
Review Article
A Comparative Performance Analysis of Computational
Intelligence Techniques to Solve the Asymmetric Travelling
Salesman Problem

Julius Beneoluchi Odili,1 A. Noraziah ,2,3 and M. Zarina 4

1Department of Mathematical Sciences, Anchor University Lagos, Lagos, Nigeria
2Faculty of Computing, Universiti Malaysia Pahang, Pekan 26600, Malaysia
3Centre for Software Development & Integrated Computing, University Malaysia Pahang, Pekan 26600, Pahang, Malaysia
4Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia

Correspondence should be addressed to M. Zarina; zarina@unisza.edu.my

Received 11 December 2020; Revised 11 February 2021; Accepted 17 March 2021; Published 20 April 2021

Academic Editor: Massimo Panella

Copyright © 2021 Julius Beneoluchi Odili et al.*is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*is paper presents a comparative performance analysis of some metaheuristics such as the African Buffalo Optimization al-
gorithm (ABO), Improved Extremal Optimization (IEO), Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO),
Max-Min Ant System (MMAS), Cooperative Genetic Ant System (CGAS), and the heuristic, Randomized Insertion Algorithm
(RAI) to solve the asymmetric Travelling Salesman Problem (ATSP). Quite unlike the symmetric Travelling Salesman Problem,
there is a paucity of research studies on the asymmetric counterpart.*is is quite disturbing because most real-life applications are
actually asymmetric in nature.*ese six algorithms were chosen for their performance comparison because they have posted some
of the best results in literature and they employ different search schemes in attempting solutions to the ATSP. *e comparative
algorithms in this study employ different techniques in their search for solutions to ATSP: the African Buffalo Optimization
employs the modified Karp–Steele mechanism, Model-Induced Max-Min Ant Colony Optimization (MIMM-ACO) employs the
path construction with patching technique, Cooperative Genetic Ant System uses natural selection and ordering; Randomized
Insertion Algorithm uses the random insertion approach, and the Improved Extremal Optimization uses the grid search strategy.
After a number of experiments on the popular but difficult 15 out of the 19 ATSP instances in TSPLIB, the results show that the
African Buffalo Optimization algorithm slightly outperformed the other algorithms in obtaining the optimal results and at a much
faster speed.

1. Introduction

*ere have been disagreements among computer science
experts with regards to what constitutes artificial intelligence
and computational intelligence [1]. Meanwhile, some re-
searchers argue that artificial intelligence and computational
intelligence are one and the same branch of knowledge, and
other experts feel that computational science is a branch of
the artificial intelligence [2, 3]. Still another school of
thought believes that artificial intelligence is a branch of
computational intelligence [4]. For the purpose of this paper,
the authors are in agreement with the school of thought such

as the IEEE Computational Intelligence Society that believes
that computational intelligence is a branch of artificial in-
telligence that focusses on the smartness of a computer
machine in terms of performing functions usually attributed
to human beings only [5]. Some of those functions include
the exhibition of learning, reasoning, making of informed
choices, and self-improvement. *ese are achieved through
the development of algorithmic techniques that deploys
intelligent agents drawn from the simulation of nature to
solve real-life problems. Computational intelligence
methods have been applied to solve classification problems,
time-series prediction problems, examination scheduling

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 6625438, 13 pages
https://doi.org/10.1155/2021/6625438

mailto:zarina@unisza.edu.my
https://orcid.org/0000-0002-0419-7213
https://orcid.org/0000-0003-4390-0773
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6625438

[6], stock market problems, weather forecasting, national
economic forecasting, job scheduling [7], electric voltage
regulation, agricultural production, industrial site location,
vehicle-routing, etc. [8, 9].

On the contrary, artificial intelligence refers to that
computer software which enables robots or computer sys-
tems perform human tasks with exceptional abilities, ac-
curacy, speed, and capacity. AI encompasses the design of
algorithmic and nonalgorithmic methods that involve the
use of robots, computer vision, graphics and human-com-
puter interactions, language processing, etc. [10, 11]. Major
application areas of AI include the development of novel
ways of interactions between man and machines such as the
design of better-functioning business models, medical and
bio-medical applications, and engineering designs [3, 12].

1.1. Need for Computational IntelligenceMethods. In view of
the enormous contributions of AI and computational in-
telligence (CI) to human development over the years as
highlighted above, researchers have devoted much resources
and time investigating this area with a viewing to unraveling
the untapped potentials inherent in AI and CI, respectively
[13]. Resulting from these research efforts is the realization
that AI and CI rely a lot on the effectiveness and efficiency of
the methods.*is understanding has led to the development
of CI methods. In the last three decades, the concentration of
researchers on developing swarm and evolutionary opti-
mization methods towards enhancing industrial, scientific,
and engineering applications is worth investigating [14]. *e
constant need for faster, cheaper, and more efficient ways of
solving industrial, commercial, engineering, and logistics
problems has made optimization a favoured area of scientific
investigations in the past few decades leading to the de-
velopment of novel computational intelligence methods
[15].

In recent times, several heuristics cum metaheuristic
methods have been designed to solve the problem of opti-
mization in science, engineering, industrial, and techno-
logical problems encountered in many practical fields of
human endeavour. Some of these optimization techniques
are deterministic while others are stochastic. Deterministic
techniques/algorithms have in-built mechanisms that
guarantee the exact solution to an optimization problem but
many times run into serious problems as the search space
gets larger [16]. Deterministic algorithms are quite ineffi-
cient in multimodal search environments [17]. Some of the
deterministic optimization methods are the Finite Differ-
ence [18], Hooke–Jeeves pattern [19], Nelder–Mead simplex
[20], and Newton–Raphson method [21] to mention but a
few. Similarly, among the stochastic optimization techniques
are the African Buffalo Optimization (ABO) [22], Max-Min
Ant System (MMAS) [23], Model-Induced Max-Min Ant
Colony Optimization (MIMM-ACO) [24], Cooperative
Genetic Ant System (CGAS) [25], Randomized Insertion
Algorithm (RAI) [26], Improved Extremal Optimization
(IEO) [27], etc.

Stochastic algorithms use search agent or agents in their
search and obtain solutions iteratively without a guarantee of

optimal results. However, stochastic algorithms are highly
efficient in monomodal and multimodal search environ-
ments of any size. Presently, much attention is focused on
the stochastic algorithms and, most recently, in hybridiza-
tion of stochastic algorithms since they tend to be more
successful in finding optimal or near-optimal solutions to
some difficult real-life situations that require optimization
for better results [28]. In this paper, our interest is in
comparing the efficiency of different stochastic optimization
methods to solving the Asymmetric Travelling Salesman
Problems (ATSP).

1.2. Hybrid, Metaheuristic, and Heuristic Algorithms.
Hybrid algorithms are simply a combination of two or more
algorithms in such a way that the algorithms are made to
cooperate and jointly solve a problem. Hybridization of
algorithms are done to harness the unique capabilities of the
cooperating algorithms to enhance search efficiency and
effectiveness in terms of obtaining optimal or near-optimal
solutions, escaping stagnation and ensuring faster compu-
tational speed, etc.*ere are several algorithm-hybridization
architectures in literature ranging from master-slave, relay
to peer-to-peer paradigms, etc. In all, algorithm-hybrid-
ization synergizes algorithms in such a way as to comple-
ment one another in order to ensure greater efficiency and
effectiveness [29].

On the one hand, metaheuristics refer to a kind of high
level, stochastic, problem-independent, and intelligent
manipulators of heuristic information to achieve greater
efficiency in their search enterprise [16, 30]. To achieve this,
sometimes, metaheuristics accept worsening moves, gen-
erate new starting solutions for the embedded local search
component or introduce some kinds of memory or expe-
riential biases to ensure the quick production of higher
quality solutions, etc. [31]. Examples of metaheuristics are
the Ant Colony Optimization [32], Artificial Bee Colony
[33], Particle Swarm Optimization [34], African Buffalo
Optimization [35], etc.

