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Abstract 

Data in practice are often of high dimension and multivariate in nature. Detection of outliers has been 

one of the problems in multivariate analysis. Detecting outliers in multivariate data is difficult and it is 

not sufficient by using only graphical inspection. In this paper, a nontechnical and brief outlier detection 

method for multivariate data which are projection pursuit method, methods based on robust distance 

and cluster analysis are reviewed. The strengths and weaknesses of each method are briefly discussed. 
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1. Introduction  

A group of n observations on a set of p variables is called multivariate data. Multivariate data arise when 

one wants to analyse data from more than one variable, p > 1 (Johnson & Wichern, 2002). Data 

reduction, missing data, grouping and outlier detection are among the problems that were studied in 

multivariate analysis. In this review, we will only focus on outlier detection.  

Outliers are a minority of observations that differ from the majority of the observations in the dataset 

(Hadi et al., 2009; Möller et al., 2005; Su & Tsai, 2011). It is assumed that at least 50% of observations 

in a dataset have same pattern and the rest of the data have different pattern (Hadi et al., 2009). As a 

result, outliers do not fit well in statistical model. 

Outliers in univariate data can easily be detected graphically through a simple plot, such as box plot, 

scatterplot, stem-and-leaf plot and Q-Q plot (Möller et al., 2005; Su & Tsai, 2011; Werner, 2003). 

However, outlier detection by visual inspection for higher dimensions or multivariate data does not 

work well (Hadi et al., 2009; Møller et al., 2005; Rousseeuw & Katrien, 1999; Werner, 2003) and is 

more difficult. The difficulty increases when the number of variables, p increase (Herwindiati et al., 

2007; Möller et al., 2005; Raykov & Marcoulides, 2008).  
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Outliers may occur due to result of a mechanical fault, changes in system behavior, fraudulent 

behavior, malicious activity, human error, instrument error, setup error, sampling errors, data-entry error, 

environmental changes or belong to another population (Rousseeuw & Hubert, 2011; Wang et al., 2019). 

Outliers can affect proper classical multivariate analysis, leads to incorrect conclusions, makes 

modelling difficult and disrupts measures of mean and covariance matrix (Hadi et al., 2009; Möller et 

al., 2005; Su & Tsai, 2011; Werner, 2003). Classical multivariate analysis assumes the data to be 

homogeneous and free from outliers (Hadi et al., 2009). This assumption can make classical multivariate 

analysis be severely distorted if outliers exist in the data (Hadi et al., 2009). 

Hadi et al. (2009) stated that there are two general approaches to outlier detection within statistics’ 

field which are projection pursuit and methods based on robust distances. In this paper, cluster analysis 

will also be reviewed as one of the outlier detection for multivariate data. The strengths and weaknesses 

for all three methods will be reviewed and highlighted in this paper.  

 

1.1 Types of Outliers 

According to Rocke and Woodruff (1993), there are four types of outliers as given below. The main 

data are assume to be  I0,pN  

i. Shift outliers 

Outliers are from distribution  Iμ,pN  

ii. Points Outliers 

Outliers form a cluster tending toward a point mass. 

iii. Symmetric Linear Outliers 

Outliers are from distribution  Σ0,i pN , where i  is a unit vector.    

iv. Asymmetric Linear Outliers 

Given a unit vector i , outliers are from id , where   Σ0,pNd ~ . 

v. Radial Outliers 

Outliers are from distribution  I0,kN p , where 1k . 

 

2. Multivariate Data 

A multivariate data matrix, X , can be represented by an pn   matrix where p  is the number of variables 

and n is the number of observations (Everitt & Dunn, 2001; Johnson & Wichern, 2002; Salleh, 2013). 

The ijx   element in X  shows the i-th individual observation on j-th variable (Everitt & Dunn, 2001; 

Johnson & Wichern, 2002; Salleh, 2013).   
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The spread measurement of multivariate data is represented by a p x p symmetric matrix, Σ  which 

is known as a variance-covariance matrix or a covariance matrix (Everitt & Dunn, 2001). The matrix 

Σ is estimated by the matrix S  given by (Everitt & Dunn, 2001; Johnson & Wichern, 2002)  
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3. Outlier Detection Method 

In this section, projection pursuit method, methods based on robust distance and cluster analysis as 

outlier detection methods for multivariate data are reviewed.  

