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Abstract: Human body measurement data related to walking can characterize functional move-
ment and thereby become an important tool for health assessment. Single-camera-captured two-
dimensional (2D) image sequences of marker-less walking individuals might be a simple approach
for estimating human body measurement data which could be used in walking speed-related health
assessment. Conventional body measurement data of 2D images are dependent on body-worn
garments (used as segmental markers) and are susceptible to changes in the distance between the
participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based
body measurement data that can be extracted from 2D images and can be used to classify three
walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term
memory classification model. The results showed that average classification accuracies of 88.08%
and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the
proposed ratio-based body measurement data are independent of body-worn garments and not
susceptible to changes in the distance between the walking individual and camera. As a simple but
efficient technique, the proposed walking speed classification has great potential to be employed in
clinics and aged care homes.

Keywords: 2D image; marker-less video; walking speed pattern; walking speed classification; quasi-
periodic pattern; LSTM; deep learning; rehabilitation; human mobility; gait impairment

1. Introduction

Walking ability is an important consideration during routine therapy treatment and
rehabilitation following surgery and is crucial for human mobility, which enables predic-
tions of quality of life, mortality, and morbidity [1,2]. Walking speed is a simple, rapid, and
easily obtained assessment tool [3], but significantly affects all gait parameters, such as
cadence, stride length, stance, and swing durations [4,5]. For a long time, walking speed
has been used as an independent screening indicator of demographic characteristics (e.g.,
age and sex), functional activities (e.g., kinematic and kinetic patterns and spatiotempo-
ral parameters), and various physical outcomes (e.g., activity-related fear of falling) in
normal controlled individuals (e.g., healthy) and patients (e.g., Parkinson’s disease and
osteoarthritis) [6–10]. Additionally, the functional movement performance of individuals
with neuromuscular conditions, such as post-stroke and cerebral palsy, can be assessed
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based on their walking speed, which might have an impact on gait [9,10]. The gait speed
of an individual with a physical impairment might be affected by changes in walking
conditions, which do not appear to affect the gait speed of healthy individuals. For exam-
ple, at similar walking speeds, patients with diseases such as Alzheimer’s disease exhibit
a slower walking gait speed than healthy controls, and this difference might be a good
indicator for classifying patients and healthy controls [11]. Furthermore, a slow walking
speed in elderly individuals (>60 years) predicts increased morbidity and mortality [12].
Walking speed provides a significant contribution to health assessment, including changes
in spatiotemporal, kinematic, and kinetic parameters during the gait cycle [13]. Therefore,
the efficient classification of walking speed could play a vital role in the scrutinization of
normal and abnormal gait measurements, particularly in gait-based assessments during a
rehabilitation process, and might thus help improve clinical care and our understanding of
gait balance.

Spatiotemporal gait data (e.g., walking speed, swing phase time, and double stance
time) are the second most often used parameters, among two other parameters, namely,
kinematic and kinetic walking gait parameters [14]. Spatiotemporal gait data are multidi-
mensional time-domain sequences representing the evolution of body posture during a gait
cycle [15]. Additionally, human gait is a form of cyclic motion regardless of the walking
speed, and as a consequence, the time-domain sequences estimated from this motion con-
tain periodic and/or quasi-periodic patterns [16]. Collected sequential spatiotemporal gait
data are used in gait assessments where the periodic and/or quasi-periodic patterns are
classified as normal (typical) or anomalous (atypical) gait in different neuromuscular condi-
tions [10,17]. Typically, sequential spatiotemporal gait data from a walking individual are
collected by optoelectronic motion capture systems using reflective marker-based (attached
to the individual’s body) and/or marker-less approaches [18]. These approaches for gait
recognition mostly rely on two-dimensional (2D) and three-dimensional (3D) gait analysis
methods. Both the marker-less or marker-based approaches can be applied independently
or in combination and can be widely used for gait measurement using 2D and 3D video
systems, but marker-less technologies have more potential than marker-based approaches
due to their advantages regarding cost, time, and need for highly skilled operators. In
addition, although 3D, marker-based and/or marker-less techniques are well known for
the analysis of walking gait [19,20], 3D approaches have many drawbacks, such as the
need for multiple cameras with high image resolution, which usually then results in a
longer computational time, specific repeated calibration procedures, a complex process
for time synchronization between cameras, and the need for a large space to record gait
data [21]. Therefore, a 2D technique with a less complicated camera setup (such as a single
camera) is an alternative approach for the efficient assessment of walking gait. Notably,
any sequential spatiotemporal gait data can also be estimated from a single-camera-based
marker-less 2D video system employing lateral-view video of a walking individual because
continuous 2D image sequences from the video can show the continuous body postures
of human gait [21,22]. This 2D approach is currently gaining popularity as an alternative
to the marker-based optoelectronic system due to its simplicity, rapidity, and ability to
potentially provide more significant assessments of human movement in research and
clinical practice [23–26].