A heuristic, on the other hand, is an approximate,
problem-dependent set of instructions, methods, or prin-
ciples designed to solve a problem at a reasonable com-
putational cost. Generally, heuristics are, relatively, simple
mechanisms designed to determine the cheapest/best/most
effective solution among a set of solutions. However, due to
the prevalent use of greedy search strategy, heuristics have
the problem of premature stagnation. Examples of heuristic
algorithms are Lagrangian Relaxation [36], Randomized
Insertion Algorithm [37], Greedy Search [38, 39], etc.

*e primary difference between heuristics and meta-
heuristics is that, usually, heuristics are problem-dependent,
but the metaheuristics are general-purpose algorithms.
Again, metaheuristics have inherent memory capabilities
that enable them learn while executing, thus enabling them
adapt to any problem, unlike pure heuristic algorithms [40].

To the best of our knowledge, this is the first time the
algorithms used in this comparative analysis are being
compared together in one study. *e analysis in this paper
involves hybrid, metaheuristic, and heuristic algorithms.

2 Computational Intelligence and Neuroscience

Moreover, this study aims at adding to the body of
knowledge in the ATSP literature which, we observed earlier,
is not as researched into as its symmetric counterpart though
ATSP has more real-life applications than the symmetric
TSP. Moreover, it is hoped that it will be a useful tool in the
hands of researchers having to carry out studies that involve
the ATSP.

*e rest of this paper is organized as follows. Section 2
discusses the Travelling Salesman Problem. Section 3 in-
troduces the six comparative algorithms, namely, the Af-
rican Buffalo Optimization (ABO), Cooperative Genetic Ant
System (CGAS), Model-Induced Max-Min Ant Colony
Optimization (MIMM-ACO), Max-Min Ant System
(MMAS), the Improved Extremal Optimization (IEO), and
the Randomized Insertion Algorithm (RAI), highlighting
each algorithm’s basic flow and search mechanisms for the
ATSP. Section 4 concentrates on the experiments performed
and discussion of the results obtained in comparing the first
five algorithms which are population-based algorithms.
Section 5 compares the performance of the ABO with the
RAI.*is is followed by the conclusions, acknowledgment of
support for the study, and references.

2. Travelling Salesman Problem

*e travelling Salesman Problem (TSP) is about the most
studied problem among combinatorial optimization prob-
lems and is fast becoming the most reliable test bed for newly
designed optimization methods [41]. *e Travelling Sales-
man Problem which was designed, developed, and pop-
ularised by EricWeisstein atWolfram Research around 1930
[11], basically, is the problem of a particular salesman who
has customers all over a large city requiring his services or
products. To satisfy these customers, the salesman has to
visit all of them and then return to the starting location using
the cheapest route. *e TSP, in a way, is comparable to a
graph theory problem where the arcs represent the routes/
roads and the nodes represent the cities. TSP, therefore, is a
Hamiltonian cycle where the cycle passes through all the
nodes, at least, once in the graph [42]. *e arcs in a TSP
problem are assigned some weights which represent the
costs/distances/travelling time between the nodes in order to
help in determining the arc that has the cheapest cost [37].

*ere are two types of TSP: asymmetric and symmetric.
Usually, the symmetric TSP is easier to solve since both to
and from journeys are the same in cost/length, as such
optimization algorithms simply calculate one length of the
journey across different nodes [43]. In the asymmetric TSP,
there exists an instance, at least, where the cost/weight on an
arc is not the same in either to or from a node in the
travelling graph [44]. Meanwhile, in the symmetric TSP, the
travelling cost/time/weight is the same on either way in all
the graphs [45]. *at is to say that, in the asymmetric TSP,
the edges in the to and from direction can have different
costs/time periods/weights/lengths. As such the problem
should be modeled with the aid of a directed graph. In the
symmetric, however, the distance between any pair of nodes
is the same in either direction. TSP can be represented
mathematically as TSP � (G, f, t)􏼈 , where G � (V, E), f is a

function V × V⟶ Z, and t ∈ Z. As such, G is a complete
graph that fully represents the tour of the travelling salesman
with the entire tour cost which should not exceed t.

In ATSP, there exists a set V of cities coupled with a cost
function c that represents the weights between any pair of
nodes, V × V⟶ R+, with a requirement to find a mini-
mum tour length/cost that ensures that every node is visited
at least once. *e constraint of visiting a city at least once as
opposed to exactly once is relevant because, usually, the
starting city is visited twice. *us, the ATSP tour can be
represented as

c(T) � 􏽘
n

a∈T
(c(a)). (1)

*is way, the ATSP tour of any three cities u, v, w ∈ V

satisfies the triangular inequality. *is means that the fol-
lowing statement holds for the ATSP tour:

c((u, w))≤ c((u, v)) + c((v, w)). (2)

Available literature indicates that metaheuristic ap-
proaches used in solving the TSP with a little transformation
are effective in providing solutions to the ATSP [46, 47]. *e
same cannot be said of heuristics that are mostly problem-
dependent. Similarly, many researchers assert that the ATSP
is more difficult to solve than its symmetric counterpart
because it requires a reformulation as a symmetric TSP
problem with some constraints [48, 49].

2.1. 1e Need for Asymmetric TSP. A critical review of lit-
erature on the Travelling Salesman Problem reveals that
there are lots of studies on the symmetric Travelling
Salesman Problem over the past several decades. However, it
is rather ridiculous that there exists a paucity of literature on
the asymmetric TSP [50]. *is is rather puzzling because
most day-to-day human activities are, indeed, asymmetric.
Consider, for instance, a postmaster delivering mails to
different locations within a large city or even to different
geographical zones, a school bus driver picking up school
children and returning the children at the end of school
period, a taxi driver picking up passengers from the taxi
station and returning for his next queue, and welfare officers
taking food to home-bound persons [51]. In all of these
cases, the most probable route would be asymmetric. *is
study is motivated by the indispensable nature of asym-
metric challenges in virtually all aspects of human en-
deavour. It is hoped that the study will find wide practical
applicability. Asymmetry in logistics and transportation in
real-life settings could result from one-way traffic situations
and road tolling, as well as other commercial and/or civil
engineering considerations [51].

3. The Comparative Algorithms

*is study specifically investigates the performance of six
optimization algorithms in literature that have exhibited
exceptional performances in solving the ATSP. *ese al-
gorithms are the African Buffalo Optimization (ABO),

Computational Intelligence and Neuroscience 3

Model-Induced Max-Min Ant Colony Optimization
(MIMM-ACO), Max-Min Ant System (MMAS), Coopera-
tive Genetic Ant System (CGAS), Improved Extremal Op-
timization (IEO), and Randomized Insertion Algorithm
(RAI). *e choice of these algorithms for comparison is
informed by their special characteristics, while the ABO and
the IEO are standalone metaheuristic algorithms, the
MMAS, MIMM-ACO, and CGAS are hybrid metaheuristics,
and the RAI is a heuristic algorithm.

3.1. African Buffalo Optimization. *e ABO which was in-
spired by the marvelous organizational ability of herds of
buffalos, which, sometimes, are upto 1000 individuals in a
single herd, using two primary vocalizations: the waaa and
themaaa [26, 30], is a relatively new algorithm whose search
capacity cum ability to obtain good results is very com-
petitive. *e ABO applying the lean metaheuristic design
concept was designed to be fast in obtaining results, avoid
stagnation, use few parameters, and be efficient and effective;
hence, it is the choice for this comparative study. It was
actually designed to complement the existing algorithms
such as the Genetic Algorithm [52], Simulated Annealing
[53], Ant Colony Optimization [54], and Particle Swarm
Optimizations [55]. Using these vocalizations, the African
buffalos organize themselves in their navigation through the
African forests in search of lush green pastures to satisfy
their huge appetite [35]. In this algorithm, each animal’s
location represents a solution in the search space. *e ABO
algorithm is presented in Figure 1.

