

equations can be de- scribed by the functional differential equations. In recent years, many 

researchers have developed different numerical approaches to the generalized pantograph 

differential equations such as variational iteration method [1], differential transform approach 

[2], Taylor method [3], collocation method based via Bernoulli polynomial [4] and Bessel 

collocation method [5]. Yuzbasi [5] had solved pantograph differential equations via Bessel 

polynomial. Generalization of Jensen’s inequality and the related result corresponds to the 

Hermite polynomials was found in [6]. Successive interpolations method applied on 

pantograph differential equations was studied by [7]. Modified Runge–Kutta method was used 
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to solve nonlinear neutral pantograph equations [8]. Jacobi rational collocation function used to 

solve pantograph equation [9]. The Direct operational tau method is used to solve pantograph 

equations [10]. While [11] had applied neural network method to solve pantograph differential 

equations. Neuro–heuristic computational intelligence approach used for solving nonlinear 

pantograph systems was investigated in [12]. 

 

In present work we exploit a new computational approach which is collocation method by 

using Hermite polynomial to solve higher order functional type pantograph equations. A 

generalization of the Hermite polynomial is given by [14]. Properties of Hermite polynomial is 

available in [15]. Some more works have been done in [17]-[18].  

 

2. PROBLEM DESCRIPTION 

 

Generalize form of higher order pantograph type functional differential equation is  
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with mixed condition 
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where , ,ik i jkc    are the complex and/or real coefficients, ( )jkQ t  and ( )f t  are analytical 

functions which is defined in 0 1t  . The approximated result is based on the truncated 

Hermite expansion 
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where 

 

  
2 2

( ) ( 1)   .
n

n t t

n n

d
He t e e

dt

    

The term nc  corresponds to the Hermite coefficient, 0, 1  ,  2,  ....,   ,      n N N IN ò . The derivative 

and their relation between the Hermite polynomial is '

1( ) 2 ( ).n nHe t nHe t  The relation 

between the matrices ( ) ( )KHe t  and ( )He t  are as follows 
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The symbol ( )  is used to denote the derivative w.r.t t  
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3. FUNDAMENTAL MATRIX RELATION 

 

Our focus in this study is to approximate the solution of U(t) in (1) described by the truncated 

Hermite series in equation (3). Let 

 

 [ ( )] ( )y t He t C  (5) 

and the derivative of ( )y t  is 

 [ ( )] ( )k ky t He t C  (6) 

By using the above relation, we obtain 

 [ ( )] ( )( )k T ky t He t M C  (7) 

4. METHODOLOGY 

 

Here we start to build the basic matrix equation with respect to (1). For this, we replace the 

matrix relation (5) and the derivatives (4) into (1) and obtain the basic matrix equation of 
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The first step in the solution procedure is to define the collocation points it  as 

,                0, 1  ,  2,  ,3   ,  i

i
t i N
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The matrix equation can be written as 
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To simplify the above equation can be written as 
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where 

 

 
Equation (9) corresponding to (1) will be in the form     or  [ ; ].XC G X G  Thus, we have 
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In equation (10), the ( 1)N  system of linear equations with 0 1,  ,  ,  Nc c c are the unknown of 

Hermite polynomial coefficient. The condition in (2) in the matrix forms by means of the 

relation (7) can be expressed as 
1
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The matrix form for condition can be written as 

 [ ]   [ ; ],   0,1  , 2, ,3  ,  1i i i iWC or W i m     (11) 

where 
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By replacing the row in equation (11) and by using the last row of equation (10), we get the new 

matrix of (12) that allows us to solve the equation (1) under condition (2). 
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We always found that the rank ( X̂ )=rank [ X̂ ; Ĝ ] 1N  , then we write 

 1ˆ( )C X G  (13) 

Thus, the Hermite polynomial coefficients 0,1,....,ic N  are uniquely determined by (12) and 

(13). 
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5. CONVERGENCE ANALYSIS 

 

This section is divided into two subsections. The first subsection devotes to the error bound of 

the proposed method. Meanwhile, in the second subsection, the convergence theory of the 

numerical solution is presented. 