Several research studies have investigated walking gait (particularly speed-related
parameters) using a 2D setup. For example, Castelli et al. estimated three types of walking
speed (i.e., slow, comfortable, and fast) using body measurement data from walking
individuals, such as the unilateral joint kinematics of the individual’s hip, knee, ankle,
and pelvic tilt [21]. However, their extracted body measurement data highly depended
on the garments worn by the walking individuals (i.e., socks and undergarments), which
were used as segmental markers for tracking foot and pelvis parameters in the image [21].
A study conducted by Verlekar et al. estimated walking speed using the lower-body
width of the walking individuals [22], but a walking individual’s body measurement data,
such as height, mid-body width, lower-body width, and body area, in an image show
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inconsistent variations depending on the distance between the individual and the camera
in different environments (e.g., indoor and outdoor settings) [27]. Thus, the results show
that body measurement data that depend on the distance between the walking individual
and camera might produce varying walking speed patterns for the same individual due to
the camera configuration [22]. One possible solution for this limitation could be to scale
or resize the image sequences of the video to normalize the walking individual’s body
measurements in each image, but this process might cause visual distortion and degrade
the image quality due to squeezing or stretching [28]. Another possible solution for this
limitation could be to use the walking individual-to-camera distance independent body
measurement data, which would produce stable walking speed patterns [27]. A study by
Zeng and Wang proposed ratio-based data (such as body height–width ratio data), which
are stable regardless of the distance between the walking individual and the camera [27].
In addition to body height–width ratio data, the study [27] also utilized inconsistent body
measurements, such as the mid-body width, lower-body width, and body area data, to
establish the walking speed pattern used for walking speed classification. The above-
described studies indicate a further need for establishing ratio-based body measurement
data that (a) can be extracted from 2D image sequences without the use of any marker,
(b) are consistent regardless of the distance between the participant and camera in both
indoor and outdoor environments, and (c) exhibit consistent periodic (or quasi-periodic)
walking patterns suitable for walking speed classification. However, to our knowledge,
this walking gait-related classification task has not been directly investigated using any
computational intelligence methods.

Artificial intelligence (AI) techniques such as machine learning and deep artificial
neural network methods successfully applied and provided new predictive models for
complex gait analysis [29,30]. Therefore, a good classification method is needed for the
classification of any gait-related task (e.g., walking speed patterns) with reliable and good
accuracy [15]. Among the published studies on walking speed estimated from lateral-view
2D images of marker-less walking individuals [21,22,27], only that conducted by Zeng
et al. directly investigated an individual’s walking speed classification; these researchers
employed the radial basis function (RBF) neural network to solve the classification task [27].
More recently, Khokhlova et al. reported a strongly predictive performance model with a
large capacity to learn, the ability to capture long-term temporal dependencies, and the
capacity to use variable-length observations that was developed based on the recurrent
neural network (RNN)-based deep learning (DL) method long short-term memory (LSTM)
for sequential data classification [15]. Additionally, some other image-related classification
tasks, such as handwriting recognition [31], speech recognition [32], and text classifica-
tion [33], have been performed using LSTM and its successor methods (e.g., bidirectional
LSTM (biLSTM) and convolution neural network LSTM (CNN-LSTM)). In support of this,
LSTM approaches are also currently gaining popularity for clinical gait classification tasks,
such as pathological [15] and impairment gait classification [34], due to their promising
applicability in labeling sequential gait data. Furthermore, previous research studies have
shown that biLSTM exhibits better classification accuracy than LSTM [35]. In general, both
the biLSTM and LSTM DL methods need large datasets for training and validation pur-
poses to obtain good accuracy and to avoid data overfitting and poor generalization [36,37].
However, there is lack of availability of sources (i.e., databases) providing a large clinical
gait dataset, particularly of lateral-view 2D images of marker-less individuals walking
over different ranges of controlled walking speed trials [38,39]. More specifically, there is
a limited number of datasets consisting of a small number of subjects with lateral-view
image sequences, few variations among controlled walking speed trials, and data collected
in limited environments (e.g., either indoor or outdoor settings) that exhibit restricted
licensing for public use [21,40]. To overcome this complexity, our study used large gait-
related datasets from two publicly available state-of-the-art databases, namely, the Osaka
University—Institute of Scientific and Industrial research (OU-ISIR) dataset A [41], and the
Institute of Automation at the Chinese Academy of Sciences (CASIA) dataset C [42]. These
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publicly available image datasets from these two databases were recorded in large popula-
tions using lateral-view videos of walking individuals obtained using a single 2D camera
(marker-less) and exhibit substantially varied controlled walking speed trials. The gait
data from OU-ISIR dataset A and CASIA dataset C were obtained in indoor (treadmill) and
outdoor (overground) settings, respectively. A number of previous studies have used these
two datasets for vision-based gait recognition and obtained a reliable performance [43–45].
One prominent study by Verlekar et al. [46] suggested that images from both datasets could
be a possible solution for studies on walking speed pattern recognition that need a large
population dataset of lateral-view 2D images of marker-less walking individuals. However,
to our knowledge, walking speed patterns have not been previously classified using these
datasets and state-of-the-art computational intelligence techniques, such as the biLSTM DL
algorithm, to obtain the most reliable and highest accuracy.