*e ABO applies the Modified Karp–Steele algorithm in
its solution of the Asymmetric Travelling Salesman Problem
[56]. It follows a simple solution step of first constructing a
cycle factor F of the cheapest weight in the K graph. Next, it
selects a pair of arcs taken from different cycles of the K

graph and patch in a way that will result in a minimum cost.
Patching is simply removing the selected arcs in the two
cycle factors and then replacing them with cheaper arcs and,
in this way, forming a larger cycle factor, thus reducing the
number of cycle factors in graph K by one. *irdly, the
second step is repeated until we arrive at a single cycle factor
in the entire graph K [57, 58].

So far, the observed limitations of the ABO lie in the fact
that buffalos are parliamentary in decision-making. *at is
to say that the choice of majority population of the herd
determines their next destination. In the standard ABO
variant, the modeling process is not explicit leading to the
generation of a new population when there is a case of
stagnation occasioned by the decision of the majority of the
herd. Another area of weakness is that the frequent reini-
tialization of the entire population has the tendency to limit
the directional search capacity of the buffalos when the
algorithm is faced with complex engineering challenges.
*ese observed challenges necessitated the development of
the Improved African Buffalo Optimization [59].

3.2. Cooperative Genetic Ant System. *e Cooperative Ge-
netic Ant System (CGAS) [25] is a hybrid algorithm that
combines the Genteic Algorithm (GA) with the Ant

System (AS) in a concurrent and cooperative manner,
thus harnessing the individual strengths of both algo-
rithms in ensuring search efficiency. In solving the ATSP,
CGAS selects the next node for an ant to visit based on
natural ordering and selection. Resident in any node is a
sorted list of a certain number adjoining nodes that are
chosen through natural selection process in such a way
that a node with higher probability is chosen for the next
move. For any ant to move from one node to another, the
ant will consult the sorted list C(i) to pick the nearest node
in a process represented by

j � min c(i), if j ∈ Sk, argmax τijηij, β, otherwise. (3)

*is information exchange between GA and AS in the
end of the current iteration enables the algorithm to
choose the best solutions for the next iteration. Such
cooperation helps the algorithm to arrive at the global
optimal solution and ensures adequate exploration of the
search space. *e Cooperative Genetic Ant System al-
gorithm is presented in Figure 2.

3.3. Max-Min Ant System. *e Max-Min Ant System
(MMAS) developed by Stuzzle and Hoos [60] is simply an
extension of the classical Ant Colony System (ACS) al-
gorithm by ensuring that only the best ant in each iter-
ation or the global best ant (i.e., the ant with the best
solution since the beginning of the search) is allowed to
deposit pheromone along its own route. At the start of the
algorithm, the pheromone trail is set to some maximum
levels to ensure adequate exploration, but this is sys-
tematically reduced as the algorithm progresses. *is
system is akin to the Ant System but is further extended by
placing a limit to the quantity of pheromones depositable
to a particular maximum and minimum (max, min) values
on the chosen arcs/routes. *is is to avoid the problem of
stagnation observed in the Ant System and the Ant Colony
Optimization where so much pheromone is deposited on
some favourite arcs/route, thereby, diverting the attention
of the ants from exploring other parts of the search space.
*e maximum and minimum pheromone trail values are
selected in a problem-dependent manner, such that the
more promising routes are given, the higher max-min
values are obtained. By the end of each iteration, the
evaporation factor reduces the strength of the pheromone
trail by a given factor but making sure that the trail used
by the best ant is given less evaluation. *is ensures that
the pheromone trail strength on less-promising arcs de-
creases, thus directing the ants to more promising arcs.
*e MMAS algorithm is presented in Figure 3.

To solve ATSP, first, the ants are placed on some ran-
domly selected nodes/vertices and they start constructing
their tours from an initial node deliberately exploiting the
pheromone trails rkj associated with each edge (k, j). Such a
tour is constructed by choosing the next vertice probabi-
listically using

Pkj ∼ T
α
kj, if j is not yet visited, otherwise, 0. (4)

4 Computational Intelligence and Neuroscience

1. While not termination, do
2. For k = 0 to n – 1, do, {construction process of ant j}
3. D0 ← ϕ
4. For j = 0 to |E| – 1 do
5. Choose place m randomly from set M! places suitable for event k, according to probabilities prob
6. kp for event k and place p
7. Dj ← Dj – 1 ∪ (Abreu, Ajmal, Kokkinogenis, & Bozorg)
8. Endfor
9. C ← solution a�er applying local search algorithm to D|E| – 1

10. Citeration best ← best of Cand Citeration best
11. Dglobal best ← best of Citeration best and Dglobal best global best or local best pheromone
12. update (according to γ) for T using Dglobal best, Tmin, and Tmax
13. End for

Figure 3: MMAS algorithm.

1. Initialization: randomly place buffalos to nodes at the solution space;
2. Update the buffalos exploitation using

where mk and wk represent the exploitation and exploration moves, respectively, of the kth buffalo
(k = 1, 2, ………N); mk′ reresents a move from mk; lp1 and lp2 are learning factors; bg is the herd’s best
fitness and bp is the individual buffalo’s best location

3. Update the location of buffalos using:

wk′ = ((wk + mk)/λ) λ is a random number; wk′ represents a move from wk

4. Is bgmax updating? Yes, go to 6. If No, go to 1
5. If the stopping criteria is not met, go back to algorithm step 2, else go to 6

mk′ = mk + lp1 (bg – wk) + lp2 (bp.k – wk)

Figure 1: ABO algorithm.

1. Determine the parameters for AS;

2. Build InitialAntSolutions (IAS) using AS;

3. Set GA parameters using IAS

4. While (not termination), do

9. Endwhile

5. Build AnotherAntSolutions (AAS) using AS

6. Construct AnotherAntGeneration (AAG) using GA

7. Select AnotherBestSolution (ABS) from the output of AAS and AAG

8. Update Pheromones

10. End the run and output ABS as the best solution

Figure 2: CGAS algorithm.

Computational Intelligence and Neuroscience 5

3.4. Improved Extremal Optimization. *e Extremal Opti-
mization algorithm [61] was inspired by the self-organised
critically (SOC) system theory which is a combination of two
models that use different extremal dynamics: the Bak–S-
neppen (BS) model and BTW sand-pile model [62]. *e
Extremal Optimization (EO) is closely associated with the BS
evolutionmodel which is akin to natural biological evolution
that favours species with higher fitness values. *e EO al-
gorithm differs from the other evolutionary algorithms in
which it emphasizes cooperative co-evolution and extremal
dynamics in the evolutionary process. In solving the ATSP,
the nodes/cities are mapped into a multientity physical
system in such a way that, for an ATSP problem with k cities,
there exists k − 1 different states. *e entire anticipated
solution that includes all nodes is deemed a state in the
physical system. Next, the algorithm defines a local fitness
function that evaluates the energy of each entity in the
physical system. In every iteration, the algorithm moves
through two major phases, namely, the extremal dynamics
and the cooperative co-evolution phases which are combi-
nations of greedy search and random walk. *e EO algo-
rithm is presented in Figure 4:

*ere has been a major modification of the classical
Extremal Optimization algorithm: the Improved Extremal
Optimization [27] which introduces the parameter τthat is
adjustable, meaning that EO algorithm Step (2) is slightly
changed in a way that the variable with the nth highest fitness
is chosen with the probability Pj∝ j − τ (1≤ j≤N) espe-
cially in a situation when there are N entities in the com-
putational system.

