
Received March 28, 2021, accepted April 22, 2021, date of publication April 29, 2021, date of current version May 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3076716

A Selective Mitigation Technique of Soft Errors
for DNN Models Used in Healthcare Applications:
DenseNet201 Case Study
KHALID ADAM 1, IZZELDIN IBRAHIM MOHAMED1, AND YOUNIS IBRAHIM 2
1College of Engineering, University Malaysia Pahang, Kuantan 26300, Malaysia
2College of IoT Engineering, Hohai University, Changzhou 213022, China

Corresponding author: Khalid Adam (khalidwsn15@gmail.com)

This work was supported by Universiti Malaysia Pahang, through the UMP internal under Grant RDU1903149.

ABSTRACT Deep neural networks (DNNs) have been successfully deployed in widespread domains,
including healthcare applications. DenseNet201 is a new DNN architecture used in healthcare systems (i.e.,
presence detection of the surgical tool). Specialized accelerators such as GPUs have been used to speed
up the execution of DNNs. Nevertheless, GPUs are prone to transient effects and other reliability threats,
which can impact DNN models’ reliability. Safety-critical systems, such as healthcare applications, must
be highly reliable because minor errors might lead to severe injury or death. In this paper, we propose
a selective mitigation technique that relies on in-depth analysis. First, we inject the DenseNet201 model
implemented on a GPU via NVIDIA’s SASSIFI fault injector. Second, we perform a comprehensive analysis
from the perspective of kernel and layer to identify the most vulnerable portions of the injected model.
Finally, we validate our technique by applying it to the top-vulnerable kernels to selectively protect the
only sensitive portions of the model to avoid unnecessary overheads. Our experiments demonstrate that
our mitigation technique achieves a significant reduction in the percentage of errors that cause malfunction
(errors that lead to misclassification) from 6.463% to 0.21%. Moreover, the performance overhead (the
execution time) of our technique is compared with the well-known protection techniques: Algorithm-Based
Fault Tolerance (ABFT), Double Modular Redundancy (DMR), and Triple Modular Redundancy (TMR).
The proposed solution shows only 0.3035% overhead compared to these techniques while correcting up
84.8% of the SDC errors in DenseNet201, remarkably improving the healthcare domain’s model reliability.

INDEX TERMS Convolutional neural networks, DenseNet201, healthcare, GPUs, soft error, reliability.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) became prominent
following the study conducted by LeCuN, where it was used
to process grid-like data of images and time series [1]. Since
then, CNNs have been observed to be among the most pre-
ferred approaches that may be used to understand images’
content. CNNs are a special type of Deep Neural Networks
(DNNs), which have shown state-of-the-art results on many
competitive benchmarks. In fact, reports have revealed that
DNNs present highly desirable outcomes when used for tasks
such as image recognition [2], segmentation [3], detection
[4], as well as retrieval. Based on this, the interests in DNNs
have extended beyond academia. Specifically, DNNs are now

The associate editor coordinating the review of this manuscript and
approving it for publication was Shen Yin.

extensively applied in healthcare applications such as auto-
matic recognition of surgical [5], pathological brain detection
[6], and robotic surgery (e.g., Da Vinci) [7], amongmany oth-
ers. Due to the massive parallelism structure, DNNs require
high computational capabilities such as Graphics Processing
Units (GPUs) [8].

Consequently, graphics processing units (GPUs) are
extensively used nowadays in DNN models to over-
come the inherent computational challenges of healthcare
applications [9]–[11]. Interestingly, computation through
GPU has offered impeccable advantages over other accel-
erators [12]. Notwithstanding, there are specific GPU units
that, if exposed to soft errors, can disrupt the reliability of the
GPU operations; these units include memory elements such
as register file and logic resources such as Arithmetic Logic
Units (ALUs) [13]. Hence, when using GPUs in healthcare,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 65803

https://orcid.org/0000-0001-6232-7154
https://orcid.org/0000-0001-9055-4450


K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

it is crucial to ensure that potential data corruption is avoided
and failure rates must be reduced to the minimum [13].
For instance, Food and Drug Administration (FDA) reported
that 1078 of the adverse events (10.1%) were unintended
errors (soft errors) that happened, including 52 injuries and
two deaths [14]. To the best of our knowledge, none of the
previous studies considered the reliability of the healthcare
system that was affected by soft errors in their analysis,
and none of them assessed the risk of adverse events across
different healthcare applications and their impact. The worse
behavior of these errors is that they occur without stopping
the program, but the output will be different once the program
is finished. Therefore, it becomes vital to evaluate the DNN
models’ resilience that runs on the GPU [15].

Although several studies [16], [8], [17], [18], [17] have
evaluated and analyzed the reliability of DNN models,
and many techniques have been proposed to mitigation
the soft errors in GPUs based on software solutions.
For instance, Triple Modular Redundancy (TMR), Double
Modular Redundancy (DMR), and Algorithm-Based Fault
Tolerance (ABFT). Firstly, these techniques produce high
runtime overheads. Secondly, the behavior and workflows of
the vast majority of DNNs architectures are different. Thirdly,
these DNNs are utilized on a broad range of accelerators, all
of which have different components and peculiar execution
flows. Thus, it is not easy to directly apply a specific DNN’s
case to solve other architectures [15]. In this paper, the DNNs
model’s reliability (DenseNet201) run on GPU was analyzed
by extensive fault-injection campaigns that were carried out
on the GPU to examine its reliability. The main contributions
are as follows:

• An extensive analysis of DenseNet201 characteristics
under soft errors (SASSIFI fault-injection).

• Thorough analysis of SDCs (i.e.,Malfunction and Light-
Malfunction) errors in the kernels of DenseNet201 to
determine the vulnerable part of the model.

• Development of selective-based mitigation solu-
tion for the DNNs model and validating it with
DenseNet201.

• Comparing the proposed technique’s performance over-
head with three protection techniques: ABFT, DMR, and
TMR is carried.

The remainder of this paper is organized as follows.
Section II discusses motivation and related work to show
the key concepts of DNN reliability and how our work is
different. Section III presents DenseNet201, DNNs accel-
erators used in the healthcare system, and soft errors in
GPUs. Section IV describes the dataset and training results.
Section V provides the experimental setup. Section VI, dis-
cusses results and analyzes the resilience of DenseNet201.
Section VII introduces the proposed solution and its vali-
dation. Section VIII performs overhead comparisons of our
selective mitigation technique with other techniques. Finally,
Section XI presents conclusions and outlines directions for
future research.