The aim of this study was to investigate potential ratio-based body measurement data
that (a) can be extracted from lateral-view 2D image sequences without any marker, (b) are
consistent with respect to the distance between the participant and camera in both indoor
and outdoor settings, and (c) exhibit consistent quasi-periodic walking patterns that are
suitable for walking speed classification. Additionally, this study aimed to investigate
whether the walking speed patterns obtained from ratio-based body measurement data
could be utilized to classify walking patterns in terms of speed using the DL model and
thereby obtain reliable accuracy. To achieve these aims, this study proposed five ratio-based
body measures: (i) the ratio of the full-body height to full-body width, (ii) the ratio of the
full-body height to the mid-body width, (iii) the ratio of the full-body height to the lower-
body width, (iv) the ratio of the apparent to the full-body area, and (v) the ratio of the area
between two legs to the full-body area. This study hypothesized that these proposed five
ratio-based body measurements exhibit the above-detailed qualities. Additionally, these
five ratio-based body measurement data could be used to classify an individual’s walking
speed pattern based on three speeds—slow, normal, and fast—by adopting the biLSTM
model with a mean classification accuracy greater than 80% in indoor settings (using a
treadmill, i.e., OU-ISIR dataset A) and greater than 75% in outdoor settings (overground,
i.e., CASIA dataset C).

2. Methods
2.1. Participants and Datasets

In this study, 2D marker-less motion image sequences in the lateral view from 187 par-
ticipants were considered to classify the walking speed patterns at three speeds: slow,
normal, and fast. These image sequences were obtained from OU-ISIR dataset A [41]
(obtained using an indoor treadmill) and CASIA dataset C [42] (obtained in outdoor over-
ground settings) and separated to obtain our own datasets based on the walking speed
patterns, namely, Dataset 1 (indoor trials) and Dataset 2 (outdoor trials), respectively, for
training and testing purposes [41,42]. Three walking speeds were categorized: slow (2 to
3 km/h), normal (4 to 5 km/h), and fast (6 to 7 km/h) [42,47,48]. With both datasets, a
walking speed pattern was established using five quasi-periodic signals calculated from the
minimum number of image sequences (i.e., frames) available for the three above-described
speeds. First, OU-ISIR dataset A consists of image sequences with a walking speed between
2 and 7 km/h for 34 participants, and these data were separated into slow, normal, and
fast. Twelve image sequences were available for each participant, and in total, these were
408 image sequences with varying length and a minimum sequence length of 240 frames.
As a result, Dataset 1 contains 136 walking speed patterns calculated consistently from
240 frames for each of the three speeds. In contrast, CASIA dataset C contains two, four,
and two image sequences for slow, normal, and fast walking, respectively, and these were
captured from 153 participants. Overall, the dataset contains 1224 image sequences of
varying length, and the shortest sequence length is 35 frames. As a result, Dataset 2 contains
306, 612, and 306 walking speed patterns calculated from 35 frames of each of the slow,
normal, and fast walking speeds, respectively.
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2.2. Data Extraction and Gait Speed Pattern Creation

The five ratio-based body measurements estimated from image sequences were the
following: (i) ratio of the full-body height to the full-body width (HW1), (ii) ratio of the
full-body height to the mid-body width (HW2), (iii) ratio of the full-body height to the
lower-body width (HW3), (iv) ratio of the apparent to the full-body area (A1), and (v) ratio
of the area between two legs to the full-body area (A2). Notably, we directly used the
original lateral-view silhouette image sequences provided in OU-ISIR dataset A and CASIA
dataset C.

Figure 1 shows a graphical representation of the extraction of the five ratio-based body
measurements obtained from an image sequence. To estimate the three height-to-width (i.e.,
HW1, HW2, and HW3) ratio-based body measurements, a rectangular boundary box was
created around the whole body in each image using the regionprops function in MATLAB
2020a (MATLAB™, Natick, MA, USA). The height and width of the boundary box, which
represent the full-body height and full-body width of the participant, respectively, were
calculated from the properties of the function. We divided the full boundary box region
into three equal parts and then placed a new rectangular boundary box around the object
in the middle part to calculate the mid-body width and another rectangular boundary box
around the object in the lower part to calculate the lower-body width. We then calculated
the three height-to-width ratio-based body measurements using Equations (1)–(3).