3.5. Model-Induced Max-Min Ant Colony Optimization.
Model-Induced Max-Min Ant Colony Optimization
(MIMM-ACO) [63] is a hybridization of the Max-Min Ant
System algorithm with Karp’s Patching technique [64] and
the Patch heuristics [65] resulting in two main adjustments
to the classical Max-Min Ant System algorithm (MMAS).
First, the static pheromone weighting system is replaced by a
dynamic pheromone weighting mechanism. *e dynamic
weighting mechanism results from the partial path con-
struction efforts of the ants. In this way, deliberate attempt is
made to favour more promising edges (i.e., edges that have
lower residual costs rather than just mere lower actual cost,
thus eliminating the nonoptimal edges) of the search. Sec-
ondly, MIMM-ACO algorithm termination condition rather
than being determined intuitively is determined analytically
based on the present structure of the pheromonematrice in a
particular iteration, thus enhancing the algorithm’s
searching capacity.

In solving the ATSP, the algorithm, first, analyzes the
ATSP problem and then applies the MIMM-ACO searching
system. Information obtained from this phase is then used to
direct the search further towards more promising areas of
the search space. *e pseudocode code of MIMM-ACO is
presented in Figure 5:

From Figure 5, D is the cost matrix, Ĉ is the residual cost
matrix, sgb is the best solution obtained so far, and τ rep-
resents the pheromone matrix.

3.6. 1e Randomized Insertion Algorithm. *e randomized
algorithms make random instead of deterministic decisions
through the extensive use of random bits as their input in
its search process, thus leading to the generation of random
variables. Randomized algorithms are usually faster and
simpler than deterministic ones. *e Randomized Inser-
tion Algorithm (RAI) uses the arbitrary insertion mech-
anism which is very close to cheapest insertion strategy in
its search for solution to the ATSP. *e development of the
RAI was borne out of a desire to provide a fast and simple
solution to the ATSP. *is algorithm starts by constructing
an initial solution (see steps 1–4 in Figure 6) and then
employing a series of systematic deletion cum insertion of
arcs in the cheapest way possible as it constructs good
solutions.

To solve the ATSP, the RAI randomly selects any initial
node a and then links it with any two other nodes c and d in
the cheapest possible way thereby forming cycle ac d. In the
next iteration, the RAI selects any other cheap node/nodes
within the neighborhood of the newly formed cycle which is
not part of the already-formed tour and inserts such into the
tour randomly. *is process is repeated until all the nodes
are inserted. Next, the algorithm keeps this tour and pro-
ceeds to the deletion phase (see steps 6–10 in Figure 6) where
the algorithm randomly deletes some arcs while comparing
the present solution with the previous, retaining the better,
and discarding the worse. At the end of the construction
steps, the algorithm calculates and outputs the best solution
found.

4. Experiments and Discussion of Results

*e experiments were performed using a desktop with the
following configuration: Intel Duo Core ™ 2.00Ghz,
2.00Ghz, 1GB RAM on a Window7 on 15 difficult but
popular instances out of the 19 Asymetric Travelling
Salesman Problem (ATSP) dataset ranging from 17 to 443
cities available in TSPLIB95 [66]. *e experiments were
coded in Matlab programming language and executed on
Matlab2012b compiler.

4.1. Parameter Setting. *e details of the experimental pa-
rameters are available in Table 1. *e explanation of the
symbols used in Table 1 is as follows. D∗ is the dimension of
the problem, that is, the number of nodes; α represents the
pheromone factor; Ǫ is the pheromone amount; β is the
heuristic factor; D∗ is the size of population; qo is the ex-
ploitation ratio; ρ is the pheromone evaporation parameter;
ϕ is the ratio of minimum to maximum pheromone value;
wmin is the minimum value of biased weight; θ is the
termination condition parameter; N/A denotes Not Avail-
able; τ is the probability selection; NITER is the maximum
number of iterations. Please recall that mk and wk represent
the exploitation and exploration moves, respectively, of the
kth buffalo (k � 1, 2, . . . N); mk

′ represents a move from mk;
lp1 and lp2 are learning factors; bg is the herd’s best fitness;
bp is the individual buffalo’s best location. *e parameters
are set after deliberate tuning. For the ABO specifically, since

6 Computational Intelligence and Neuroscience

1. Build a tour made up of a given nodes and self–loop.
2. Select a node on the tour randomly.
3. Place this node between neighboring nodes on the tour in the cheapest way possible. If the tour remains
incomplete, return to step 2.
4. Maintain this newly generated tour solution, say K.
5. Then repeat m2 times, algorithm steps 6 to 10.
6. Select randomly c and d (c, d 2 Є N = {1, ..., m}1 ≤ c ≤ d ≤ m)
7. From the circuit with all nodes remove a path beginning with vertex c through vertex d, and
connect vertex c − 1 with Edge d + 1.
8. Randomly choose a node from the removed path.
9. Insert this chosen node between two neighboring nodes on the tour in the cheapest way possible.
If the tour is remains incomplete, return to step 8.

10. Compare present solution with the solution K. Output the better one

Figure 6: RAI algorithms.

1. Determine the configuration J and set Jbes ← J;
2. For the present configuration J,
3. Determine λi for each variable xi,
4. Generate K with λj ≥ λi for all i, i.e., xi has the “worst” fitness,
5. Select randomly a J′ЄN(s) in a way that the “worst” xi changes its state,
6. if F(J′) < F(Jbest), then set Jbest ← J′,
7. Accept J ← J′ without conditions, independent of F(JK) − (J);
8. Repeat Step (2) until some termination criteria (e.g., running time) are met;
9. End if

10. End for
11. Output Jbest and F(Jbest).

Figure 4: Improved extremal optimization algorithm.

1. Initialisation: Initialise basic MM-ACO parameters ;
2. Solve the associated Assignment Problem to get the Lower bound Z ∗ AP
3. Compute_Residual_Cost_Matrix (Ĉ);
4. Ascertain the first feasible solution using ‘PATCH’ algorithm: S1;
5. Evaluate the terminal condition parameter t0;
6. Set minimum pheromone τmin;
7. Determine the best so far solution Sgb = S1;
8. Set_Gap: ΔG = f(Sgb) – Z ∗ AP
9. Initialize_Pheromone_Value_Matrix(τ): τmin

10. While not termination, do:
11. For j = 1, …, m; do:
12. Sj = Tour_Construct_Solution (τ, D);
13. Sj = LocalSearch(sj)using 2–OPT heuristics;
14 End for.
15. Update_Best_So_Far_Solution: Sgb = {f (Sk|k = 1, ..., Dα), f (Sgb))};
16. Update_Gap: ΔG;
17. Add_Pheromone_Update (τ, Sgb);
18. End While.

Figure 5: MIMM-ACO pseudocode.

Computational Intelligence and Neuroscience 7

it is a parameterless algorithm, the parameters are preset by
the algorithm designers [57].

*e parameters were obtained after careful parameter-
tuning. *e parameters used in this experiment are found to
give the best results. Please note that, to ensure fairness of
comparison among different algorithms, it is necessary to
run the experiments in the samemachine and using the same
programming language.

4.2. Computational Results. *e comparative experiments
were of two parts: the first compared the output of the
metaheuristic algorithms in solving the ATSP, while the
second compared the ABO performance with that of the RAI
which is a heuristic algorithm.*e results of the experiments
involving the metaheuristic algorithms, namely, the Model-
Induced Max-Min Ant Colony Optimization (MIMM-
ACO), Max-Min Ant System (MMAS), Improved Extremal
Optimization (IEO), Cooperative Genetic Ant System
(CGAS), and African Buffalo Optimization algorithm
(ABO) are presented in Table 2.

Please note that the relative error was obtained by

Rel. error �
Best − opt values

Opt values
× 100. (5)

In Table 2, the best performer is the MIMM-ACO. *e
algorithm obtained optimal result in all the 15 ATSP cases
under consideration here. *is excellent performance was
closely followed by the IEO, CGAS, ABO, andMMAS in that
order. As pointed out earlier, all these algorithms posted
excellent results in solving the ATSP. In fact, to the best of
our knowledge, they presently hold some of the best results
in the literature in solving the ATSP, and this is the mo-
tivation for this comparative study.