II. MOTIVATION AND RELATED WORK
The authors’ motivation to analyze the DNNmodels’ reliabil-
ity and the available techniques tomitigate the soft error prob-
lems is based on various factors. Firstly, even though several
studies have addressed the reliability under soft errors, none
of the studies focused on analyzing the impact of resilience
error in DenseNet201 on the GPU. Secondly, DNN models’
reliability depends on many factors such as the network
topology, layers positions, and layers number [8]. For exam-
ple, we analyze DenseNet201, which has 201 convolutional
layers, 98 route layers, one avg pooling, 4 max-pooling, and
Softmax. Thirdly, as healthcare applications (i.e., presence
detection of the surgical tool) are safety-critical systems, they
should be highly reliable because small errors might lead to
serious injury or death [19]. Besides, it is well known that
the reliability of the system/device refers to the resilience of
such devices against vulnerabilities to faults in the electronic
components. As such, failures are generally rare and are
easily ignored for typical applications. However, for safety-
critical applications such as presence detection of surgical
tools in the operations, it is vital to consider the role of the
underlying soft errors in system reliability [7], [20].

Therefore, in this contribution, previous studies on the
reliability of DNN models were reviewed. Specifically,
we addressed the DNNs reliability via DNN accelerators
under soft errors. Very comprehensive work is presented
by Beibei et al. [21]. They proposed a novel modulated
anchoring network to detection surgery tools, and the network
evaluated on the m2cai16 dataset. However, the authors ver-
ified the reliability by asked experts to manually assess the
performance.

Santos et al. [16] analyzed three CNN architectures:
YOLO, Fast R-CNN, and ResNet. However, YOLO and Fast
R-CNN are object detection models, while ResNet is an
image classification model. Although detection and classifi-
cation are wildly different in their structures and workflows,
the authors only analyzed the YOLO structure. Thus, they
studied the ResNet (classification) model only by measuring
the Precision and Recall of the corrupted output, without get-
ting insights on how errors propagate through ResNet’s layers
or kernels. In our work, we studied the classification model
(DenesNet201) in detail. One of the main differences is that
there are Normalize layers in the DeseNet201 model, which
are among the most vulnerable layers in our analysis, while
these layers do not even exist in YOLO and Fast R-CNN.
Moreover, in our study, we make a comprehensive analysis
of the DensNet201 reliability, including Layers vulnerability
analysis and Kernels vulnerability.

Santos et al. [22] studied two object detection systems,
Histogram of Oriented Gradients (HOG) and You Only Look
Once (YOLO). The concept of KVF is employed in HOG,
while LVF for YOLO. The difference is that HOG has no
layer in its structure because it is not a CNN-based algorithm,
while YOLO does. However, the KVF concept has not been
considered for YOLO. However, the authors stated, "We pro-
posed a smart layer duplication that detects more than 90%

65804 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

of errors, with an overhead lower than 60%." Consequently,
their hardening strategy for CNN-based models is to harden
the entire layer. In our work, on the other hand, we analyze
DenseNet201’s layers to identify the most vulnerable ones.
Then within each layer, we analyze its kernels to deter-
mine the most vulnerable kernels. Thus, we apply the TMR
approach to the kernels of the CNN-based models.

Islam et al. [23] put forward an approach to separate
surgical instruments from high-resolution videos generated
through a commercial robotic system (Da Vinci robot), based
on a cascaded lightweight CNN. It is evident from the study
reports that the proposed technique is suitable for use in tissue
segmentation because the approach is significantly enhanced
for the segmentation of robotic instruments. Nevertheless,
the reliability of the approach was not considered. Based
on the study by Li et al. [8], most of the important DNNs
related concepts have been comprehensively analyzed, and it
provides an in-depth understanding of the generation of errors
in contemporary DNN systems. Information gathered from
the study revealed that several factors could influence the
reliability of DNNs. Notable among these factors are network
topology, data types, positions, data reuses, layers numbers,
and values. Four CNN architectures, including NiN, AlexNet,
ConVet, and CaffeNet, were used in the study to discuss
the issues of reliability in CNN models. However, an ASIC
design, Eyeriss, a specific DNN accelerator, was used [24],
But in real terms, the fault response/sensitivity of DNN accel-
erators differs. Therefore, there are two notable differences
between their work and ours. Firstly, ASIC was used as the
DNN accelerator in their study, whereas GPU is used in this
current study. Secondly, a contemporary CNN architecture,
which is much deeper (i.e., DenseNet201), is used in this
present study.

In a more recent and closely related work by
Y. Ibrahim et al. [15], the reliability of CNN (ResNet) on
the GPUs was investigated. This study focuses on model
depth. Thus, the authors mainly intended to determine the
impact of using a component in a radioactive environment
for a longer time for three ResNet models. Nevertheless,
the authors do not study the critical SDC errors in each
kernel. However, in our study, we perform the following
studies (i) a modern and much deeper CNN architecture
(DenseNet201) is analyzed, and (ii) the error propagation in
DenseNet201 is studied in order to determine the critical error
(i.e., Malfunction) within each kernel of the model. Another
essential point is that injecting faults into the ResNet model
provokes its Residual layers, significantly impacting their
resiliencemore than the other layers, compared to route layers
in DenseNet201 do not generate errors. Table 1 presents
a summary of related studies concerning their focus and
findings compared to this research paper.

As presented in Table 1, it is evident that most of the related
previous studiesmainly concentrated on the accuracy of DNN
models in healthcare applications. In contrast, the reliability
of DNN-based on healthcare systems is rarely investigated.
Two studies out of works reviewed in Table 1 have presented

close work to ours. Nevertheless, we still can tell what makes
our work unique in a few sentences. First, the authors in [16]
studied the only classification model (ResNet) in their paper
only by measuring the Precision and Recall of the corrupted
output, without getting insights into how errors propagate
among ResNet’s layers or kernels. This can be seen in the
reason why Santos et al. considered ‘‘error propagation anal-
ysis’’ in their study, while the ResNet model was excluded.
The difference is that the authors adopted algorithm-based
fault-tolerance (ABFT), which is a hardening strategy for
Matrix Multiplication (MxM). This means that ABFT only
protects the MxM of the convolution layer while leaving out
other layers, such asNormalize layer, which is one of themost
vulnerable layers in modern CNN models.

Secondly, the authors in [15] focused on analyzing and
evaluating error resilience in the three ResNet models.
Although this study is also CNN-based, the ResNet has a
very different architecture than DenseNet due to the Residual
module. Moreover, this study focuses more on the impact
of the model’s depth, analyzing ResNet-50, ResNet-101,
and ResNet-152. Therefore, this necessitates further studies,
especially considering that the programming models used
with GPU are very different, which can significantly influ-
ence the propagation of error in GPU-based DNN models.
In other words, one cannot generalize a specific DNN’s reli-
ability case to other architectures. Besides, the behavior of
soft errors in DNN models under GPU is highly application-
specific [25]. However, this has not been considered by the
previous studies. Herein, an empirical study was performed
to figure out and characterize the propagation of error in the
DNN model (DenseNet201). Specifically, a fault-injection
was performed to the GPU applications to track the propa-
gation of error in DenseNet201 easily. Then the reliability of
the model under soft error propagation in GPUwas evaluated.
However, to the best of the authors’ knowledge, this present
study is the first to analyze the reliability of the classification
model (DenseNet201) implemented on aGPU and investigate
the emergence of misclassifications as a result of soft errors.