HW1 =
Full-body height
Full-body width

(1)

HW2 =
Full-body height
Mid-body width

(2)

HW3 =
Full-body height

Lower-body width
(3)
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Figure 1. Graphical representation showing the extraction of the five ratio-based body measurements from an image
sequence. Here, HW1—ratio of the full-body height to the full-body width; HW2—ratio of the full-body height to the
mid-body width; HW3—ratio of the full-body height to the lower-body width; A1—ratio of the apparent to the full-body
area; A2—ratio between area between legs and full-body area.
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To estimate the two area ratio-based body measurements, we calculated the partic-
ipant’s apparent-body area in the image by counting the numbers of white pixels in the
image. We also calculated the participant’s full-body area in the image by multiplying the
full-body height and the full-body width. We divided the full boundary box region into
two equal parts (upper and lower): the upper part extends from the head to the hip, and
lower part extends from the hip to the leg. We removed any noise from the lower part of
the image by deleting the smallest unconnected object to avoid even the smallest trace of a
swinging hand. After connecting the toe points by inserting a line in the noise-free lower
part of the image, the region between the two legs was filled using the imfill function in
MATLAB 2020a (MATLAB™, Natick, MA, USA) and extracted by subtracting the noise-free
lower part of the image from the image in which the region between the legs was filled.
The area between the two legs was calculated by counting the number of white pixels in
the extracted region between the two legs. We then calculated the two area-based body
measurements using Equations (4) and (5).

A1 =
Apparent-body area

Full-body area
(4)

A2 =
Area between two legs

Full-body area
(5)

The variation in each of the five ratio-based body measurements over time produces
quasi-periodic signals. All the quasi-periodic signals were normalized to 0 and 1 to
eliminate the difference in the data obtained at the three speeds [27]. Figure 2 shows the five
quasi-periodic signals calculated from image sequences in OU-ISIR dataset A (Figure 2a)
and CASIA dataset C (Figure 2b) for a representative individual walking at three different
speeds. After all quasi-periodic signals were obtained, the walking speed patterns were
established to create Dataset 1 (indoor trials) and Dataset 2 (outdoor trials). To analyze
the oscillatory behavior of the quasi-periodic signals produced by the five ratio-based
body measurements (i.e., HW1, HW2, HW3, A1, and A2), we calculated the amplitude
and frequency of the signals from a minimum sequence length of 240 and 35 frames of
each signal in Dataset 1 and Dataset 2, respectively. The occurrence of local maxima in
the quasi-periodic signals was calculated using the findpeaks function in MATLAB 2020a
(MATLAB™, Natick, MA, USA) to estimate the frequency. Additionally, to compare the
overall variation in the body measurements (such as full-body height, full-body width,
mid-body width, lower-body width, apparent-body area, full-body area, and area between
two legs) over consecutive frames at three speeds, we calculated the standard deviation
(SD) from the mean over all image sequences.
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solutions to similar classification problems [52,53]. 

Figure 2. Quasi-periodic signals produced by the five ratio-based body measurements estimated from image sequences
from one individual walking at three different speeds included in (a) OU-ISIR dataset A and (b) CASIA dataset C. Here,
HW1—ratio of the full-body height to the full-body width; HW2—ratio of the full-body height to the mid-body width;
HW3—ratio of the full-body height to the lower-body width; A1—ratio of the apparent to the full-body area; A2—ratio
between area between legs and full-body area.

2.3. Model Training and Cross-Validation

A biLSTM-based DL architecture was created based on the following five layers: an
input layer of size five, a biLSTM layer with 100 hidden units, a fully connected layer with
three outputs specifying the three classes, a softmax layer with an output between 0 and
1, and a classification layer with cross-entropy function for multi-class classification with
three mutually exclusive classes [49–51]. The other properties of these layers were selected
according to the default values in MATLAB 2020a (MATLAB™, Natick, MA, USA). The
specified options for the training process are reported in Table 1. Previous research has
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shown that this simple setup is sufficient for obtaining non-overfitting and high-accuracy
solutions to similar classification problems [52,53].

Table 1. Options for the training process used for cross-validation.