On the whole, all the algorithms posted over 94.56%
accuracy in solving the problems. *ese are excellent per-
formances, especially when one realises that these are
metaheuristic algorithms, that is to say, they are general-
purpose algorithms that were not specifically designed for
just the ATSP. One way to explain their exceptional per-
formances could be that they are all hybrid algorithms,
except, of course, the ABO. Hybrid algorithms post good

performances since they exploit the strength of individual
algorithms being hybridized. ABO’s good result could be
traceable to its use of less complicated calculation of fitness
function coupled with the ability of the buffalos to search
both globally and locally at the same time.

In terms of the computational cost which is judged by
the amount of computational resources utilized in obtaining
the solutions to the ATSP instances under investigation, this
is where there is such a gulf in the algorithms performances.
Here, the exceptional performer is the ABO. It took the ABO
just 20.58 seconds to solve all the ATSP instances under
investigation. *e next best performer is the MIMM-ACO
with 78.51 seconds. *ese are commanding performances,
especially when we consider that it took the other algorithms
hundreds of seconds to solve the same number of problems.
*e excellent performance of the ABO could be due to its use
of relatively few parameters. Basically, the algorithm uses
two major parameters, the “waaa” and “maaa” vocalizations
of the buffalos, to control its flow. MIMM-ACO good so-
lutions could be traceable to the introduction of the limit
parameters of the MMAS and the inherent search ability of
the classical ACO in addition to the excellent constructive
ability of the patching technique (see Table 2).

It could be observed from Table 2 that the other algo-
rithms were, rather, very slow. Solving the same problems
took IEO 392.03 seconds, MMAS 492.39 seconds, and CGAS
780.22 seconds. Overall, the ABO is over 3.8 times faster
than the MIMM-ACO, 19.05 times faster than IEO, 23.93
times faster than MMAS, and over 37.91 times faster than
CGAS. *e slow speed of these algorithms could be due to
common problems with algorithm hybridization. In most
cases of hybridization, efficient exploration is either sacri-
ficed for greater exploitation, speed for optimal solution, or
vice versa. Moreover, due to the complicated hybrid algo-
rithm architecture, more parameters that require tuning and
more complex implementational skill requirement from
hybridization, and hybridization poses a threat to efficiency
[67]. Since efficiency (speed) and trustworthiness (accuracy)
are two of the major hallmarks of a good algorithm, the
others being versatility and ease of use [68], it is safe to
conclude that the ABO having obtained over 98.5% of the
optimal results of all the ATSP instances under investigation

Table 1: Experimental parameter setting.

ABO MIMM-ACO IEO MMAS CGAS
Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value
Population 40 Ants (n) 10 Population D∗ Population D∗ Generation 100
λ 2.0 β 2.0 NITER 200000 β 5.0 β 2.0
lp1 0.6 ρ 0.1 τ 3.0 ρ 0.99 ρ 0.1
lp2 0.5 α 1.0 α Cost α 1.0 Ro 0.33
N/A 1.0 Ǫ 200 B Best Φij rand (−1, 1) Crossover rate 1.0N/A N/A N/A N/A N/A Known cost N/A
— N/A Qo 0.85 N/A N/A Qo 0.9 qo 0.9
N/A N/A Φ 1/n N/A N/A Ǫ 200 ϕr 0.3
N/A N/A wmin 1.001ϕ N/A N/A N/A N/A ϕρ 0.2
N/A N/A θ 1.5 N/A N/A N/A N/A τmin τmax/20
N/A N/A N/A N/A N/A N/A N/A N/A τmax 1− (1 − ρ)
Total no of runs 50 — 50 — 50 — 50 — 50

8 Computational Intelligence and Neuroscience

and being, clearly, the fastest of all the algorithms under
consideration, and it may be safe to conclude that the ABO is
a better algorithm.

5. African Buffalo Optimization and
Randomized Insertion Algorithm

*e previous analysis of the performance of the meta-
heuristic algorithms shows that the ABO has an edge over
the other metaheuristics. *is section is concerned with the
comparative assessment of the performance of the ABOwith
the RAI heuristics in solving the ATSP. *e RAI heuristics
was especially designed to provide solutions to asymmetric

TSP instances. *e experimental results are presented in
Table 3:

*e two algorithms, under investigation in Table 3, the
ABO and the RAI, posted very commanding performances.
While the ABO obtained over 98.6% accuracy in all 15 ATSP
instances, the RAI obtained over 99.05% accuracy. More-
over, it can be observed that the ABO obtained the optimal
solution in five instances to RAI’s 13 accurate performance.
*e difference in performance here can be traceable to their
use of two different techniques in obtaining results. While
the RAI uses the random insertion strategy, ABO uses the
modified Karp–Steele method. Nonetheless, it is a com-
petitive performance.

Table 2: Comparative experimental results of metaheuristics on ATSP.

MIMM-ACO MMAS IEO CGAS ABO
TSP
case

Rel. err
%

CPU
time (s)

Rel. err
% CPU time (s) Rel. err

% CPU time (s) Rel. err
% CPU time (s) Rel. err

%
CPU time

(s)
Br17 0 0.01 0 0.0 0 0.01 0 0.01 0 0.028
ft53 0 3.53 0.22 3 0 3.85 0.35 6.78 0 0.028
ftv33 0 6.12 0 10 0 4.78 0 28.73 0.08 0.029
ftv35 0 5.35 0 15 0 7.35 0 21.35 0.07 0.030
ftv38 0 8.64 0 11 0 7.83 0 29.79 0 0.026
ftv44 0 9.37 0 12 0 8.21 0 37.63 0.06 0.032
ftv47 0 7.52 0 10 0 9.37 0 29.7 0.06 0.029
ftv55 0 6.38 0 19 0 5.06 0 18.41 0.12 0.029
ftv64 0 15.37 0 28 0 16.42 0 29.25 0.0 0.041
p43 0 8.35 0.08 9 0.13 5.47 0 7.53 0.44 0.065
ry48p 0 7.83 0 8 0 5.45 0 12.35 0.12 0.037
rgb323 0 0.01 1.3 97 0.06 87.12 0.13 103.28 0 2.050
rgb358 0 0.01 0.75 75 0 69.65 0.35 96.49 0.18 3.043
rgb403 0 0.01 1.35 104.39 0 85.32 0.31 147.83 0.08 4.741
rgb443 0 0.01 1.73 91 0 76.14 0 143.76 0.11 10.37
Mean 0 15.5 0.36 32.83 0.013 26.14 0.08 52.02 0.09 1.37
Total 0 78.51 5.43 492.39 0.19 392.03 1.24 780.22 1.4 20.58
Rel. err� relative error; CPU time� total time taken by the algorithm to obtain result; s� seconds.

Table 3: Comparative experimental results.

ATSP cases No of cities Opt
ABO RAI

Best Avg Rel. er % Time Best Avg Rel. er % Time
Br17 17 39 39 39.98 0 0.028 39 39 0 0.027
Ry48p 48 14422 14440 14455 0.12 0.037 14422 14543.20 0 1.598
Ftv33 34 1286 1287 1288.4 0.08 0.029 1286 1288.16 0 0.393
Ftv35 36 1473 1474 1475.8 0.07 0.030 1473 1484.48 0 0.508
Ftv38 39 1530 1530 1536.4 0 0.026 1530 1543.12 0 0.674
Ftv44 45 1613 1614 1647.25 0.06 0.032 1613 1643.6 0 1.198
Ftv47 48 1776 1777 1783 0.06 0.029 1776 1782 0 1.536
Ft53 53 6905 6905 6920.25 0 0.028 6905 6951 0 2.398
Ftv55 56 1608 1610 1618.2 0.12 0.029 1608 1628.74 0 2.878
Ftv64 65 1839 1839 1938 0 0.041 1839 1861 0 5.241
P43 43 5620 5645 5698 0.44 0.065 5620 5620.65 0 0.997
Rbg323 323 1326 1326 1417.75 0 2.050 1335 1348 0.68 3874
Rbg358 358 1163 1187 1299.2 0.18 3.040 1166 1170.85 0.26 6825
Rbg403 403 2465 2467 2475 0.08 4.741 2465 2466 0 11137
Rbg443 443 2720 2723 2724 0.11 10.377 2720 2720 0 17126
Total — — — — 1.32 20.582 — — 0.94 38979.448
Opt� optimal values as recorded in TSPLIB; Best� best results obtained by a particular algorithm; Avg� average values obtained after 50 runs; Rel. er (%)�

relative error percentage; Time� time taken by the CPU to obtain results.