III. BACKGROUND
This section provides a brief background on the reliability
of CNNs in healthcare applications, the DenseNet201 model,
GPUs’ architecture, and soft errors in GPUs and their impact
on the application execution.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
The CNN technique is the most commonly used approach
for Deep Learning (DL). Recently, they have been more
commonly used in healthcare applications such as scanning,
diagnosing, generating reports, and treating various diseases
[26]–[30]. By using CNNs, these complex healthcare applica-
tions would be incorporated into the network, thereby acting
as trainable feature extractors with some extent of scale, shift,
as well as deformation invariance [19]. One of the major
layers in this technique is the convolutional layer. The other
two layers include the subsampling layer, which is optional,

VOLUME 9, 2021 65805



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

TABLE 1. Summary of related studies.

and the fully connected layers. The arrangement of these
layers is in a feed-forward fashion [31].

The most notable architectures of the CNN technique are
ResNet [32], VGGNet [33], GoogLeNet [34], AlexNet [35],
and DenseNet201 [36]. Considering the safety-critical nature
of the healthcare sector, applications used in healthcare must
have high reliability. This is mainly because even small errors
might lead to serious injury or death, as reported by the Food
and Drug Administration (FDA) department [14].

B. DenseNet201
Dense Convolutional Network (DenseNet201) is a new
deep CNNs architecture proposed by Huang et al. [36].
DenseNet201 present state-of-art CNNs is notable for
its astonishing performance in benchmark tasks such as
CIFAR-100 and ImageNet, which require competitive object
recognition. Recent studies have shown that DenseNet is
useful in healthcare applications such as diagnosis [37],
medical image [39], anatomical Brain segmentation [39],
and surgical [39] as it is considerably more accurate with

fewer parameters. This model’s performance hinged mainly
on its ability to offer better parameters and training efficiency
through the reuse of features. This is achieved by concerting
preceding feature-maps that have been generated by previous
layers and incorporating them into the successive layer. By so
doing, it becomes possible for the feature-maps generated
by previous layers to be easily accessed by the network
deep layers so that the features can be reused, as illustrated
in Figure 1. Hence, for operation with several layers equal to
Xl, all feature-maps in preceding layers (X0,..., Xl− 1) can
project the feature-maps in the lth layer (Xl) as follows:

Xl = Hl([X0, . . . ,Xl − 1]) (1)

where [X0, . . . , Xl − 1] respectively represents the feature-
maps in the 0th, . . . , l− 1th layer. The function, Hl(·),
represents a composite function of three operations, which
comprises the convolution (Conv), batch normalization (BN),
and a rectified linear unit (ReLU). In conventional deep
CNNs, the convolutional layers usually precede down-
sampling layers, which reduce the height and width of

65806 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 1. DenseNet201 architecture [37].

feature-maps by 50%.As a result of this, it would be challeng-
ing to concatenate feature-maps before downsampling layers
and, subsequently, size differences. In order to overcome this
challenge, craftily constructed dense blocks were made, with
subsequent down-sampling layers, while dense block layers
are densely linked. Based on this, there would be no change
in the sizes of dense block feature-maps; howbeit they would
have been reduced by half after down-sampling.

Therefore, taking the case of a dense block that comprises
L layers, the overall number of directly linked layers is
L(L+ 1)/2. On the contrary, in a convolutional network with
L convolution layers, the number of connections is only L.
However, there is a concurrent increase in the number of
concatenated feature-maps of the successive layer as layers
become deep. If constraints are not placed on the continu-
ing growth in the number of feature-maps, there could be a
disaster emanating from enormous computation expenditure.
Therefore, the number of freshly generated feature-maps in
each layer is controlled by designing the growth rate k. Due
to this, in operation with an l number of layers, the lth layer
in the dense block will have a total of k x (l−1)+ k0 feature-
maps where k0 represents the number of input channels in the
dense block.

DenseNet201 is made from four dense blocks consisting
of 305 layers; each of these layers has one or more than
one kernel. The process of generating new feature-maps and
concatenating in blocks of DenseNet20 involves applying a
convolutional (1 × 1 Conv, 3 × 3 Conv), where the filters
are used 128 and 32 respectively with fixed input and output
in each block started from 64 × 64, in the first block until
reached 8 × 8 in the last block. Then, the Route layer only
takes the preceding layers’ results without processing to the
next layer, followed by ReLU activation. Then, transition
layers between two adjacent blocks, which do convolutional

and Max-pooling (1 × 1 Conv., 2 × 2 Max), reduce feature
maps’ sizes. There will be a continuous repetition of this
structure until just prior to the classifier, with a growth rate of
feature-maps in each block1, block2, block3, and block4 are
[6], [12], [47], [31] respectively. Then, the classification layer
has a fully-connected (FC) layer that performs seven classes,
followed by global average pooling, and finally, a softmax
classifier is attached, as illustrated in Figure 2.

Furthermore, DenseNet201 consists of several types of lay-
ers that facilitate computation. Once the DenseNet algorithm
is executed on the GPU, each layer will be composed of
several kernels. There is vast diversity among these kernels,
ranging from the required memory to the volume of instruc-
tions consisted of the kernels to the time required for their
execution. DenseNet201 kernels pairs and their respective
CNN architecture layers based on the Darknet framework
are collected. To give an in-depth analysis of how different
kernels have different vulnerability levels to soft errors and
how they contribute to the final output of the model (i.e.,
classification of the objects), we need to find out all the
static kernels needed for this task. Also, the kernels used for
inferencing are considered. This means we do not include
kernels used for training.

Notably, in Table 2, ten kernels each have a specific
task during the model’s execution computations. These ten
kernels as follows: Im2col_gpu kernel represents the first
step in transforming a convolutional operation to a matrix-
multiplication operation, which is used in the original Caffe’s
convolution to perform matrix-type multiplications. This is
achieved through the layout of all the patches and filters
into matrices. Also, the Forward_avgpool kernel performs
down-sampling in their corresponding layers. The For-
ward_maxpool kernel is usually placed after the Convolu-
tional layer. The utility of the pooling layer is to reduce
the spatial dimension of the input volume for the next lay-
ers. Add_bias kernel is used in convolutional or in fully-
connected operations (layers) to add biases to the necessary
parameters after the matrix multiplication in the learning pro-
cess. Scale_bias kernel for dividing the input by its standard
deviation to have a variance of approximately. Normalize
kernel performs the normalization task for the GPU input.
Copy kernel is for Normalize layers to feed the GPU buffer
with the input, filters, and biases before the computations
task. Activation_array, this kernel applies nonlinearity to
the feature maps to reduce the input linearity for the next
layer. Fill kernel to fill the GPU buffer with image data
(our input), weights (filters), and biases, and this is before
any computations are performed. It should be noted that the
Softmax kernel has very few CUDA instructions; thus, the
execution time on the GPU is limited. Therefore, softmax not
affected by fault injection.