5.1 Error Bound of the Method 

In this part, the error bound of the method will be provided under several mild conditions such 

as solution boundedness of the main neutral differential equation. Some definition and lemma 

are provided for clarifying the main theorem of this subsection. 

 

5.2 Definition 

A function :[0,1]   belongs to the sobolev space ,m pW , if its thj  weak derivative, j , 

lies in [0,1]pL   0 j m    with the norm 

 , ( )

0

p

m
m p j

L
j

W 


‖ ‖ ‖ ‖  (14) 

where pL
‖ ‖  denotes the usual Lebesgue norm, 

 

1
1

0
( )( )p

p p

L
t dt  ‖ ‖ ‖ ‖  (15) 

and ( )t‖ ‖  stands for any finite dimensional norm in .n  

 

5.3 Lemma 

Given a function , ,  [0,1],mW t    there exist polynomial ( )Nu t  of degree less than or equal 

to N  such that 

 0( ) ( ) ,     [0,1],m

N L
t u t CC N t 

   ‖ ‖  (16) 

where C  is a constant independent of $N, m$ is the order of smoothness of  ,and 

,0 mW
C  ‖ ‖ .  Here, ( )Nu t  with the smallest norm ( ) ( )N L

t u t ‖ ‖  called the thN  order 

polynomial approximation of ( )t  in the norm of L
. Note that if C  , then m  . This 

implies that ( )Nu t  converges to   at a spectral rate, i.e., it is faster than any given polynomial 

rate. Moreover, we denote the set of continuous functions in a linear space on  [0, ]T  by 

[0, ]C T and the uniform norm in [0, ]C T by 

 0 | ( ) |,     [0, ]t tf max f t f C T    ‖ ‖  (17) 

Again, we consider equation (1) with the initial conditions (2). A similar procedure can be 

applied for higher values of m. Therefore, (1) can be written as follows 
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Integrating both sides in the interval [0, t] and imposing initial condition we have 
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Equation (19) can be written as 
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t

g t u g d     In the following theorem, we show that the approximate 

solution which was expressed in terms of Hermite polynomials converge to the exact solution 

under several mild conditions. 

5.4 Theorem 

Consider equation (20) and assume that ( )u t  and ( )Nu t  are the exact and approximate 

solutions of (20), respectively. Consider equation (20) such that 
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ik i i Ne K t K t i I  ‖ ‖ and 

( ) ( )f Ne f t f t  ‖ ‖  

5.5 Proof 

According to the assumptions above, equation (20) becomes 
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Letting ( )i iz t   , we get, 
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Now, suppose that the functions ( )iK z  and ( )g t  are expanded in terms of Hermite 

polynomials, then the approximated solution ( )Nu t  is also in terms of Hermite polynomials. 

Our aim here is to find an upper bound for the associated error between the exact solution ( )u t  

and the approximated solution ( )Nu t  for equation (1). By the above assumptions, we have 
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By the properties of norm, the equation (24) is then expressed as 

 
0

,

( ) ( ) ( ) ( )

1
| | ( ) ( )

( ) ( )

i i

i

N N

tI

i

i i

i N N

u t u t g t g t

K z u z

K z u z dz

 




 







  





 

‖ ‖ ‖ ‖

‖

‖

 (25) 

Write 
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Thus, putting (27) into (25) we get 
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6. NUMERICAL RESULT 

 

Now, we take some test examples to examine our method. The numerical computations are 

carried out in MAT- LAB R2015a, with 10 GB RAM, processor Intel core i7 and hard drive of 

1000 GB. 

6.1 Example 1 

Let us consider the following 2nd order pantograph differential equation 
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The first step in the solution procedure is to define the collocation points which are 
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Matrix form of the 2nd  order pantograph differential equation is 
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  The approximated solution will be obtained from 
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By applying the methodology in Section 4, yield 
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The augmented matrix for this fundamental matrix equations 

 
After solving linearly, the above matrix, we will get C  as follows 

5 1215 1 116
           

4 1877 8
.