 

3.1 Projection Pursuit Method 

The purpose of projection pursuit is to find interesting structure in data or unexpected features that may  

not be obvious at first (Hadi et al., 2009; Werner, 2003). Principal component analysis is a special case 

of projection pursuit in which the index to be maximised is the variance within each component (Hadi 

et al., 2009; P. J. Rousseeuw & Hubert, 2011; Werner, 2003). The advantage of the projection pursuit 

method is that the outliers will be immediately clear if the right projection can be found (Hadi et al., 

2009). However, projection pursuit methods have one serious drawback, which is that the method has 

high computation time, particularly for high-dimensionality with large data sets (Hadi et al., 2009; 

Herwindiati et al., 2007; Werner, 2003).  

Stahel-Donoho estimator is an outlier identification method based on the projection pursuit concept 

(Hadi et al., 2009; Werner, 2003). Stahel-Donoho estimator is an affine equivariant and high breakdown 

point estimator (Hubert & Debruyne, 2009; Møller et al., 2005; Werner, 2003). However, the Stahel-

Donoho estimator is very difficult to solve in practice (Hadi et al., 2009) and not suitable for large data 

sets (Werner, 2003).  

Kurtosis1 is a method that had been introduced in order to reduce computation time of the Stahel-

Donoho estimator by reducing the number of examined projections (Hadi et al., 2009; Werner, 2003). 
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Kurtosis1 can detect outliers in various data situations and outlier types (Hadi et al., 2009; Werner, 

2003). However, Kurtosis1 faces the same problems as Stahel-Donoho estimator, which are long 

computational time and not practical for large datasets (Hadi et al., 2009; Werner, 2003). 

 

3.2 Methods based on Robust Distance  

Other method to detect outliers is known as methods based on robust distance. This method is based on 

the Mahalanobis distance (Hadi et al., 2009). Mahalanobis distance is one of the important tools to 

detect outliers (Werner, 2003). Mahalanobis distance is given by 

      nid iii ,....,2,1,, 1 


 
xxSxxSx    (4) 

where x and S are the mean and covariance matrix. The x  and S  are computed by (2) and (3). Distance 

for each observation, ijx  is obtained by (4). The ijx value is then detected as an outlier if and only if  

  2

975.0,, pid Sx , where 2

975.0,p  is the cutoff value (Rousseeuw & Katrien, 1999).  

The x and S obtained by using (2) and (3) are classical estimators and not robust. A small portion 

of outliers will affect the estimate of x and S . Mahalanobis distance depends on the classical estimators 

which are subject to the masking and swamping effect (Hadi et al., 2009; Møller et al., 2005; Rousseeuw 

& Hubert, 2011; Werner, 2003). Masking effect happens when outliers are not identified (false negative) 

(Hadi et al., 2009; Rousseeuw & Hubert, 2011). Swamping effect happens when non-outliers are 

identified as outliers (false positive) (Hadi et al., 2009). 

To overcome these problems, many studies proposed and developed robust methods to estimate the 

mean and covariance matrix (Su & Tsai, 2011). The classical estimator will be replaced by robust 

estimate of mean and covariance matrix and yield robust Mahalanobis distance or robust distance that 

is less sensitive to outliers (Hadi et al., 2009; Su & Tsai, 2011). 

 

3.2.1 Robust Distance in outlier detection  

Robust methods to estimate the sample mean and covariance matrix has been driven by outlier detection 

problems and weaknesses of classical estimators in contaminated data. A robust method is designed 

specifically to be resistant towards outliers (Hadi et al., 2009). Robust method aims to lessen the effect 

of outliers and allows the majority of data to determine the result (Møller et al., 2005).  

Various robust estimators such as S-estimator, M-estimator, MM-estimator, Minimum Volume 

Ellipsoid (MVE) estimator, Minimum Covariance Determinant (MCD) estimator and Fast-MCD 

(FMCD) estimator were presented in previous studies. Measures of performance are needed to compare 

different robust estimators (Møller et al., 2005). Breakdown point, influence function, efficiency and 

affine equivariance are the important measures of performance for an estimator (Møller et al., 2005; 

Werner, 2003). More details about the measures of performance are available in Rousseeuw and Van 

Driessen (1999), Werner, (2003) and Hubert & Debruyne (2009).   
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Rousseeuw (1985) studied whether a high breakdown point estimator can be combine with affine 

equivariance estimator. Three affine equivariant with high breakdown point of 50% had been discussed. 