C. DNNs ACCELERATORS USED IN HEALTHCARE SYSTEM
Besides the complex implementation processes involved in
CNNs architecture, it is also generally accompanied by long
training time. As such, due to the very high compute and

VOLUME 9, 2021 65807



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 2. The structure of DenseNet201 after the transfer learning.

data-intensive nature of CNN, it might require quite many
days or weeks to complete training involving large data
sets. Furthermore, to implement CNN in healthcare appli-
cations such as screening, diagnoses, and treatment, DNN
accelerators are required to execute these modes. These

TABLE 2. DenseNet201 inference kernels and their corresponding layers.

DNNs accelerators are a wide range, including Graphics
Processing Units (GPUs), Tensor Processing Units (TPUs),
and FPGA.

Notably, the comparatively low data transfer and an enor-
mous amount of floating-point operations in each training
step make the GPU more suitable for this task [40], [9].
GPUs’ most significantly desirable characteristic feature is
the comparatively low cost associatedwith their high efficien-
cies towards computation. This is basically attributed to its
densely parallel architecture [41]. In modern times, GPUs are
generally saddled with broad-range computing responsibili-
ties through Compute Unified Device Architecture (CUDA).
Generally, the numbers of streaming multiprocessors (SM)
differ between GPUs. Hence, each SM has an N number
of streaming processor cores (SPs), and variables from the
resident register and memories are accessible to each thread.
Therefore, variables that are regularly accessed are saved in
registers because registers have a large bandwidth.

As illustrated in Figure 3, it is evident that GPU has
peculiar control logic, including dispatcher and internal
blocks scheduler, which helps to designate the kernels. Also,
the PCI-E connecter serves as a link between it and the
systems’ memory to enable accessible data transferring [42].
The parallelism in GPUs is accrued to the presence of SMs,
each of which can complete only a single thread in a clock
cycle, using registers that are designated for such tasks in
the file register [43]. Therefore, there is a close relation-
ship between GPUs’ significantly high performance and the
enormous on-chip parallelism, making it highly suitable for
DNN algorithms such as DenseNet201. This is the main
reason why NVIDIA and other manufacturers that produce
gigantic GPUs often ensure deep learning by setting aside
particular architectures of their GPUs to facilitate processes

65808 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 3. Basic GPU architecture.

such as training and inference. Consequently, the reliability of
memory resources such as L1 caches, L2 caches, and register
files in high-end NVIDIA GPUs are achieved by incorporat-
ing some architectural solutions designated to facilitate relia-
bility. This is specifically achieved by utilizing a hardware
approach known as Single Error Correction Double Error
Detection (SECDED) ECC. However, studies on NVIDIA’s
GeForce revealed that the ECC feature is not supported.

D. SOFT ERRORS IN GPUs
Originally, the design of GPUs was aimed at graphics render-
ing. Accordingly, there was not much interest in their reli-
ability [44]. Therefore, several reliability weaknesses were
present in their architecture [13], [45], [46], [47]. Unfortu-
nately, erroneous data can be passed on from a single cor-
rupted thread to thousands of subsequent parallel threads,
thereby resulting in a series of faults in the output. Partic-
ularly, a large number of soft errors have the capability to
induce significant errors in GPU output elements [48], [44].
This will invariably result in the loss of computational
integrity due to soft errors [49]. It is, however, noteworthy
that in a safety-critical system (i.e., healthcare), the tolerance
to failure is restricted to just 10 Failures in Time (FIT). This
indicates that only one error is permitted in an operation that
lapsed for 109 hours [50].

Soft errors in DNN accelerators such as GPU are far worse
compared to other electronic devices. Therefore, they should
be handled with proper attention because of two main rea-
sons. Firstly, the improvement of latency requires a complex
memory hierarchy [51]; secondly, GPUs’ structure is densely
parallel, which allows the easy duplication of a single fault to
multiple faults [12]. Then, the generated faults can tamper
with the logic operations or the data values, resulting in
errors such as Silent Data Corruption (SDC). Besides, this
might result in a crash or hanging of the system leading
to what is known as Detected Unrecoverable Error (DUE).
However, this could be masked such that there would be

no observable error, resulting in what is known as Masked
errors [52]. As such, the propagation of errors can proceed
through different processes (herein referred to as layers) until
they arrive at the program output, where they eventually
trigger different problems, including object misclassification
and others. Therefore, it is sufficient to infer that GPU’s
soft errors constitute a significant limitation in safety-critical
systems and require conscious attention.

IV. DATASET AND TRAINING RESULT
To the best of our knowledge, there are just a few datasets
of automated surgical instruments for public use. Most of
the current datasets concentrate on the presence detection
of surgical instruments derived from the M2CAI challenges.
We used the m2cai16 dataset for surgical tool detection,
which is one of the M2CAI challenge datasets in our train-
ing. This dataset was generated by the University Hospital
of Strasbourg, France [53], [54]. It contains 20 videos of
cholecystectomy procedures, split into two parts: training
(15 videos) and testing (5 videos). We did not use any extra
data for the training data because the data are videos with
frames annotated at 1 fps. Thus, we extracted frames from
the videos and took only the frames given in the annotation
file. There are seven types of surgical tools in the dataset
are: (a) grasper, (b) bipolar, (c) hook, (d) scissors, (e) clipper,
(f) irrigator, and (g) specimen bag. Since our focus is on the
model’s reliability under soft errors, we applied the concept
of transfer learning (TF) to train the model [55].

This is because the TF’s flexibility allows the utilization
of pre-trained models directly as feature extraction prepro-
cessing and integrated into entirely new models (presence
detection of surgical tools). Therefore, we adopted the pre-
trained DenseNet201 model and then trained it by modifying
some layers and leaving the others frozen.Without re-training
the whole model from scratch. This is because features com-
puted by the earlier layers are general and can be reused in
different problem domains, while features computed by the
last layers are specific and depend on the m2cai16 dataset.
Hence, we performed fine-tuning to the network for surgical
tool detection by choosing how much we want to adjust
the ’network’s weights (a frozen layer does not change dur-
ing training). By adjusting hyperparameters (learning rate,
epochs, batch size, and the given thresholds), we can deter-
mine the presence of the surgical tool in the image. Thus, our
’model’s weights are initialized with the Densnet201 (pre-
trainedweights), except the classifier part, which is initialized
randomly and tuned through our training.