Computational Intelligence and Neuroscience 9

*e excellent performance of both algorithms is further
highlighted by the calculation of their cumulative relative
errors which is a measure of deviation from the optimal
solutions. *e cumulative relative error is obtained by
summing up the values of the relative errors for each ATSP
instance. *e cumulative relative error of the ABO is 1.32%
and that of RAI is 0.94%. *is is also a commendable
performance by the ABO in view of the fact that the RAI is a
pure heuristic designed primarily to solve the ATSP.

In evaluating the cost implications of obtaining results,
the uncommon strength of the ABO becomes outstanding in
all instances. It was only in Br17 that the RAI executed slightly
faster in 0.027 seconds to ABO’s 0.028 seconds. In the
remaining 14 instances, the ABO clearly outperformed the
RAI. For instance, while it took ABO 0.037 seconds to obtain
result in Ry48p, the RAI used 1.598 seconds. *is means that
the ABO was over 43.18% faster. *is trend continues
throughout the remaining ATSP instances under investiga-
tion. In fact, the ABO gets progressively faster as the number
of ATSP cities increases. Take, for instance, the two largest city
instances here which are Rbg403 and Rbg443, while ABO
used 4.741 and 10.377 seconds, respectively, the RAI used
11137 and 17126 seconds, respectively. *is shows the ABO
being over 2,349 and 1,650 times faster, respectively.

As was the case in the comparative performance of the
metaheuristics, it can be seen that the ABO outperformed
the heuristic algorithm, RAI. Someone may have observed
that speed is a function of the hardware configuration, the
programmers’ expertise, and a few other factors; never-
theless, an algorithm that has such a straightforward cal-
culation of fitness function and uses very few parameters will
undoubtedly obtain results faster than most other algo-
rithms. In all, aside from ABO’s capacity to obtain over
98.5% accuracy to RAI’s 99.06%, it took ABO a total of
20.582 seconds to to RAI’s 38979.448 seconds to execute all
the 15 instances under investigation.

6. Conclusion

*is study examined the solutions to the asymmetric
Travelling Salesman Problems using computational intelli-
gence techniques.*e computational intelligence techniques
used include African Buffalo Optimization algorithm
(ABO), Improved Extremal Optimization (IEO), Model-
Induced Max-Min Ant Colony Optimization (MIMM-
ACO), Max-Min Ant System (MMAS), and Cooperative
Genetic Ant System (CGAS), as well as the heuristic and
Randomized Insertion Algorithm. Experimental results
obtained from using these algorithms to solve the ATSP
reveal that the MIMM-ACO performed excellently
obtaining the optimal solutions to all test instances. How-
ever, it was discovered that, to obtain such an excellent
result, theMIMM-ACO sacrificed speed. It took theMIMM-
ACO 78.51 seconds to solve the 15 ATSP instance, while
another algorithm, the African Buffalo Optimization (ABO),
obtained 98.6% accuracy at 20.582 seconds. *e study,
therefore, concludes that since efficiency (speed), trust-
worthiness (accuracy), versatility, and ease of use are hall-
marks of a good computational intelligence methods [68]

and a number of experimental evaluations with focus on the
first two criteria, the ABO is adjudged a better algorithm for
solving the ATSP instances, followed by MIMM-ACO.

*e excellent performance of the MIMM-ACO is
traceable to two main factors. First, the algorithm’s ability to
replace static biased costs/weights in an ATSP with dynamic
ones is something other algorithms struggle to do. *is
ability stems from the algorithm’s use of partial solutions
sampling that each ant has constructed in course of the
search and then discarding less fruitful results while holding
on to the very best. Moreover, the MIMM-ACO’s use of the
assignment problem technique in discarding the nonoptimal
solutions from the list of available solutions is a major
advantage. Second, MIMM-ACO determines the final
output based on the most recent state of the pheromone
matrix and combines this using the patch algorithm to
micromanage the solutions obtained by the assignment
problem. Other algorithms find it hard to outperform the
MIMM-ACO’s hybridization of the assignment problem
with the patch. *is basically explains why the MIMM-ACO
results in ATSP remain one of the best over the years [63].

It is recommended that the other algorithms should be
fine-tuned to make them faster. Moreover, the authors
recommend the comparison of the performance of ABO
with other state-of-the-art algorithms in providing solutions
to other optimization problems such as knapsack problem,
graph coloring, and urban transport challenges in major
cities. Finally, in view of the relevance of the ATSP to our
every day activities, it is recommended that more research
efforts should be directed towards solving ATSP and its
practical applications in transportation, logistics, national
security architectural challenges, etc.

6.1. 1reats to Validity. As much as the algorithms in this
comparative study performed excellently well, it must,
however, be observed that good results are a function of the
programming language used for the study as well as the
machine used for the experiments. Moreover, the choice of
benchmark test cases could be a threat that the algorithms
performed well in these chosen benchmarks may not be a
guarantee that they will do well in other benchmarks. Again,
the choice of the comparative algorithms could be a threat
that these algorithms performed well against one another
may not guarantee their exceptional performance when
compared with other newer algorithms.

Finally, it is possible that the programming expertise of
our programmer as well as the programming language used
in implementing this study could have influenced our ex-
perimental output.

Data Availability

*e data used to support the findings of the study are
available within the article.

Conflicts of Interest

*e authors declare that they have no conflicts of interest
regarding the publication of this research article.

10 Computational Intelligence and Neuroscience

Acknowledgments

*is study was supported by Anchor University Lagos and
University Malaysia Pahang under RDU1903122. *e re-
searchers have fully acknowledged CREIM UniSZA, for the
publication support.

References

[1] H. Anandakumar, R. Arulmurugan, and C. C. Onn, Com-
putational Intelligence and Sustainable Systems, EAI/Springer
Innovations in Communication and Computing, New York,
NY, USA, 2019.

[2] W. Duch, What Is Computational Intelligence and where Is it
Going? Challenges For Computational Intelligence, pp. 1–13,
Springer, New York, NY, USA, 2007.

[3] J. B. Odili, “*e dawn of metaheuristic algorithms,” Inter-
national Journal of Software Engineering and Computer Sys-
tems, vol. 4, no. 2, pp. 49–61, 2018.

[4] F. Fotovatikhah, M. Herrera, S. Shamshirband, K.-W. Chau,
S. Faizollahzadeh Ardabili, and M. J. Piran, “Survey of
computational intelligence as basis to big flood management:
challenges, research directions and future work,” Engineering
Applications of Computational Fluid Mechanics, vol. 12, no. 1,
pp. 411–437, 2018.

[5] X. Gu, Z. Cao, A. Jolfaei et al., “EEG-based brain-computer
interfaces (BCIs): a survey of recent studies on signal sensing
technologies and computational intelligence approaches and
their applications,” 2020, http://arxiv.org/abs/2001.11337.

[6] F. Ahmad, Z. Mohammad, H. Hassan, A. N. M. Rose, and
D. Muktar, “Quadratic assignment approach for optimization
of examination scheduling,” Applied Mathematical Sciences,
vol. 9, no. 130, pp. 6449–6460, 2015.