Options Settings

Weight optimization method Adaptive moment estimation optimizer
The initial learning rate 0.001

Decay rate of squared gradient moving average 0.99
Gradient threshold method ‘global-12norm’

Gradient threshold 0.9
Maximum epochs 200

Size of the mini-batch for each training iteration 27
Data shuffling ‘never’

Validation frequency 22

To ensure that the classification approach was robust and that the data were not
overfitted, the performance of the developed DL-based model was evaluated using two
cross-validation methods: Method 1, which consisted of k-fold cross validation with train-
ing, validation, and testing subsamples, and Method 2, which consisted of repeated random
sub-sampling cross-validation with training, validation, and testing subsamples [54]. In
this study, both Dataset 1 and Dataset 2 can be considered multiclass datasets as they consist
of three types of walking speed patterns. For Dataset 1, we applied 17-fold cross-validation
with a total of 272 combinations of training, validation, and testing subsamples (Method 1)
and repeated random sub-sampling cross-validation with 272 randomly selected training,
validation, and testing subsamples (Method 2). For each fold or subsample in Methods 1
and 2, the training, testing, and validation data consisted of 88.24% (360 walking speed
patterns), 5.88% (24 walking speed patterns), and 5.88% (24 walking speed patterns) of the
walking speed patterns, respectively. For Dataset 2, we applied 18-fold cross-validation
with a total of 306 combinations of training, validation, and testing subsamples (Method 1)
and repeated random sub-sampling cross-validation with 306 randomly selected training,
validation, and testing subsamples (Method 2). For each fold or subsample used in Meth-
ods 1 and 2, the training, testing, and validation data consisted of 88.9% (1088 walking
speed patterns), 5.55% (68 walking speed patterns), and 5.55% (68 walking speed patterns)
of the walking speed patterns, respectively. MATLAB 2020a (MATLAB™, Natick, MA,
USA) software with an Intel(R) Core (TM) i5-2400CPU, 3.10 GHz computer was used for
model training, validation, and testing the dataset. A complete workflow of the study is
shown in Figure 3.
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2.4. Statistical Analysis

To determine the differences in performance between the two cross-validation meth-
ods, SPSS statistical software (Version 25; IBM Corp., Armonk, NY, USA) was used to
obtain basic descriptive statistics, such as the means (± standard deviations (SDs)), and to
perform one-way repeated-measures analysis of variance (ANOVA) on all the classification
accuracy results. The normalization of the data was assessed using the Shapiro–Wilk test
(p > 0.05) prior to ANOVA, and Bonferroni adjustment was used for the post hoc analysis.

3. Results

The mean (± SD) amplitudes (in percentages %) and frequencies (number of maximum
peaks per sequence) of the quasi-periodic signals produced by the five ratio-based body
measurements at the three walking speeds are presented in Tables 2 and 3, respectively.
The results showed that a mean (± SD) amplitude between 51.66 (±7.33) and 80.50 (±0.99)
was obtained using the three height-to-width ratio-based body measurements (HW1, HW2,
and HW3) calculated from both datasets (Table 2). However, the area ratio-based body
measurements (i.e., A1 and A2) yielded a mean (± SD) amplitude in the range of 9.53
(±2.16) to 58.71 (±0.74). The mean (± SD) frequency of the quasi-periodic signals from the
five ratio-based body measurements showed trends similar to that found for the amplitude
for both datasets (Table 3). In addition, the maximum and minimum frequencies obtained
for the height-to-width ratio-based body measurements were 8.18 (±0.65) and 2.64 (±0.45),
respectively, and those found for the area ratio-based body measurements were 8.10 (±0.65)
and 2.47 (±0.58), respectively.

Table 2. Average amplitude (in terms of percentages, %) of the quasi-periodic signals obtained with
the five ratio-based body measurements.

Dataset Speed HW1 HW2 HW3 A1 A2

Dataset 1
Slow walk 69.07 (±0.99) 80.50 (±0.99) 61.10 (±1.08) 55.72 (±0.74) 19.53 (±2.20)

Normal walk 63.62 (±0.98) 71.78 (±0.86) 60.31 (±1.21) 58.71 (±0.74) 25.96 (±2.19)
Fast walk 57.09 (±2.00) 64.58 (±1.79) 56.67 (±2.08) 56.38 (±1.51) 22.57 (±2.38)

Dataset 2
Slow walk 60.43 (±4.77) 71.85 (±2.91) 54.86 (±4.81) 46.40 (±2.36) 11.11 (±2.01)

Normal walk 57.73 (±6.42) 66.58 (±4.67) 53.60 (±6.60) 10.77 (±0.75) 4.21 (±0.78)
Fast walk 55.15 (±7.17) 64.09 (±5.59) 51.66 (±7.33) 43.14 (±3.34) 9.53 (±2.16)

HW1—ratio of the full-body height to the full-body width; HW2—ratio of the full-body height to the mid-body
width; HW3—ratio of the full-body height to the lower-body width; A1—ratio of the apparent to the full-body
area; A2—ratio of area between legs and full-body area.