We formulated the model learning as a multi-classification
problem with Cross-Entropy as the loss function. Therefore,
the network trained using stochastic gradient descent with the
rate of 0.01 of learning with a momentum of 0.9 until conver-
gence. Also, random cropping and flipping are performed for
the artificial data augmentation method during the learning
process. Moreover, we randomly initialize a DenseNet model
at the same time to compare the training. We used the data
(ten videos) for training and validations set and five videos

VOLUME 9, 2021 65809



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 4. Training accuracy of the network.

FIGURE 5. Testing the accuracy of the network.

for testing after resizing them into the same size (224× 224)
because the videos have different dimensions. To normalize
the input, we divided each pixel by 255 to make the range
of the pixels (0,1) rather than (0 to 255). Our fine-tuning
was done on 100 iterations (0.01 learning rate). Figure 4 and
Figure 5 show that DenseNet (Transfer-learning DenseNet-
201) can detect the surgical tools with decent correctness.
We reached 97% accuracy on the training set and 67% accu-
racy on the test set.

V. EXPERIMENTAL SETUP
Experiments were performed to evaluate the impact of soft
errors in the DenseNet201 model concerning the Darknet
framework. Expressly, the experiment was set up to inves-
tigate by an empirical analysis the impact of resilience error
in DenseNet201 as a model that is often used in a healthcare
system (e.g., presence detection of surgical tools). It is worth
noting that the model was trained on the m2cai16 dataset for
the surgical tool detection as described in (Section IV). The
model’s weight was implemented on the Darknet framework
so as generate the initial accuracy before implementation on
the SASSIFI environment. The GPU used in this study as the
device under test has the following specifications: NVIDIA’s
GeForce GTX series, its microarchitecture is Maxwell, and
the specificmodel is GTX 980. This GPU features 16 Stream-
ing Multiprocessors (SMs), 2048 CUDA cores, and 4 GB
of memory [56]. The process of fault-injection was deliber-
ately performed using the SASSIFI fault injector to properly
understand and enable accurate analysis of the occurrence
and propagation of errors in the DenseNet201 model.

Particularly, errors are injected by SASSIFI at the visi-
ble states of the GPU’s Instruction Set Architecture (ISA).
These include condition-code registers (CC), predicate reg-
isters (PR), memory values, as well as general-purpose
registers (GPR). Three different modes of error-injection
may be used in SASSIFI. These include Instruction Output
Address (IOA), Register File (RF), and Instruction Output
Value (IOV).

Nevertheless, selecting any particular injection mode
depends mainly on the evaluation metric that needs to be
evaluated. Two metrics were evaluated in this study. The
first metric, called Architectural Vulnerability Factor (AVF),
investigates the tendency of a single fault on that component
to culminate in an error. This metric is generally used to
investigate the reaction of applications to errors present in
their memory elements. The second metric evaluated is the
Program Vulnerability Factor (PVF). This investigates the
tendency of modifications induced based on a particular
instruction by a single fault to transform into a program
output. When errors are injected in the RF mode, the reg-
ister ’files’ AVF is measured, whereas the PVF of the
DenseNet201 program is measured when errors are injected
in the IOA and IOVmodes. Based on the analysis of AVF and
PVF, we can easily identify the three vulnerability factors:
(1) Instruction Vulnerability Factors (IVF), (2) Kernels Vul-
nerability Factors (KVF), and (3) Layer Vulnerability Factor
(LVF).

A. FAULT MODEL USED IN HEALTHCARE APPLICATION
SASSIFI offers various bit-flip models (BFMs), and fault
injection in the GPUs can be at a thread-level and in a
warp (32 threads) level. Thus, transient errors that exist in
memory and data paths are considered in this model. In our
study, a single bit flip and random value were chosen for
the DenseNet201 model injection. This is because the single
bit flip is more suitable for the register file memory errors,
while the random value represents the other three BFMs.
Specifically, 1000 injections were performed at the RF, IOV,
and IOA SASSFI modes. With this number of injections,
1.96% confidence for the worst-case statistical error bars
at 95% confidence can be guaranteed. At this level, further
increases in the number of injections did produce further
changes in the statistics. After the injection of faults and
comparisons between the program output and golden output
(pure outcome), three categories could be expected, such as
Masked, DUE, or SDC. However, it is worthy of note that
there is a particular interest in SDC only when investigating
the propagation of errors in the DenseNet201 model. This is
because, after the occurrence of a crash or hangs (i.e., DUE
errors), they do not further propagate to the subsequent layer.
On the other hand, Masked errors are instantaneously masked
once they occur. In order to gain a better understanding of
the theory behind SDC errors and their mode of propagation
through layers, the SDC errors have been further classified
into three categories as follows:

65810 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

• Malfunction SDCs: errors that propagate, gets to the
program output, and impact the rank of objects (misclas-
sification), due to modifications induced on the proba-
bilities vector.

• Light-Malfunction SDCs: errors that propagate, get to
the program output, andmodify the probabilities without
necessarily altering the rank of objects. This may be
otherwise called tolerable SDC because it does not result
in object misclassification.

• No-Malfunction SDCs: errors that propagate but could
not arrive at the final program output because it has been
masked at a particular layer. It should be noted that this
type of error differs fromMasked errors because masked
errors do not propagate at all.

VI. RESULTS AND ANALYSIS
In this section, we present our findings and analyze them.
To evaluate the resilience of the DenseNet201model, we con-
duct a detailed model’s sensitivity analyses from several per-
spectives by evaluating two evaluation metrics as follows;
(1) Layers vulnerability analysis (LVF) and (2) Kernels vul-
nerability analysis (KVF).

A. LAYER VULNERABILITY ANALYSIS
In this subsection, we analyze the error propagation in
DenseNet201 through its different layers. As described
in (Section III-B) based on the Darknet framework,
DenseNet201 utilizes a composite function containing batch
normalization and ReLU after a 3 × 3 convolution layer.
The composite function output is concatenated with the input
then passed to the following composite function, as seen in
Figure 2. The composite function begins with a bottleneck
1×1 convolution layer with 128 filters. This is done to reduce
the input feature-maps and make the larger convolution more
efficient. This is again followed by batch normalization and a
ReLU activation with the 3× 3 convolution layer containing
only 32 filters. Because of the filter concatenation across
the network, each composite function needs only to perform
a small piece. The network performs a specific amount of
composite functions in a dense block then uses a transition
layer to compress the network. This compression begins with
a 1× 1 convolution to reduce the filter dimensionality, then a
2× 2 max pool with a stride of two to halve the output size.