The three estimators are outlyingness-weighted mean (estimator obtained independently by Stahel and 

Donoho, Minimum Volume Ellipsoid (MVE) and Minimum Covariance Determinant (MCD). 

Outlyingness-weighted mean is related to projection pursuit because the best projection must be 

searched over all possible directions (Rousseeuw, 1985). MVE is found to have a slow rate of 

convergence, but the number of arithmetic operations required to compute MVE is much faster than 

MCD (Rousseeuw, 1985). In terms of efficiency, Rousseeuw (1985) found that both MVE and MCD 

have low asymptotic efficiency. Additionally, both MVE and MCD are too difficult to compute 

precisely in moderate and large data sets (Werner, 2003). 

MCD is able to expose outliers in multivariate data better than MVE (Rousseeuw & Van Driessen, 

1999; Wu et al., 2011). MCD is asymptotically normal, has better statistical efficiency and the 

computation of robust distance is more accurate than MVE (Rousseeuw & Van Driessen, 1999; Wu et 

al., 2011). Despite the advantages of MCD over MVE, the computation of MCD still very time 

consuming and not limited to small data sets (Rousseeuw & Van Driessen, 1999).  

A new algorithm for MCD based on C-step is developed by Rousseeuw and Van Driessen (1999) 

developed and is called Fast-MCD (FMCD) (Herwindiati et al., 2007; Rousseeuw & Van Driessen, 

1999). Rousseeuw and Van Driessen (1999) found that accurate results for small data sets can be quickly 

obtained by FMCD. Additionally, FMCD provides more accurate results compared to other algorithms 

for large data sets (Rousseeuw & Van Driessen, 1999).  

However, FMCD still has low computation time for high-dimensionality with large data sets  

(Herwindiati et al., 2007). The computational complexity increases exponentially when the dimensions 

increase (Djauhari, 2008b). These estimators are constructed based on covariance determinant (CD) 

that have singularity problem (Herwindiati et al., 2007; Salleh, 2013). Hence, to overcome the 

singularity problem, Herwindiati et al. (2007) proposed Minimum Vector Variance (MVV) which 

minimizes vector variance (VV) instead of CD. Unlike CD, the computation of vector variance (VV) is 

simple and efficient, covariance does not need to be positive definite and applicable to high-dimension 

data sets (Herwindiati et al., 2007). Additionally, MVV is robust and has the same breakdown point as 

the MVE and MCD-based methods (Herwindiati et al., 2007). Herwindiati et al. (2007) compared the 

performance of MVE, FMCD and MVV to detect outliers. All the methods are able to detect outliers 

accurately (Herwindiati et al., 2007). In terms of computationally complexity, VV is found to be 

significantly smaller than CD (Herwindiati et al., 2007).   

In spite of the advantages of MVV, it is still time consuming and the running time increases as p  

increases (Salleh, 2013). To overcome this problem, Rohayu (2013) developed two methods which are 

Covariance Matrix Equality (CME) and Index Set Equality (ISE). CME and ISE are as effective as 

FMCD and MVV and have a lower computation time (Salleh, 2013). CME and ISE are innovation 
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method from FMCD (Lim & Midi, 2016). CME tests the equality of covariance matrix 
oldHS  and 

newHS , 

whereas ISE tests the equality of data subset oldI  and newI  (Salleh, 2013). CME and ISE are the 

measurements that represent the whole structure of the covariance matrix, whereas CD and VV are only 

scalar measurements of the covariance matrix (Salleh, 2013). Table 1 lists the strengths and weaknesses 

some of the robust estimators.  
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Table 1. Robust estimators 

Estimators Definition Introduced by/ 

Developed by 

Strengths Weaknesses References 

Minimum 

Volume 

Ellipsoid 

(MVE) 

MVE aims at 

finding the 

ellipsoid with the 

smallest volume 

that covers at least 

h data. 

Rousseeuw 

(1985) 

1.Affine equivariant.  

2.High breakdown.  

3.Good for small data set. 

1.Very low efficiency.  

2. More difficult to compute than      

    MCD.  

3. Computation time that grows  

    exponentially with the dimension p.  