Table 3. Average frequency (in terms of the number of maximum peaks per sequence) of the quasi-
periodic signals obtained with the five ratio-based body measurements.

Dataset Speed HW1 HW2 HW3 A1 A2

Dataset 1
Slow walk 6.40 (±0.92) 6.15 (±0.78) 6.29 (±0.87) 7.03 (±1.00) 5.86 (±0.85)

Normal walk 6.86 (±0.72) 6.93 (±0.66) 6.88 (±0.73) 7.06 (±0.64) 7.21 (±0.68)
Fast walk 8.14 (±0.61) 7.60 (±1.02) 8.18 (±0.65) 8.10 (±0.65) 7.93 (±0.70)

Dataset 2
Slow walk 2.69 (±0.41) 2.76 (±0.42) 2.74 (±0.39) 3.31 (±0.45) 2.47 (±0.58)

Normal walk 2.64 (±0.42) 2.64 (±0.45) 2.68 (±0.46) 2.97 (±0.45) 2.62 (±0.50)
Fast walk 2.66 (±0.38) 2.76 (±0.36) 2.66 (±0.36) 2.88 (±0.42) 2.68 (±0.53)

HW1—ratio of the full-body height to the full-body width; HW2—ratio of the full-body height to the mid-body
width; HW3—ratio of the full-body height to the lower-body width; A1—ratio of the apparent to the full-body
area; A2—ratio of area between legs and full-body area.

The overall variation in the body measurements (such as the full-body height, full-
body width, mid-body width, lower-body width, apparent body area, full-body area, and
area between the legs) over consecutive frames at the three speeds was calculated using the
standard deviation (SD) from the mean over all image sequences and is presented (in terms
of percentages, %) in Table 4. Minor variation was found in the participants’ body height
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with both datasets (Table 4): the minimum variation was ±0.50, and maximum variation
was ±2.52. In contrast, substantial variation was found in the widths (minimum variation
of ±9.65 and maximum variation of ±20.91) and areas (minimum variation of ±5.23 and
maximum variation of ±30.45) of the body over time with both datasets.

Table 4. Variation in the body measurements over consecutive frames at three walking speeds. This variation was calculated
using the standard deviation (SD) from the mean over all image sequences and is presented in terms of percentages (%).

Dataset Speed Full-Body
Height

Full-Body
Width

Mid-Body
Width

Lower-Body
Width

Apparent-
Body Area

Full-Body
Area

Area between
Legs

Dataset 1
Slow ±0.50 ±12.26 ±9.65 ±15.19 ±5.23 ±12.21 ±27.97

Normal ±0.70 ±16.13 ±13.47 ±17.87 ±6.44 ±16.02 ±30.45
Fast ±0.92 ±18.94 ±16.65 ±19.79 ±7.16 ±18.73 ±29.51

Dataset 2
Slow ±2.40 ±17.45 ±12.95 ±18.68 ±9.74 ±17.54 ±22.75

Normal ±2.20 ±19.00 ±15.12 ±19.90 ±10.26 ±18.86 ±24.12
Fast ±2.52 ±20.05 ±16.42 ±20.91 ±10.50 ±19.90 ±24.95

The mean (± SD) classification accuracy of the experimental model was found to equal
88.05 (±8.85)% and 88.08 (±8.77)% using Methods 1 and 2, respectively (Table 5), with
Dataset 1 (indoor trials), whereas mean (± SD) classification accuracies of 77.52 (±7.89)%
and 79.18 (±9.51)% were achieved using Methods 1 and 2, respectively, with Dataset
2 (outdoor trials). Further descriptive statistics of the classification accuracies obtained
with the training, validation, and testing data generated using the two cross-validation
methods with the two datasets are provided in Table 5. The ANOVA results showed
no significant differences (p > 0.05) in the overall classification accuracies obtained with
Dataset 1 between the two methods. Additionally, no significant differences (p > 0.05) in
the overall classification accuracies were found between the two methods with Dataset 2.
Average time (min) for model training was 17.43 and 17.85 min for Method 1 and Method 2,
respectively, using Dataset 1, while the time was 9.71 and 10.20 min for the two respective
models when using Dataset 2.

Table 5. Descriptive statistics of the classification accuracies obtained with the training, validation, and testing data and the
two cross-validation methods with the two datasets.