Figure 6 to Figure 8 shows the AVF values for injections
in the RF site and PVF values for injections in IOA and
IOV sites, respectively. We investigate and calculate the three
SDC categories for each layer, as explained in (Section V-A).
Thus, we measure AVF and PVF values for the given errors
to identify the layers likely to produce errors that crucially
change the model’s prediction (i.e., object misclassification).
In Figure 6, injecting faults in RF mode, layers tend to
produce big amounts (37.50%) of DUEs. It produces a small
amount of 5.20% of Light-Malfunction SDCs and produces
0.70% of Malfunction SDCs; this shows that RF injections
do not significantly impact the layer’s resilience against SDC
errors. However, layers producing No-Malfunction SDCs

about 56.60% of the SDC errors that have been injected.
Whereas injecting faults into instruction (IOA and IOV) lay-
ers produces large amounts of SDC (Malfunction and Light-
Malfunction) errors, which affects the model’s resilience.
In Figure 7 IOA, layers generate a small amount of the
Malfunction SDCs errors and a large amount of Light-
Malfunction errors in the 2.20% and 19.15%, respectively,
and most of the injected errors 66.15% No-Malfunction
SDCs. However, layers like (i.e., 0, 1, 2, 6, 8,12, 17, 20, 21,
22, 50, 63, 123, 163) produce Malfunction on the average
0.2% SDCs errors, which is high in safety-critical application
(presence detection of surgical tools). Nevertheless, most of
the layers produce 12.50% DUE errors.

In Figure 8 IOV, layers generated Malfunction SDCs on
16.49%, a high percentage in the safety-critical application.
Statistically, layers 3, 6, 9, 12, 15, and 18 represent the first
DenseNet201 block. These layers have the same behaviors
(i.e., filters 32) and contribute 2.8% of the overall Malfunc-
tion SDCs errors. On the other hand, layers 2, 5, 8, 11, 14,
and 17 also represented the first DenseNet201 block and
have the same behaviors (i.e., filters 128) and contribute with
the highest percentage of Malfunction SDCs 3.9%. Compare
these layers to previous layers on the Malfunction amount,
and the main reason is because of the image size and the
number of filters. All these layers (2, 3, 5, 6, 8, 9, 11, 12, 14,
15, 17, and 18) produce a high amount of Light-Malfunction
and No-Malfunction with a percentage on an average of 0.6%
and 1.4%, respectively. However, the IOVmode still produces
DUEs errors on an average of 0.05%; nevertheless, Route
layers (R) are not affected at all with error injections, and the
reason is that R layers only take the results of the preceding
layers without any processing. As we can see in Figure 6,
Figure 7, and Figure 8 (RF, IOA & IOV), the model starting
with a high number of errors in the first layers and decrease
until the end of the model layers, and the reason because of
the image size in the first layer 256× 256 and starts reducing
until the last layer in the model. Thus, it implies why the error
rate is very high at the beginning of the model layers.

B. KERNEL VULNERABILITY ANALYSIS
In this subsection, we analyze the resilience of the
DenseNet201 model through the kernel’s perspective. The
part of the source code that is implemented on the GPU
is called a kernel. In order to demonstrate how different
kernels have different vulnerabilities and how they eventually
contribute to the program output (i.e., object classification),
we have collected all the static kernels that are needed for
inference (training kernels are not included) that are involved
in executing DenseNet201 model on a GPU. After the faults
are injected, SASSIFI provides the capability of obtaining
kernels’ details of the injected program. As Table 2 shows,
ten kernels are used to implement DenseNet201’s pre-trained
model on the Darknet framework.

Figure 9 to Figure 11 shows the KVF for DenseNet201
modes: RF, IOA, and IOV. As introduced by [22], the KVF
means the probability of faults in a kernel to affect the

VOLUME 9, 2021 65811



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 6. AVF of each layer for no-malfunction SDCs, light-malfunction SDCs, and malfunction SDCs DenseNet201 (RF).

model’s computations. It is worth noting that in all Figures,
the probabilities of the whole graph sum up to 100% (not each
kernel’s vertical bars) because every DenseNet201 model’s

program consists of all these kernels. In other words,
DenseNet201 programs are divided up into small pieces of
programs (kernels) that are executed in the GPU. By looking

65812 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 7. PVF of each layer for no-malfunction SDCs, light-malfunction SDCs, and malfunction SDCs DenseNet201 (IOA).

VOLUME 9, 2021 65813



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 8. PVF of each layer for no-malfunction SDCs, light-malfunction SDCs, and malfunction SDCs DenseNet201 (IOV).

65814 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 9. Kernels vulnerability of DenseNet201 models for RF mode.

FIGURE 10. Kernels vulnerability of DenseNet201 models for IOA mode.

FIGURE 11. Kernels vulnerability of DenseNet201 models for IOV mode.

at Figure 9 to Figure 11, we identify which kernel produces
Malfunction, Light-Malfunction, No-Malfunction, and DUE
errors more than others do and which one is resilient. Overall,
all kernels produce errors in the models.

Moreover, we find that the top-4 vulnerable kernels for
the DenseNet201 model are Im2col, Add_bias, Normalize,
and Copy in all three modes (RF, IOA, and IOV). Other
kernels produce a small number of DUEs and/or SDC in all.
Thus, they have very high resilience to soft errors. Besides,
the Fill kernel produces minor SDC errors, and thus, they

have high resilience to soft errors. Furthermore, we can notice
that more than one kernel can contribute to building one
CNN layer (e.g., Conv. or activation function layers). From a
different point of view, this makes it statistically to determine
which layer is more vulnerable to Malfunction and Light-
Malfunction and then make a better decision in mitigating
errors. As in Figure 9, kernels produce more DUE errors in
the RF model than SDC errors in DenseNet201, whereas in
IOA and IOV modes (Figure 10 and Figure 11), kernels more
likely to generate SDC errors more than DUE errors. The
reason, as stated by [57], is that injecting at the RF site is
considered the lowest level of injection, while injecting at
IOA and IOV sites is performed at a higher level since we
manipulate instructions. To conclude, static kernels of the
DenseNet201 models have different vulnerabilities, and our
results help identify which kernels to be duplicated for a cost-
effective solution instead of duplicating the whole model,
which is a costly technique.

VII. SELECTIVE MITIGATION TECHNIQUE FOR
HEALTHCARE APPLICATION
Based on the previous analysis in Section (VI), we propose a
selective mitigation technique for the Malfunction and Light-
Malfunction errors in the various kernels. It should be noted
that this technique is based on the Triple Modular Redun-
dancy (TMR) to mitigate only the kernels that produce the
Malfunction and Light-Malfunction SDCs.

A. LAYER VULNERABILITY EVALUATION
This subsection discusses the selective mitigation technique
that we use to mitigate the soft errors in our health-
care application. Nevertheless, note that it is application-
specific, and it depends on the DNN accelerates and DNNs
model (i.e., network topology, layer positions, and ker-
nels). Therefore, based on our in-depth analysis, we pro-
vided in Section (VI-A and VI-B) for the layers analysis
and kernels analysis after injecting DenseNet201, which
is often used in healthcare applications, such as pres-
ence detection of surgical tools. It is always essential
that healthcare models have high reliability because minor
errors may lead to injury or death. Therefore, when we
injected our model as in Figure 6 to Figure 8 for RF,
IOA, and IOV show the layers’ vulnerability. We cal-
culate the Malfunction SDCs, Light-Malfunction SDCs,
No-Malfunction SDCs, and DUEs.