Rousseeuw, 1985;  Werner, 

2003; Möller et al., 2005; 

Herwindiati et al., 2007;  Van 

Aelst & Rousseeuw, 2009; 

Hubert & Debruyne, 2010;  Wu 

et al., 2011; Hubert, 

Rousseeuw, & Vakili, 2014; 

Chatzinakos, Pitsoulis, & 

Zioutas, 2016; Maronna & 

Yohai, 2017. 

Minimum 

Covariance 

Determinant 

(MCD) 

MCD aims at 

finding h 

observations from 

the data whose 

covariance matrix 

has the lowest 

determinant. 

Rousseeuw 

(1985) 

1. Affine equivariant.  

2. High breakdown.  

3.Has bounded influence  

   function.  

4. Statistical efficiency is better  

    than MVE.  

5. Robust distance using MCD is  

    more accurate than MVE.  

6. Good for small data set. 

1. The computation of MCD is much  

    slower than MVE. 

2. Low asymptotic efficiencies.  

3. MCD estimator can only be  

    computed when h > p, otherwise  

    the covariance matrix of any h- 

    subset will be singular.  

4. Exact MCD estimator is very  

    difficult to compute.  

5. Computation time that grows  

    exponentially with the dimension p. 

Rousseeuw, 1985;  Stromberg, 

1997; Werner, 2003; 

Herwindiati et al., 2007;   

Roelant, Van Aelst, & Willems, 

2009; Hubert & Debruyne, 

2010;  Wu et al., 2011; Hubert 

et al., 2014;  Maronna & Yohai, 

2015; Chatzinakos et al., 2016; 

Hubert, Debruyne, & 

Rousseeuw, 2017. 

Fast 

Minimum 

Covariance 

Determinant 

(FMCD) 

An algorithm for 

MCD that is based 

on the 

Concentration-

step (C-step). 

Rousseeuw & 

Van Driessen, 

(1999) 

1. Computationally efficient (C- 

    step).  

2. Affine equivariant.  

3. High breakdown.  

4. Has bounded influence  

    function. 

5. Very fast for small sample  

    sizes, n. 

6. Suitable for small and  

    medium-sized datasets.  

1. Not suitable for high dimension  

    data sets. 

2. The computation time increases  

     when the sample size increases. 

3. The computational complexity  

    increases exponentially when the  

    dimension, p of the data sets  

     increases.  

4. Minimizing covariance  

    determinant in stopping rule needs   

    a lot of operations and thus a lot of  

    running time. 

Werner, 2003; Herwindiati et 

al., 2007; Djauhari, 2008a; 

Djauhari,  2008b; Hadi et al., 

2009;  Hubert & Debruyne, 

2010;  Salleh, 2013; Hubert et 

al., 2014;  Ro et al.,  2015; 

Hubert et al., 2017. 
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Minimum 

Variance 

Vector 

(MVV) 

MVV aims at 

finding h 

observations from 

the data whose 

covariance matrix 

has the lowest 

vector variance. 

Herwindiati, 

Djauhari & 

Mashuri (2007) 

1. Robust and has the same  

    breakdown point as MVE and    

    MCD.  

2. Appropriate for high-     

    dimensionality with large data  

    sets. 

3. The computational complexity  

    is significantly smaller than   

    other methods. The  

    complexity of MVV in terms  

    of running time is faster than  

    FMCD.  

4. MVV is more efficient than  

    FMCD. 

5. Computation of VV is simple  

    and efficient.  

6. Covariance does not need to  

    be positive definite. 

7. Instead of FMCD, MVV can  

    also be used as the stopping  

    rule in data concentration step.   

    Once the algorithm is  

    convergent, MVV is as  

    effective as the FMCD. 

1. If a portion breakdown point (BP)  

    of data points increases, VV  

    becomes as meaningless as volume  

    ellipsoid (VE) and covariance  

    determinant (CD).  

 

Herwindiati et al., 2007; 

Salleh, 2013. 

 

 

Covariance 

Matrix 

Equality 

(CME) 

The equality of 

two covariance 

matrices 
newHS  and 

oldHS  is tested. 

Rohayu (2013) 1. Has lower computational  

    complexity than MCD.  

2. Running time is much faster  

    than FMCD and MVV.  

1. Since CME is used VV as a scalar  

    measurement of covariance matrix,  

    it is found that even though VV of  

    two covariance matrices is the  

    same, it is not necessary that those  

    two covariance matrices are equal  

    to each other. 