Descriptive Statistics
Dataset 1 (Indoor Trials) Dataset 2 (Outdoor Trials)

Method 1 Method 2 Method 1 Method 2

Number of cross-validation experiments performed 272 272 306 306
Mean (± SD) accuracy 88.05 (±8.85)% 88.08 (±8.77)% 77.52 (±7.89)% 79.18 (±9.51)%

25th percentile accuracy 83.33% 83.33% 75.00% 75.00%
50th percentile or median accuracy 89.58% 91.67% 75.00% 75.00%

75th percentile accuracy 95.83% 95.83% 76.47% 83.82%
Minimum accuracy 41.67% 37.50% 25.00% 25.00%
Maximum accuracy 100.00% 100.00% 100.00% 100.00%

Lower adjacent accuracy 66.67% 70.83% 73.53% 69.12%
Upper adjacent accuracy 100.00% 100.00% 77.94% 95.95%

Accuracy range 58.33% 62.50% 75.00% 75.00%
Interquartile accuracy range 12.50% 12.50% 1.47% 8.82%

Number of outliers 5 4 81 26
Average training time (min) 17.43 17.85 9.71 10.20

SD—standard deviation.

4. Discussion

The main goal of the study was to investigate ratio-based body measurement data
that can be extracted from marker-less 2D image sequences and are independent of the
distance between the camera and the walking participant. Additionally, this study assessed
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whether these ratio-based body measurement data could be reliably and accurately utilized
to classify an individual’s walking patterns in terms of speed in both indoor (treadmill
trial) and outdoor (overground trial) environments using the biLSTM DL model.

This study constitutes the first comprehensive analysis of walking gait speed patterns
using five ratio-based body measurements from 2D video images: three body measure-
ments were calculated based on the ratio of the body height to width (HW1, HW2, and
HW3), and the other two body measurements were based on ratios of body areas (i.e., A1
and A2). All five ratio-based body measurements showed a quasi-periodic nature over
time in image sequences captured in both indoor (treadmill trial) and outdoor (overground
trial) environments. The results proved that the overall amplitude of the quasi-periodic
signals obtained with the ratio-based body measurements decreased with an increase in the
walking speed, and this finding was obtained with both Dataset 1 and Dataset 2 (Table 2).
A reason for this result is that regardless of the walking speed, only a minor variation
was found in the participants’ body height, whereas significant variation was found in
the widths and areas of the body over time (Table 4) [27,55]. More specifically, the widths
and areas of body decreased to minimum values when the legs were together and both
hands were straight along the body during the early stance and mid-swing phases of the
gait cycle. Subsequently, these widths and areas reached maximum values when the legs
and hands were furthest apart in opposite directions during the late-stance and late-swing
phases of the gait cycle. The swinging of hands and legs in opposite directions increases the
widths and areas of the body as the walking speed is increased. As a result, the variation
in these widths and areas increased as the walking speed increased (Table 4). Therefore,
the average amplitude of the quasi-periodic signals obtained with the three height–width
ratio-based body measurements (HW1, HW2, and HW3) decreased as the walking speed
increased. However, a slightly different variation in the amplitude was obtained with the
area ratio-based body measurements (A1 and A2). The above explanations are supported
by the results from previous studies, which also showed that the amplitudes of the cadence,
step length, stride length, and stance duration are decreased at slower speeds and increased
at faster speeds [56,57]. Again, in contrast to the amplitude, the average frequency of the
quasi-periodic signals obtained with all five parameters increases proportionally with the
speed when Dataset 1 was used because the swinging of both the upper and lower limbs is
greater at faster walking speeds (Table 3). This explanation is supported by previous stud-
ies, which suggested that the hand swing frequency, step frequency, and stride frequency
increase with increases in the walking speed and that the hand swing gradually changes
from synchronous with the step frequency to locking into the stride frequency [58,59].
Note that the frequency of the ratio-based body measurements estimated using the image
sequences in Dataset 2 did not follow the same trend as those obtained with Dataset 1,
and this difference could be due to the smaller number of image sequences obtained in an
outdoor environment and thus a smaller number of data points [21,40]. Both the amplitude
and frequency of all ratio-based body measurements exhibited variation over the image
sequences, and therefore, the ratio-based body measurements could be used to classify
the walking patterns at different speeds. Our proposed five ratio-based measurements
are more appropriate for indoor environments when compared to outdoor environments.
However, the potential of the proposed measurements indicates further investigation for
use in outdoor environments.