[7] A. A. Mahmoud, M. Zarina, W. Nik, and F. Ahmad, “Multi-
criteria strategy for job scheduling and resource load bal-
ancing in cloud computing environment,” Indian Journal of
Science and Technology, vol. 8, no. 30, pp. 1–5, 2015.

[8] J. B. Odili, A. Noraziah, and A. E. Babalola, “Flower polli-
nation algorithm for data generation and analytics-a diag-
nostic analysis,” Scientific African, vol. 8, p. e00440, 2020.

[9] O. B. Sezer, A. M. Ozbayoglu, and E. Dogdu, “An artificial
neural network-based stock trading system using technical
analysis and big data framework,” in Proceedings of the
Southeast Conference, New York, NY, USA, April, 2017.

[10] I. Millington and J. Funge, Artificial Intelligence for Games,
CRC Press, Boca Raton, FL, USA, 2016.

[11] J. Odili, M. N. M. Kahar, A. Noraziah, and
S. F. Kamarulzaman, “A comparative evaluation of swarm
intelligence techniques for solving combinatorial optimiza-
tion problems,” International Journal of Advanced Robotic
Systems, vol. 14, no. 3, p. 1729881417705969, 2017.

[12] O. L. Q. Montoya and J. G. Paniagua, “From artificial in-
telligence to deep learning in bio-medical applications,” Deep
Learners and Deep Learner Descriptors For Medical
Applications, pp. 253–284, Springer, New York, NY, USA,
2020.

[13] J. B. Odili, M. N. M. Kahar, A. Noraziah, M. Zarina, and
R. U. Haq, “Performance analyses of nature-inspired algo-
rithms on the traveling salesman’s problems for strategic
management,” Intelligent Automation & Soft Computing,
pp. 1–11, 2017.

[14] W. Deng, J. Xu, Y. Song, and H. Zhao, “Differential evolution
algorithm with wavelet basis function and optimal mutation

strategy for complex optimization problem,” Applied Soft
Computing, vol. 100, p. 106724, 2020.

[15] A. E. Babalola, B. A. Ojokoh, and J. B. Odili, “A review of
population-based optimization algorithms,” in Proceedings of
the 2020 International Conference in Mathematics, Computer
Engineering and Computer Science (ICMCECS), Ayobo,
Nigeria, March 2020.

[16] A. Prakasam and N. Savarimuthu, “Metaheuristic algorithms
and probabilistic behaviour: a comprehensive analysis of ant
colony optimization and its variants,” Artificial Intelligence
Review, vol. 45, pp. 97–130, 2015.

[17] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, and
R. Carballedo, “An improved discrete bat algorithm for
symmetric and asymmetric traveling salesman problems,”
Engineering Applications of Artificial Intelligence, vol. 48,
pp. 59–71, 2016.

[18] M. N. Özişik, H. R. Orlande, M. J. Colaço, and R. M. Cotta,
Finite Difference Methods in Heat Transfer, CRC Press, Boca
Raton, FL, USA, 2017.

[19] A. Shakya, M. Mishra, D. Maity, and G. Santarsiero,
“Structural health monitoring based on the hybrid ant colony
algorithm by using Hooke–Jeeves pattern search,” SN Applied
Sciences, vol. 1, no. 7, pp. 1–14, 2019.

[20] M. Abdel-Basset, R. Mohamed, and S. Mirjalili, “A novel
whale optimization algorithm integrated with Nelder–Mead
simplex for multi-objective optimization problems,” Knowl-
edge-Based Systems, vol. 212, p. 106619, 2020.

[21] H. K. Tung, D. C. Lai, M. Wong, and S. NG, “New-
ton–Raphson Method,” in Professional Financial Computing
Using Excel and VBA, pp. 59–66, Wiley, Hoboken, NJ, USA,
2010.

[22] J. B. Odili and M. N. M. Kahar, “African buffalo optimization
(ABO): a new meta-heuristic algorithm,” Journal of Advanced
& Applied Sciences, vol. 3, no. 3, pp. 101–106, 2015.

[23] L. Jian, C. Youling, W. Long, Z. Lidan, and N. Yufei, “An
approach for service composition optimisation considering
service correlation via a parallel max-min ant system based on
the case library,” International Journal of Computer Integrated
Manufacturing, vol. 31, no. 12, pp. 1174–1188, 2018.

[24] J. Bai, G.-K. Yang, Y.-W. Chen, L.-S. Hu, and C.-C. Pan, “A
model induced max-min ant colony optimization for asym-
metric traveling salesman problem,” Applied Soft Computing,
vol. 13, no. 3, pp. 1365–1375, 2013.

[25] G. Dong, W. W. Guo, and K. Tickle, “Solving the traveling
salesman problem using cooperative genetic ant systems,”
Expert Systems with Applications, vol. 39, no. 5, pp. 5006–
5011, 2012.

[26] J. B. Odili, M. N. M. Kahar, S. Anwar, and M. A. K. Azrag, “A
comparative study of African buffalo optimization and ran-
domized insertion algorithm for asymmetric travelling
salesman’s problem,” in Proceedings of the 2015 4th Inter-
national Conference on Software Engineering and Computer
Systems (ICSECS), Kuantan, Malaysia, August 2015.

[27] Y.-W. Chen, Y.-J. Zhu, G.-K. Yang, and Y.-Z. Lu, “Improved
extremal optimization for the asymmetric traveling salesman
problem,” Physica A: Statistical Mechanics and Its Applica-
tions, vol. 390, no. 23-24, pp. 4459–4465, 2011.

[28] J. Li and Y. Tan, “Information utilization ratio in heuristic
optimization algorithms,” 2016, http://arxiv.org/abs/1604.
01643.

[29] M. Salehi, H. R. Maleki, and S. Niroomand, “Solving a new
cost-oriented assembly line balancing problem by classical
and hybrid meta-heuristic algorithms,” Neural Computing
and Applications, vol. 32, no. 12, pp. 8217–8243, 2020.

Computational Intelligence and Neuroscience 11

http://arxiv.org/abs/2001.11337
http://arxiv.org/abs/1604.01643
http://arxiv.org/abs/1604.01643

[30] J. B. Odili, M. N. M. Kahar, and S. Anwar, “African buffalo
optimization: a swarm-intelligence technique,” Procedia
Computer Science, vol. 76, pp. 443–448, 2015.

[31] C. Blum and A. Roli, “Metaheuristics in combinatorial op-
timization: overview and conceptual comparison,” ACM
Computing Surveys, vol. 35, no. 3, pp. 268–308, 2003.

[32] N. Abreu, M. Ajmal, Z. Kokkinogenis, and B. Bozorg, “Ant
colony optimization,” Technical Report, University of Porto,
Porto, Portugal, 2011.

[33] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony
algorithm for numerical function optimization,” Applied
Mathematics and Computation, vol. 217, no. 7, pp. 3166–3173,
2010.

[34] Intelligence, S.. (2013). Particle Swarm Optimization.
McCaffrey, James.[online].[cit. 2014-05-20]. Dostupné z:
http://msdn.microsoft.com/en-us/magazine/hh335067.aspx.

[35] A. E. Babalola, B. A. Ojokoh, and J. B. Odili, “African buffalo
optimization algorithm for personalized diet optimization,” in
Proceedings of the 2020 International Conference in Mathe-
matics, Computer Engineering and Computer Science
(ICMCECS), Ayobo, Nigeria, March 2020.

[36] A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, G. Tian, and
Z. Li, “An adaptive Lagrangian relaxation-based algorithm for
a coordinated water supply and wastewater collection net-
work design problem,” Information Sciences, vol. 512,
pp. 1335–1359, 2020.

[37] J. Brest and J. Zerovnik, “A heuristic for the asymmetric
traveling salesman problem,” in Proceedings of the 6th Met-
aheuristics International Conference, Vienna, Austria, August
2005.