Werner, 2003; Lim & Midi, 

2016.  

 

Index Set 

Equality 

(ISE) 

Comparison of 

two index sets. 

Rohayu (2013) 1. It has a lower computational  

    complexity than MCD.  

2. Running time is much faster  

    than FMCD, MVV, MVE and  

    CME. 

3. Do not need to compute any   

    statistic.  

 Werner, 2003; Lim & Midi, 

2016.  
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3.3 Cluster Analysis 

Clustering is one of the informal ways to identifying outliers (Jayakumar & Thomas, 2013; Johnson & 

Wichern, 2002). The aim of clustering is to group a set of observations into clusters based on similarities 

or distances (dissimilarities) (Irani et al., 2016; Johnson & Wichern, 2002). The set of observations 

within each cluster should be as similar as possible and the clusters are dissimilar from each other (Irani 

et al., 2016; Rencher, 2002). Some widely used similarity measures are Euclidean distance, 

Mahalanobis distance, correlation coefficient and covariance matrix. The most popular and easiest way 

to compute similarity is Euclidean distance but it does not take into account the covariance structure 

and is not appropriate for multivariate data (Almeida et al., 2007). Studies such as Hardin and Rocke 

(2004) and Jayakumar and Thomas (2013) used Mahalanobis distance as a similarity measure. In 

clustering, outliers are defined as observations that is far from any clusters or have large distance from 

the centre of each cluster (Hardin & Rocke, 2004; Zhang, 2013).  

Robust MD is limited to multivariate normality of the data (Santos-pereira & Pires, 2002). Hence, 

a method based on clustering and robust estimators for detecting outliers in multivariate data is proposed 

by Santos-pereira and Pires (2002). The proposed method used partitioning clustering method and  

Mahalanobis distance in their proposed method. K-means, pam, mclust and reweighted Minimum 

Covariance Determinant (RMCD) showed good performance to detect outliers, except for classical 

estimator in normal data (Santos-pereira & Pires, 2002). However, for the non-normal data the best 

result is achieved by mclust without significant differences between classical and the robust estimators 

(Santos-pereira & Pires, 2002). The method proposed by Santos-pereira and Pires (2002) is promising 

and it is recommended that using other robust estimators and extensive simulation study should be done. 

 Hardin and Rocke (2004) extend the method of one cluster to the multiple cluster case that gives 

a robust clustering method in conjunction with an outlier detection method. MCD estimators are used 

in Mahalanobis distance to compute distance from each observation to the cluster centres and were 

calculated for each group or cluster (Hardin & Rocke, 2004). From the simulation study, it is found that 

data contain outliers or not contain outliers depend strongly on dimension, p and only nominally on the 

sample or cluster sizes (Hardin & Rocke, 2004). Other robust clustering methods, robust estimators, 

different outlier scenarios, more clusters and different cutoff values could be used to extend the study 

(Hardin & Rocke, 2004).  

The application of single linkage has faced a number of problems such as outliers and sensitivity 

in the density of observations (Almeida et al., 2007). Hence, a method is proposed by Almeida et al. 

(2007) to improve single linkage. The connectivity among observations in the same cluster in the 

context of outlier identification was investigated (Almeida et al., 2007). The proposed algorithm 

consists of three tasks which are outlier removal, identification of clusters and classification of the 

observations in the first step (Almeida et al., 2007). The proposed method is an automated method and 
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allows defining natural clusters (Almeida et al., 2007). Additionally, the discarded observations (outliers) 

in the first step may optionally assign to these clusters (Almeida et al., 2007). 

 Jayakumar and Thomas (2013) proposed a new method of outlier based clustering based on 

Mahalanobis distance and found that their method is easier to implement compared to other clustering 

algorithms. The Mahalanobis distance computed for each observation and upper control limit (UCL) is 

used as a cutoff value to determine outliers. Next, observations that are above UCL are defined as 

outliers and named as cluster 1. The proposed method is investigated on data consisting of 19 variables 

and 275 observations. Results showed five clusters outliers at the 5% significance level and seven 

clusters outliers at the 1% significance level. 

 

4. Software 

In this section, only statistical software packages R will be discussed as R has been widely used 

nowadays and is an open source. R provides many robust procedures in the package ‘robust’. The 

procedures in the ‘robust’ package include ANOVA for robust generalized linear model fits, robust 

covariance or correlation estimate and robust generalized linear model fit.  