4693

T

C
 

  
 

 

Table 1 present the results produced for Example 1 by Hermite collocation method in the 

interval [0, 1] with step size of 0.2. Also Table 1 presents the results for three values of N = 3, 6, 

19, respectively, to show the improvement of the results by the increasing size of N. The exact 

solution was compared along with the absolute error for Example 1 for N = 3, 6, 19. By 

increasing the size of N, the algorithm gives the improvement in the results. Table 2 discusses 

the error analysis between the result obtained in [18] and the present method in this paper. 

 

Table 1: Results of Example 1 for different values of N. 
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Table 2: Comparison between the approximated result by collocation method via Hermite 

polynomial which is N = 19 and the reference [18]  

i t N19 E19 
Result-[18

] 
Error-[18] 

1 0 1 0 1 0 

2 0.2 1.221402758 1.00E-11 1.221403 7.738440E-008 

3 0.4 1.491824698 2.70E-11 1.491825 5.521239E-008 

 

6.2 Example 2 

Let us consider the following 3rd  order pantograph differential equation 
3 2

3 2

1 1
3 4

1 1
3 4

( ) 0

t t

d y d y t dy t
t t

dt dt dt

y t t e e

   
    

   

   
      

 


 
 
















 

 

 

with the initial conditions 
2

2
(0) 1, (0) 1, (0) 1.

dy d y
y

dt dt
    We will find the solution of 

Example 2 by 
6

0

( ) ( )n n

n

y t a H t


  

where 6,N   and 00 ,Q t   10 ,P t  
1 1

3 4( ) .

t t

g t t e e

  



 


 

  
 

   
 
 

 The first step in the solution 

procedure is to define the collocation points which are 

1 2 3 4 5 6 7

1 1 1 2 5
0, , , , , , 1 .

6 3 2 3 6
t t t t t t t
 

       
 

 

The fundamental equation for the previous equation is 

3 2

00

10

( ) ( 1)
3

( 1) ( )
4

t
He t M Q He M

C G
t

Q He M He t

 
   

 
   
  

 

i t Exact 

Method 

Present Method 

   

       
1 0 1 1 0 1 0 1 0 

2 0.2 1.221402758 1.221183358 0.00021940 1.221402766 7.9330E-09 1.221402758 1.0E-11 

3 0.4 1.490824698 1.491858332 3.363390E-0.5 1.491824707 9.37300E-09 1.491824698 2.70E-11 

4 0.6 1.822118800 1.821516447 0.0006023530 1.822118794 6.3905700E-09 1.8221188 3.90570E-11 

5 0.8 2.225540928 2.21969303 0.0058478990 2.2255408 1.2849200E-07 2.225540928 4.600760E-13 

6 1 2.718281828 2.695748479 0.022533350 2.71827379 8.038460E-06 2.718281828 4.041210E-14 
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where 

 

 

1 1
6 6

1 1
3 3

1 1
00 102 2

2 2
3 3

5 5
6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1

1 0 2 0 12 0 120

1 0.33

Q Q

He t

   
   

   
   

   
   

    
   

   
   
   
   

      

 



3333 1.88889 1.96296 10.67901 19.26337 100.369

1 0.666667 1.55556 3.7037 6.864198 34.20576 45.8381

1 1 1 5 1 41 31

1 1.333333 0.222222 5.62963 6.17284 36.80658 110.8038

1 1.666667 0.777778 5.37037 13.6173 20.26749 169.95

  

  

 

  

  2

1 2 2 4 20 8 184

 
 
 
 
 
 
 
 
 
    

 

1 2 2 4 20 8 184

1 2.083333 2.340278 3.45775 21.2453 19.5991 177.8719

1 2.166667 2.694444 2.8287 22.2955 25.6773 167.321
1

1 1 2.25 3.0625 2.10938 23.1211 35.1475 152.1292
4

1 2.333333 3.444444 1.2963 23.6914 44

He

  

  

  
 

     
 