However, Figure 12 shows RF mode after applying our
mitigation technique; the experimental result shows only
0.1 % Malfunction SDCs and Light-Malfunction SDCs pro-
duced, while it still produced a significant amount of the
No-Malfunction SDCs in the percentage 62.40 %. Despite
the amount of the DUEs still high as 37.40 %. On the
anther hand, Figure 13 and Figure 14 shows IOA and IOV,
both of the modes IOA and IOV produced less amount
of the DUEs 13.3% and 15.8%, respectively, compared to
the RF mode, and the reason that IOA and IOV have a
different level of injections. Therefore, in Figure 13, IOA

VOLUME 9, 2021 65815



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 12. Evaluation for each layer of DenseNet201 model (after applying mitigation technique) in RF mode.

produced only 0.1 % of the Malfunction SDCs and 1.4% of
the Light-Malfunction SDCs. Meanwhile, most of the errors
of 85.2% No-Malfunction SDCs. On the anther hand, IOV

in Figure 14 produced less amount of Malfunction SDCs
and Light-Malfunction SDCs 0.5% and 0.4%, respectively.
Where 83.2% of the errors No-Malfunction.

65816 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 13. Evaluation for each layer of DenseNet201 model (after applying mitigation technique) in IOA mode.

B. KERNEL EVALUATION
In this subsection, the RF, IOA, and IOV modes in
Figures 9, 10, and 11 are evaluated for kernels by

applying our mitigation technique. Based on our anal-
ysis in Section (VI-B), the top-4 vulnerable kernels for
DenseNet201 are Im2col, Add_bias, Normalize, and Copy

VOLUME 9, 2021 65817



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 14. Evaluation for each layer of DenseNet201 model (after applying mitigation technique) in IOV mode.

65818 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 15. Kernels vulnerability of DenseNet201 models for RF mode (after applying mitigation technique).

FIGURE 16. Kernels vulnerability of DenseNet201 models for IOA mode (after applying mitigation technique).

TABLE 3. Kernels injection.

in all three modes. Figures 15, 16, and 17 show that all the
Malfunction SDCs in these kernels become No-Malfunction
as we summarize in Table 3 and Table 4 the percentage of the

Malfunction, Light-Malfunction, and No-Malfunction SDCs
for each kernel before and after we injected all the kernels and
applied our mitigation technique. Our mitigation technique

VOLUME 9, 2021 65819



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

FIGURE 17. Kernels vulnerability of DenseNet201 models for IOV mode (after applying mitigation technique).

TABLE 4. Kernels after implementing our mitigation technique.

shows significant improvement in the DenseNet201 model,
as we show in Table 4. The errors in the top-4 vulnerable
kernels are Im2col, Add_bias, Normalize, and Copy. Errors
in these kernels have been reduced from 4.50% to 0.10% in
Light- Malfunction SDCs of the RFmode and from 16.30% to
0.60% and 1.8% to 0.00% in Light-Malfunction andMalfunc-
tion errors, respectively, for IOAmode.Meanwhile, they have
been significantly improved in IOV mode, where the Light-
Malfunction errors have been reduced from 14.40% to 0.20%
and 13.60% to 0.00%Malfunction.

C. PERFORMANCE OVERHEADS EVOLUTION
This section evaluates our proposed solution by measuring
the performance overheads for the whole model (DenseNet)
and vulnerable kernels. That is by calculating the execution
time (performance) for the whole model and the vulnerable
kernels before and after implementing our mitigation tech-
nique. Table 5 shows that the model performance (exac-
tion time) has only increased by 0.3035% and improved
model’s reliability. Our technique shows high significant

TABLE 5. Performance overhead evolution for the whole model and
vulnerable kernels before and after protecting.

error mitigation, as shown in Table 4, by only protecting a
few kernels. Hence, by leaving the non-vulnerable kernels
without covering them by our technique, the unnecessary
overhead has been removed. The reason is that because of
safety-critical systems (healthcare applications) that come
with strict deadlines do not bear the overhead associated with
the protection of a whole model.

VIII. COMPARISON OVERHEADS OF OUR SELECTIVE
MITIGATION TECHNIQUE TO ABFT, DMR, AND TMR
In Section (VII – C), we have assessed our proposed tech-
nique’s performance costs by calculating the execution time

65820 VOLUME 9, 2021



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

TABLE 6. Comparison of the overhead of unhardened model, selective mitigation technique, DMR, and TMR.

for the whole model (DenseNet) and only vulnerable kernels.
Here, we compare our Selective Mitigation Technique with
three existing techniques: ABFT, DMR, and TMR, to further
investigate their performance penalties onDenseNet architec-
ture. Table 6 summarizes this comparison. It is worth noting
that ABFT does not protect different kernels, as our technique
does. Instead, it only protects matrix multiplication-related
operations. Nevertheless, since most of the kernels include
these operations, their execution times will be affected by
the ABFT solution. Therefore, we can calculate each ker-
nel’s execution time before and after adopting the ABFT
technique. DMR and TMR, on the other hand, are straight-
forward to compute their overheads, which is by hardening
all the eleven kernels of our model (DensNet201), dupli-
cating and replicating, respectively. By looking at Table 6,
we can see that our technique (SMT) achieves the lowest
overhead with sufficient reliability. This is because SMT
selectively hardened only the vulnerable kernels, as listed
in Table 5. By exploiting the selective mitigation technique,
which heavily depends on the in-depth analysis carried on
in Section VI, the overhead can be notably reduced. Conse-
quently, the overhead has only increased by 0.3035%, com-
pared to the ABFT, DMR, and TMR, where their overheads
increased by 73.435%, 100.306%, and 202.179%, respec-
tively. Therefore, our technique shows high significant error
mitigation while removing the unnecessary overheads in
safety-critical systems (healthcare applications), which could
be a serious issue.

IX. CONCLUSION
As human life is involved, healthcare applications (i.e.,
presence detection of surgical tool) are safety-critical
systems. Thus, they should be highly reliable because
small errors might lead to serious injury or death.As dis-
cussed in Section (III-B), DNNs have different behavior
and workflows because of various DNNs architectures.

Therefore, the reliability of DNN models depends on
many factors, such as the network topology, layers
positions, and layers number. Thus, it is difficult to
directly apply a specific DNN’s case to solve other
architectures.