 Robust estimators of FMCD, MCD and MVE are provided via fastmcd, covMcd and covMve 

in R. However, to obtained MVV, CME and ISE, the algorithms provided by Salleh & Djauhari (2011) 

and Salleh (2013) need to be used. Package ‘pursuit’  in R provide procedures for projection pursuit 

method. Whereas clustering and robust clustering can be done by using cluster and tclust packages. 

 

5. Discussion 

Outlier detection methods for multivariate data still need to be improved. Most of the methods are still 

not suitable for high-dimensionality with large data sets and have computational complexity. Projection 

pursuit methods can make outliers immediately obvious if we find the right projections. However, these 

methods show computational complexity in large data sets. Mahalanobis distance has become one of 

the earliest methods to detect outliers. However, the classical estimators of mean and covariance matrix 

were hampered by the masking and swamping effect. Therefore, robust estimation of these estimators 

was replaced in order to overcome the effects. The development of robust estimators still continues to 

grow up to the present. Mahalanobis distance is more sensitive to minor changes in covariance matrix 

than to mean estimate (Werner, 2003). Therefore, robust estimation of covariance matrix by various 

robust methods varies widely while accurate estimate of mean is obtained (Werner, 2003). Each robust 

estimator has strengths and weaknesses. Most of the robust estimators compute covariance determinant 

(CD), which are bound by singularity problem. However, Herwindiati et al. (2007) proposed to use 

vector variance which does not have to be positive definite and can overcome the singularity problem. 

However, CD and VV still have a problem regarding computational time, which is that the method is 
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time consuming in order to obtain the robust estimate of mean and covariance. CME and ISE were 

proposed by Salleh (2013) in order to reduce the computation time. Interestingly, CME and ISE are 

measurements that represent the whole structure of covariance matrix instead of being a scalar 

representation.  

Clustering is a method that clusters observations based on similarity or distance 

(dissimilarities). Using clustering to detect outliers can overcome the problem of robust MD, which is 

limited to multivariate normality (Santos-pereira & Pires, 2002). Hadi et al. (2009) recommended 

finding a robust estimation of covariance matrix that has lower computational time. As can be seen in 

Salleh (2013), measurement that represents the whole covariance structure is proposed and shown to 

have lower computational time. Meanwhile, Santos-pereira and Pires (2002) proposed a promising 

method based on clustering and robust estimators. Hence, from these recommendations, an extensive 

simulation study to detect outliers by using clustering and other robust estimators should be done. 

Outlier detection had been utilize in many applications such as fraud detection, loas application 

processing, intrusion detection, activity monitoring, network performance, medical condition 

monitoring and many more (Hodge & Austin, 2004). Mahalanobis and robust distance has been used in 

psychology (Leys et al., 2018), control chart in manufacturing industry (Pan & Chen, 2011; Salleh & 

Djauhari, 2011), quality control  (Archimbaud et al., 2018) and air pollution (Wang & Pham, 2011). 

Whereas projection pursuit method had been used in astronomical, banking and dental milling machine 

(Quintían & Corchado, 2017), face detection (Li et al., 2016) and to investigate fraudulent documents 

in forensic cases (Pereira et al., 2017). While clustering and robust clustering had been applied in 

medical (Yepes et al., 2015), investigation of food insecurity (Dotto et al., 2018), fisheries acoustics 

(Peña, 2018), human DNA (Tavares et al., 2020) and many more. 

 

6. Conclusion 

In recent years, outlier detection, which is one of the recurring topics in statistics, has produced 

many studies because of the new challenges caused by multivariate data (Su & Tsai, 2011). Outlier 

detection for multivariate data is not an easy task compared to univariate data. Visual inspection is not 

sufficient to detect outliers in multivariate data. Projection pursuits are hampered by computation time 

and are not suitable for large multivariate data. Robust distance is a distance-based method use robust 

estimates of mean and covariance matrix in distance calculation (Hadi et al., 2009). Meanwhile, the 

clustering method groups a set of observations that are as similar as possible and detects outliers that 

are far from any clusters. In this paper, we reviewed projection pursuits, the distance-based method and 

cluster analysis to detect outliers for multivariate data. Despite the strengths that each method possesses, 

each also has weaknesses. For further study, we recommend using the clustering method and robust 

estimator to detect outliers for multivariate data.  
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