   .9095 132.1248

1 2.416667 3.840278 0.386 23.9745 54.8504 107.1898

1 2.5 4.25 0.625 23.9375 64.8438 77.26563

 
 
 
 
 
 
 
 

   
   

 

1 2 2 4 20 8 184

1 1.88889 1.567901 4.593964 18.0849 2.59136 185.7437

1 1.77778 1.160494 5.048011 15.9372 12.0513 180.7965
1

1 1 1.66667 0.777778 5.37037 13.6173 20.2675 169.952
3

1 1.55556 0.419753 5.569273 11.1

He

 

  

  
 

     
 

  818 27.1602 154.0676

1 1.44444 0.08642 5.652949 8.68389 32.6802 134.0436

1 1.33333 0.22222 5.62963 6.17284 36.8066 110.8038

0 2 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 6 0 0 0

0 0 0 0 8 0 0

0 0 0 0 0 10 0

0 0 0 0 0 0 12

0 0 0 0 0 0 0

M

 
 
 
 
 
 
 
 

   
     







 
















 


 

The augmented matrix for this fundamental matrix equations is 

 

1 0 2 48 12 960 120 ; 0

1 0.666667 1.83333 55.93287 57.5246 984.065 1656.31 ; 0.54285

1 1.333333 1.33333 63.90741 108.7531 921.393 3066.61 ; 1.14586

; 1 2 0.5 72.1875 165.8958 796.42 4162.85 ; 1.81407

1 2.666667 0.666667 81

X G

  

  

   

    

.03704 229.4815 524.83 4758.37 ; 2.55288

1 3.333333 2.166667 90.71991 300.3526 183.05 4665.72 ; 3.36812

1 4 4 101.5 379.6667 262.2546 3693.38 ; 4.26603

 
 
 
 
 
 
   
 

   
   

 

 

Fundamental matrix for Example 2 is 

[ ]     [ ; ];   0, 1  ,  2,  3j j j jW C or W j    

or clearly 

 0 0[ ; ] 1 0 2 0 12 0 120W      

 1 1[ ; ] 0 2 0 12 0 120 0W     

 2 2[ ; ] 0 0 8 0 96 0 1440W     

The new augmented matrix based on conditions can be obtained as 
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After Solving ˆˆ[ ; ]X G  we will get the matrix C . 

 

Table 3: Approximated Results and the absolute errors (AE) of present method 

via Hermite Polynomials for different N values of Example 2. 

i t Exact Present Method 

  it
iy t e   N7 N11 N48 

      
1 0 1 1 0 1 0 0.999999 1.00E-06 

2 0.2 0.818730 0.819467 0.0006735 0.818917 0.000187 0.819395 0.00066

5 

3 0.4 0.670320 0.674134 0.0038148 0.670319 1.50E-06 0.674042 0.00372

2 

4 0.6 0.548811 0.556411 0.0076319 0.559976 0.011159 0.555972 0.00716

1 

5 0.8 0.449328 0.454835 0.0055066 0.476254 0.026926 0.453427 0.00409

9 

6 1 0.367879 0.353658 0.0142213 0.367688 0.000199 0.350466 0.01741

2 

 

Table 3 illustrates the approximated result produced by Hermite collocation method for 

Example 2, which is a third order pantograph differential equation. Exact result of Example 2 is 

( ) tu t e , and the absolute error are obtained using this exact solution on 7,11,48N   for 

interval [0,1] for 0.2 step size. The results of Hermite collocation method have sufficient 

accuracy along with the whole interval. 

 

5. CONCLUSION 

 

In this paper, we have presented the collocation method with Hermite polynomial for solving 

the higher order pantograph equations. It can be seen from the numerical examples, the 

approximated results have good agreement with the exact solutions as indicated by low values 

of the absolute error. The comparison between the present method and the reported methods 

show that collocation method with Hermite polynomial is efficient in solving pantograph types 

differential equations. A considerable advantage of using collocation method with Hermite 

polynomial is that the approximate solutions can be found at low computational cost by using 

computer program.  
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