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Abstract. The diagnostic assessment of cerebrovascular disease makes use of 

computational simulation as a predicting tool to determine hemodynamics fac-

tor contributing to the disease from patient-specific models which imitate the 

actual shape of the object of interest. However, the patient-specific models are 

generally reconstructed from the medical images subjectively. Image segmenta-

tion is commonly performed to produce object of interest with high visualiza-

tion. In order to produce patient-specific anatomical model, a systematic ad-

justment on image intensity was performed in this study. This paper tends to 

present the reconstruction of three-dimensional (3D) patient-specific cerebral 

aneurysm model through systematic image segmentation by using threshold co-

efficients, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2, 0.3, 0.4, 0.5 and 0.6. 25 models were extracted from 

digital subtraction angiography (DSA) images. The results show that there is an 

obvious physical change of geometry on the models reconstructed with 𝐶𝑡ℎ𝑟𝑒𝑠 
of 0.5 and 0.6 especially on the artery branch. The models reconstructed with 

𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.4 are considered sufficient in term of arterial geometry con-

figuration and they would be opted for further computational study.    

Keywords: Cerebral Aneurysm, Model Reconstruction, Segmentation, Thresh-

old Coefficient. 

1 Introduction 

The application of medical imaging in the diagnosis of cerebrovascular diseases 

has provided an abundance of information in terms of physiological and pathological 

conditions on particular cerebrovascular system [1]. Besides, the analysis of hemody-

namics in the cerebrovascular system can be acquired more accurately and specifical-

ly through computational study on the anatomical model. The information acquired 
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from the hemodynamics analysis can be used as a reference in medical studies, treat-

ment planning and surgical intervention. There has been research reported that the 

circumferential enhancement along the aneurysm wall (CEAW) which deals with the 

model configuration is highly associated to the analysis of aneurysm hemodynamics 

factor [2]. In other words, the analysis of hemodynamics is strongly depending on the 

model configuration, therefore it is crucial to obtain anatomically realistic model 

which does not compromise the actual structure or shape of the object [3–7].  

In order to obtain the anatomically realistic model, image segmentation is per-

formed by extracting the object of interest from digital and medical images. The im-

age segmentation is a common image processing technique and has been used widely 

in medical [8–10], agricultural [11, 12], archaeological [13] and construction [14, 15] 

sectors for research, demonstration as well as device intervention purposes. However, 

there is lack of information in the research community concerning on the model re-

constructed with image segmentation based on threshold image intensity other than 

the boundary condition set-up for conducting simulation [16–18].    

The commercial software packages that are available nowadays provide automatic 

adjustment on image intensity [9, 19–24], aiding users in model extraction and recon-

struction at fast pace and also eliminating the complex process to remove image 

noise. With the automatic feature, the model might not be segmented consistently 

since it is extracted by trial and error [22–24] and this technically has an impact on 

the hemodynamics analysis [25]. The medical image resolution is an uncontrollable 

factor affecting the wall shear stress distribution (WSS) especially on the complex 

flow region [26]. Therefore, the extracted model configuration has to be maintained 

as precise as possible to minimize the error arisen from the model configuration. 

In this paper, the image segmentation was performed systematically on the digital 

subtraction angiography (DSA) images by adjusting the threshold image intensity 

calculated through threshold determination method [21]. The models extracted with 

five different threshold coefficients, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2, 0.3, 0.4, 0.5 and 0.6 were recon-

structed and compared. Some differences in term of geometry configurations have 

been identified. 

2 Methodology 

This study uses 768 slices of DSA images from a patient diagnosed with internal ca-

rotid artery (ICA) aneurysms. The images are stored as a DICOM file. The image 

segmentation was performed by using AMIRATM 2019.3. Before image segmentation 

was performed, the DSA images were exported to ImageJ and presented in 8-bit depth 

with 256 x 256 acquisition matrices. Then, a line probe was constructed at the repre-

sentative cross-section of the proximal artery as shown in Fig. 1 to measure the image 

intensity. A profile curve of the image intensity was generated according to the line 

probe across the artery as shown in Fig. 2. 
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Fig. 1. Line probe at representative cross-section of proximal artery. 

 

Fig. 2. Profile curve along the line probe. 

In the present data, the image intensity ranged between 7.56 and 7997.27. The mini-

mum and maximum values of the image intensity along the line probe, 𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑎𝑥  

were obtained. They were then used to determine the threshold image intensity, 𝐼𝑡ℎ𝑟𝑒𝑠 
with different threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 such as 0.2, 0.3, 0.4, 0.5 and 0.6 by using 

the formula defined in the threshold determination method [21] as shown in Eq. (1). 