The experimental DL-based model achieved mean classification accuracies of 88.05%
and 88.08% using cross-validation Methods 1 and 2 on Dataset 1, respectively (mean
accuracy, Table 5). Although the overall classification accuracies obtained using cross-
validation Methods 1 and 2 and on Dataset 1 ranged from 41.67% to 100% and from
37.50% to 100%, respectively, almost 50% of the trained models achieved classification
accuracies higher than 89%, as demonstrated by applying both cross-validation methods
with Dataset 1 (min–max accuracy and 50th percentile accuracy, Table 5). Only a few models
compared with the total number of trained and tested models achieved low classification
accuracies (number of outliers, Table 5). The model tested using Dataset 2 achieved mean
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classification accuracies of 77.52% and 79.18% using Methods 1 and 2, respectively (mean
accuracy, Table 5). Although the classification accuracies obtained using both methods
ranged from 25% to 100% with Dataset 2, almost 50% of the trained models achieved
a classification accuracy with Dataset 2 greater than 75% with both methods (min–max
accuracy and 50th percentile accuracy, Table 5). Some models achieved low classification
accuracies, but this amount is small compared with the total number of trained and tested
models (number of outliers, Table 5). The above findings are rational because Dataset 1 was
created using images acquired in a controlled indoor treadmill trial environment, whereas
Dataset 2 was established using images from an outdoor field trial with a more challenging
environment [60]. Additionally, the current study achieved an excellent classification result,
but the results are slightly different compared with those obtained in a previous study [27]
on walking speed classification due to the cross-validation methods used in both studies.
More specifically, the previous study [27] trained the model with a multiclass setting,
i.e., all three types of walking speed patterns, and tested the models using a single-class
setting, i.e., any one of the three walking speed patterns, whereas the current study used a
multiclass setting as well as multiple runs for the training, validation, and testing of the
model, which is beneficial for achieving accurate classification accuracy and building a
successful model [61,62].

The ratio-based body measurements used for walking speed classification in this study
were successfully estimated from lateral-view 2D image sequences of marker-less walking
individuals captured with a digital camera. The concept of estimating body measurements
from lateral-view 2D image sequences of marker-less walking individuals captured with a
digital camera is supported by previous studies [21,46]. However, the ratio-based body
measurements used in the current study are more robust than those used in previous studies
because they are independent of the use of a body-worn garment as a segmental marker and
of variations in the distance between the walking individual and the camera. To examine
whether the ratio-based body measurements are independent of variations in the distance
between the walking individual and camera, two datasets, namely, OU-ISIR dataset A and
CASIA dataset C, which include data from both indoor and outdoor environments and
different participant–camera distance settings, were used in this study. Additionally, the
extraction of the proposed ratio-based body measurements preserves the natural movement
of the participants during data collection in an outdoor environment [23]. The ability of
classifying the walking speed in an indoor environment with high classification accuracy
and in an outdoor environment with moderate classification accuracy will enable clinicians
to use this method for regular diagnosis in clinical settings and for gait monitoring in aged
care homes [63].

Although the proposed method has great potential for use in regular diagnosis in clini-
cal settings and gait monitoring, the method has only been tested with healthy participants.
A population with gait impairment could not be assessed in this study due to the scarcity of
substantially large datasets available in the current research community [38,39]. This issue
will be taken into consideration in the future by creating a large low-resolution image-based
dataset focusing on a range of walking speeds. Additionally, this study only classified
walking speeds using height-to-width ratio-based and area-based body measurements. In
the future, this study will be extended to estimate other spatiotemporal parameters, such
as the stride length, step length, joint angles, joint angle velocity, and acceleration, such that
we can obtain greater insights on the participants’ health and classify normal and abnormal
gait patterns. Although in this study we have used silhouette-based analysis [22,46], we
will extend the work to advanced feature extraction techniques, such as pose estimation
techniques [64–66], in the future so that the classification can be done with real-time video.
Furthermore, this study was conducted using the minimum sequence length for walking
speed patterns. As a consequence, the sequence length was short in the outdoor dataset. In
the future, this study will be extended to apply a maximum sequence length by bridging
time lags to increase the sequence length, so that a more appropriate analysis can be done in
outdoor settings. Finally, this study uses only the biLSTM method to conduct classification



Sensors 2021, 21, 2836 13 of 16

tasks. Other state-of-the-art classification algorithms will be applied in the future to obtain
solutions for optimum classification accuracy.

5. Conclusions

In summary, our proposed ratio-based body measurements were successfully ex-
tracted from marker-less 2D image sequences without the need for any body-worn gar-
ments and did not show any variations due to changes in the distance between the walking
individual and the camera. Additionally, our deep learning classification model showed
excellent mean classification accuracies (88.08% and 79.18%) using a large dataset of lateral-
view 2D images of marker-less walking individuals undergoing controlled walking trials
at different speed ranges in both indoor (treadmill trial) and outdoor (overground trial)
environments, respectively. The excellent results obtained in this study support the use of
simple ratio-based body measurement data that evolve with changes in the walking speeds,
produce periodic or quasi-periodic patterns, and, more importantly, can be estimated from
marker-less digital camera images in the sagittal plane to classify walking speeds using
the currently available deep learning method. As a simple but efficient technique, the
proposed walking speed classification method has great potential to be used in clinical
settings and aged care homes.
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