[38] T. Lai, R. Chen, C. Yang et al., “Efficient robust model fitting
for multistructure data using global greedy search,” IEEE
Transactions on Cybernetics, vol. 50, no. 7, pp. 3294–3306,
2019.

[39] E. Yolcu and B. Póczos, “Learning local search heuristics for
boolean satisfiability,” in Proceedings of the Advances in
Neural Information Processing Systems, Vancouver, Canada,
December 2019.

[40] Q.-K. Pan, L. Gao, L. Wang, J. Liang, and X.-Y. Li, “Effective
heuristics and metaheuristics to minimize total flowtime for
the distributed permutation flowshop problem,” Expert Sys-
tems with Applications, vol. 124, pp. 309–324, 2019.

[41] M. A. H. Akhand, S. I. Ayon, S. A. Shahriyar, N. Siddique, and
H. Adeli, “Discrete spider monkey optimization for travelling
salesman problem,” Applied Soft Computing, vol. 86,
p. 105887, 2020.

[42] J. Li, X. Meng, and X. Dai, “Collision-free scheduling of multi-
bridge machining systems: a colored traveling salesman
problem-based approach,” IEEE/CAA Journal of Automatica
Sinica, vol. 5, no. 1, pp. 139–147, 2017.

[43] E. Pesch and K. A. Kuzmicz, “Non-approximability of the
single crane container transhipment problem,” International
Journal of Production Research, vol. 58, no. 13, pp. 3965–3975,
2020.

[44] U. Boryczka and K. Szwarc, “An effective hybrid harmony
search for the asymmetric travelling salesman problem,”
Engineering Optimization, vol. 52, no. 2, pp. 218–234, 2019.

[45] A. C. Cinar, S. Korkmaz, and M. S. Kiran, “A discrete tree-
seed algorithm for solving symmetric traveling salesman
problem,” Engineering Science and Technology, an Interna-
tional Journal, vol. 23, no. 4, pp. 879–890, 2020.

[46] P. Baniasadi, M. Foumani, K. Smith-Miles, and V. Ejov, “A
transformation technique for the clustered generalized trav-
eling salesman problem with applications to logistics,”

European Journal of Operational Research, vol. 285, no. 2,
pp. 444–457, 2020.

[47] D.-S. Jang, H.-J. Chae, and H.-L. Choi, “Optimal control-
based UAV path planning with dynamically-constrained TSP
with neighborhoods,” in Proceedings of the 2017 17th Inter-
national Conference on Control, Automation and Systems
(ICCAS), Jeju, Korea, October 2017.

[48] K. Kastampolidou, C. Papalitsas, and T. Andronikos,
“DKPRG or how to succeed in the kolkata paise restaurant
gamevia TSP,” 2021, http://arxiv.org/abs/2101.07760.

[49] Y. Wang, Q. Zhu, X.-O. Song, H. Huang, and Q. Yang,
“Research on logistics distribution model of E-commerce
based on improved ant colony algorithm,” in Proceedings of
the International Conference on Innovative Mobile and In-
ternet Services in Ubiquitous Computing, Lodz, Poland, July
2020.

[50] J. Long, W. Sun, Z. Yang, and O. I. Raymond, “Asymmetric
residual neural network for accurate human activity recog-
nition,” Information, vol. 10, no. 6, p. 203, 2019.

[51] S. Basu, M. Sharma, and P. S. Ghosh, “Efficient preprocessing
methods for tabu search: an application on asymmetric
travelling salesman problem,” INFOR: Information Systems
and Operational Research, vol. 55, no. 2, pp. 134–158, 2017.

[52] F. Amini and G. Hu, “A two-layer feature selection method
using genetic algorithm and elastic net,” Expert Systems with
Applications, vol. 166, p. 114072, 2021.

[53] S.-W. Lin, C.-Y. Cheng, P. Pourhejazy, and K.-C. Ying,
“Multi-temperature simulated annealing for optimizing
mixed-blocking permutation flowshop scheduling problems,”
Expert Systems with Applications, vol. 165, p. 113837, 2020.

[54] Z. B. Imtiaz, A. Manzoor, S. U. Islam, M. A. Judge,
K.-K. R. Choo, and J. J. P. C. Rodrigues, “Discovering
communities from disjoint complex networks using multi-
layer ant colony optimization,” Future Generation Computer
Systems, vol. 115, pp. 659–670, 2021.

[55] D. Sedighizadeh, E. Masehian, M. Sedighizadeh, and
H. Akbaripour, “GEPSO: a new generalized particle swarm
optimization algorithm,” Mathematics and Computers in
Simulation, vol. 179, pp. 194–212, 2021.

[56] J. B. Odili, M. N. M. Kahar, and A. Noraziah, “Convergence
analysis of the African buffalo optimization algorithm,” In-
ternational Journal of Simulations: Systems, Science and
Technology, vol. 17, no. 44, pp. 44–41, 2016.

[57] J. B. Odili and J. O. Fatokun, “*e mathematical model,
implementation and the parameter-tuning of the African
buffalo optimization algorithm,” in Proceedings of the 2020
International Conference in Mathematics, Computer Engi-
neering and Computer Science (ICMCECS), Ayobo, Nigeria,
March 2020.

[58] J. B. Odili, M. N. M. Kahar, A. Noraziah, and E. A. Odili,
“African buffalo optimization and the randomized insertion
algorithm for the asymmetric travelling salesman’s problems,”
Journal of 1eoretical and Applied Information Technology,
vol. 87, no. 3, p. 356, 2016.

[59] P. Singh, N. K. Meena, A. Slowik, and S. K. Bishnoi, “Modified
African buffalo optimization for strategic integration of
battery energy storage in distribution networks,” IEEE Access,
vol. 8, pp. 14289–14301, 2020.

[60] R. Skinderowicz, “Implementing a GPU-based parallel MAX-
MIN ant system,” Future Generation Computer Systems,
vol. 106, pp. 277–295, 2020.

[61] X. Zhao, J.-N. Hwang, Z. Fang, and G.Wang, “Gradient-based
adaptive particle swarm optimizer with improved extremal

12 Computational Intelligence and Neuroscience

http://msdn.microsoft.com/en-us/magazine/hh335067.aspx
http://arxiv.org/abs/2101.07760

optimization,” Applied Intelligence, vol. 48, no. 12,
pp. 4646–4659, 2018.

[62] M. Najafi and H. Dashti-Naserabadi, “Statistical investigation
of avalanches of three-dimensional small-world networks and
their boundary and bulk cross-sections,” Physical Review E,
vol. 97, no. 3, p. 032108, 2018.

[63] S. Rajappan and D. Rangasamy, “Estimation of incomplete
values in heterogeneous attribute large datasets using dis-
cretized Bayesian max-min ant colony optimization,”
Knowledge and Information Systems, vol. 56, no. 2, pp. 309–
334, 2018.

[64] S. Das and M. K. Debbarma, “CHPT: an improved coverage-
hole patching technique based on tree-center in wireless
sensor networks,” Journal of Ambient Intelligence and Hu-
manized Computing, 2020.

[65] K. Liu, L. Li, A. Koyuncu et al., “A critical review on the
evaluation of automated program repair systems,” Journal of
Systems and Software, vol. 171, p. 110817, 2021.

[66] G. Reinelt, “TSPLIB-A traveling salesman problem library,”
ORSA Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[67] T. Ting, X.-S. Yang, S. Cheng, and K. Huang, “Hybrid met-
aheuristic algorithms: past, present, and future,” Recent Ad-
vances in Swarm Intelligence and Evolutionary Computation,
pp. 71–83, Springer, New York, NY, USA, 2015.

[68] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky, “A nu-
merical evaluation of several stochastic algorithms on selected
continuous global optimization test problems,” Journal of
Global Optimization, vol. 31, no. 4, pp. 635–672, 2005.

Computational Intelligence and Neuroscience 13