The calculated values of 𝐼𝑡ℎ𝑟𝑒𝑠 as listed in Table 1 were then used for image segmen-

tation. 

 𝐼𝑡ℎ𝑟𝑒𝑠 = 𝐶𝑡ℎ𝑟𝑒𝑠(𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛) + 𝐼𝑚𝑖𝑛  (2) 

Table 1. Values of threshold image intensity with respective threshold coefficient. 

Threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 Threshold image intensity, 𝐼𝑡ℎ𝑟𝑒𝑠 

0.2 1605.501 

0.3 2404.473 
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0.4 3203.444 

0.5 4002.415 

0.6 4801.386 

The three-dimensional (3D) patient-specific cerebral aneurysm models were extracted 

according to the calculated values of threshold image intensity, 𝐼𝑡ℎ𝑟𝑒𝑠. Moreover, the 

arteries or branches which were out of the region of interest would be removed manu-

ally to protect the actual geometry configuration of the object of interest. There were 

25 segmented vascular models created in total from five different cases of ICA aneu-

rysm. A smoothing procedure with standardized smoothing factor of 0.5 was per-

formed to reconstruct the models with good surface finishing and without compromis-

ing the local or global geometry configuration. The overall process flow for the pre-

sent study is shown in Fig. 3.  

 

Fig. 3. Methodology flowchart for the present study. 
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3 Results and Discussion 

Fig. 4 to Fig. 8 show the 3D patient-specific cerebral aneurysm models reconstructed 

with respective 𝐶𝑡ℎ𝑟𝑒𝑠 from the DSA images. By comparing among the models, there 

is no significant change in term of geometry except for the model reconstructed with 

𝐶𝑡ℎ𝑟𝑒𝑠 of 0.5 (Case 4) and 0.6 (Case 1, 2, 3, 5 and 6). There are dislocation and disap-

pearance of the artery or branch where bifurcation exists as indicated in the red box 

for every case. Furthermore, it can be noticed that the arteries after bifurcation be-

come narrower and the smaller arteries disappear as the 𝐶𝑡ℎ𝑟𝑒𝑠 increases. This might 

be due to the vasculature adherence to the object of interest, the patient-specific cere-

bral aneurysm model with arteries reduces as the 𝐶𝑡ℎ𝑟𝑒𝑠 increases and thus, causing 

some important parts to be marked out unconsciously. 

According to the previous research, it was reported that the geometry configuration 

of reconstructed model has high impact on the aneurysmal hemodynamics especially 

in computational simulations [2, 3, 8]. Some researchers also claimed that small arter-

ies can be neglected for physiological analysis as compared to the large arteries which 

have high visualization [23]. However, the reconstructed models would not be ne-

glected as long as they contain the actual arterial geometry configuration.   

Among all the models which have been created at the first phase investigation, the 

models reconstructed with 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.4 are considered sufficient for further use 

since the actual arterial configurations are contained. From the current obtained re-

sults, it is confirmed that the model reconstructed based on threshold image intensity 

has noticeable impact on model configuration. However, further investigation has to 

be conducted to explore the effect of image segmentation with different threshold 

image intensity on the reconstructed models in more details such as blood flow behav-

ior, WSS distribution and velocity flow field through computational study. 

 

Fig. 4. Reconstruction of case 1 using threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.6 (left to right). 

The red box indicates the dislocation and disappearance of artery or branch.    

 

Fig. 5. Reconstruction of case 2 using threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.6 (left to right). 

The red box indicates the dislocation and disappearance of artery or branch. 
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Fig. 6. Reconstruction of case 3 using threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.6 (left to right). 

The red box indicates the dislocation and disappearance of artery or branch. 

 

Fig. 7. Reconstruction of case 4 using threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.6 (left to right). 

The red box indicates the dislocation and disappearance of artery or branch. 

 

Fig. 8. Reconstruction of case 5 using threshold coefficient, 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.6 (left to right). 

The red box indicates the dislocation and disappearance of artery or branch. 

4 Conclusion 

From the present data, the patient-specific cerebral aneurysm models reconstructed 

with 𝐶𝑡ℎ𝑟𝑒𝑠 of 0.2 to 0.4 would be used for further computational study and analysis 

due to the preserved geometry configuration with minimal difference. The noticeable 

difference on the models reconstructed with different threshold image intensity is the 

primary evidence from the current study proving that the systematic image segmenta-

tion based on image threshold intensity without post processing editing has revealing 

impact on the model configuration. However, more data would be obtained to main-

tain the consistency of justification. Besides, the effect of geometry configuration on 

aneurysmal hemodynamics is yet to be investigated. 
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