In this paper, we analyzed the DenseNet201 model trained
on a dataset of presence detection of the surgical tool and
evaluated the impact of Malfunction, Light-Malfunction, and
No-Malfunction SDCs of the soft errors on the reliability
of the DenseNet201 on GPUs. We proposed a mitigation
technique to reduce the Malfunction and Light-Malfunction
in three modes. Our technique shows a high reduction rates
of errors, in the top-4 vulnerable kernels in RF mode from
2.5% to 0.0% Im2col, 1.0% to 0.0% Add_bias, 0.5% to
0.0% Normalize, and 0.5% to 0.1% Copy in Light- Malfunc-
tion. Whereas, the errors in IOA have been reduced from
6.5% to 0.0% Im2col, 3.2% to 0.0% Add_bias, 2.1% to
0.0% Normalize, and 4.5% to 0.6% Copy in Light- Malfunc-
tion. Meanwhile, they have been significantly improved in
IOV from 3.7% to 0.0% Im2col, 1.6% to 0.0% Add_bias,
6.9% to 0.0% Normalize, and 1.4% to 0.0% Copy in Mal-
function. Besides, our mitigation technique achieved high
rates of decrease for No-Malfunction SDCs, from 56.60%,
66.15%, and 52.59% to 62.40%, 85.2%, and 83.20% in
the RF, IOA, and IOV modes, respectively. It is worth men-
tioning that, although the Copy kernel generates a small
amount of Light-Malfunction SDCs in all three modes and
a tiny amount of Malfunction SDCs in RF, we did not
harden it. The reason is that, as most of the layers call
the Copy kernel to bring the input, hardening it would
increase the model’s overhead. Finally, we have compared
our technique’s performance overhead with three well-known
protection techniques: ABFT, DMR, and TMR. The pro-
posed solution demonstrates its efficiency, showing the lost
overhead compared to others while correcting up 84.8% of
the SDCs.

VOLUME 9, 2021 65821



K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

REFERENCES
[1] Y. LeCun and Y. Bengio, ‘‘Convolutional networks for images, speech

and time series,’’ in The Handbook of Brain Theory and Neural Networks,
vol. 3361. Cambridge,MA, USA:MIT Press, 1995, pp. 255–258. [Online].
Available: http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-95a.pdf

[2] J. Fu, H. Zheng, and T. Mei, ‘‘Look closer to see better: Recurrent atten-
tion convolutional neural network for fine-grained image recognition,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4438–4446.

[3] F. Milletari, N. Navab, and S.-A. Ahmadi, ‘‘V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,’’ in Proc. 4th
Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 565–571.

[4] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, ‘‘A unified multi-scale
deep convolutional neural network for fast object detection,’’ in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 354–370.

[5] S. Wang, A. Raju, and J. Huang, ‘‘Deep learning based multi-label clas-
sification for surgical tool presence detection in laparoscopic videos,’’ in
Proc. IEEE 14th Int. Symp. Biomed. Imag. (ISBI), Apr. 2017, pp. 620–623,
doi: 10.1109/ISBI.2017.7950597.

[6] S. Lu, Z. Lu, and Y.-D. Zhang, ‘‘Pathological brain detection based
on AlexNet and transfer learning,’’ J. Comput. Sci., vol. 30, pp. 41–47,
Jan. 2019, doi: 10.1016/j.jocs.2018.11.008.

[7] E. Rajih, C. Tholomier, B. Cormier, V. Samoulian, T. Warkus,
M. Liberman, H. Widmer, J.-B. Lattouf, A. M. Alenizi, M. Meskawi,
R. Valdivieso, P.-A. Hueber, P. I. Karakewicz, A. El-Hakim, andK. C. Zorn,
‘‘Error reporting from the da vinci surgical system in robotic surgery:
A Canadian multispecialty experience at a single academic centre,’’ Can.
Urol. Assoc. J., vol. 11, no. 5, p. 197, May 2017, doi: 10.5489/cuaj.4116.

[8] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, ‘‘Understanding error propagation in Deep Learning
Neural Network (DNN) accelerators and applications,’’ in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., Denver, CO, USA, 2017,
pp. 1–12, doi: 10.1145/3126908.3126964.

[9] T. Kalaiselvi, P. Sriramakrishnan, and K. Somasundaram, ‘‘Survey of using
GPU CUDA programming model in medical image analysis,’’ Informat.
Med. Unlocked, vol. 9, pp. 133–144, Aug. 2017.

[10] A. A. Shvets, A. Rakhlin, A. A. Kalinin, and V. I. Iglovikov, ‘‘Automatic
instrument segmentation in robot-assisted surgery using deep learning,’’
in Proc. 17th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2018,
pp. 624–628.

[11] E. Kuznetsov andV. Stegailov, ‘‘Porting CUDA-basedmolecular dynamics
algorithms to AMD ROCm platform using HIP framework: Performance
analysis,’’ in Proc. Russian Supercomputing Days, 2019, pp. 121–130.

[12] Z. You et al., ‘‘White Paper on AI chip technologies 2018,’’ Beijing Innov.
Center Future Chips (ICFC), Beijing, China, Tech. Rep., 2018.

[13] D. A. G. Oliveira, L. L. Pilla, T. Santini, and P. Rech, ‘‘Evaluation and
mitigation of radiation-induced soft errors in graphics processing units,’’
IEEE Trans. Comput., vol. 65, no. 3, pp. 791–804, Mar. 2016, doi: 10.
1109/TC.2015.2444855.

[14] H. Alemzadeh, J. Raman, N. Leveson, Z. Kalbarczyk, and R. K. Iyer,
‘‘Adverse events in robotic surgery: A retrospective study of 14 years
of FDA data,’’ PLoS ONE, vol. 11, no. 4, pp. 1–20, 2016, doi: 10.1371/
journal.pone.0151470.

[15] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
‘‘Soft error resilience of deep residual networks for object recognition,’’
IEEE Access, vol. 8, pp. 19490–19503, 2020, doi: 10.1109/ACCESS.2020.
2968129.

[16] F. F. D. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli,
and P. Rech, ‘‘Analyzing and increasing the reliability of convolutional
neural networks on GPUs,’’ IEEE Trans. Rel., vol. 68, no. 2, pp. 663–677,
Jun. 2019.

[17] F. F. D. Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux, and P. Rech,
‘‘Evaluation and mitigation of soft-errors in neural network-based object
detection in three GPU architectures,’’ in Proc. 47th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. Workshops (DSN-W), Jun. 2017,
pp. 169–176, doi: 10.1109/DSN-W.2017.47.

[18] C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, ‘‘On the efficacy of ECC and
the benefits of FinFET transistor layout for GPU reliability,’’ IEEE Trans.
Nucl. Sci., vol. 65, no. 8, pp. 1843–1850, Aug. 2018.

[19] C. S. Vidya and B. P. V. Kumar, ‘‘Reliability analysis in healthcare
imaging applications,’’ Indian J. Sci. Technol., vol. 9, p. 34, Sep. 2016,
doi: 10.17485/ijst/2016/v9i34/100988.

[20] H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, and J. Raman, ‘‘Analysis of
safety-critical computer failures in medical devices,’’ IEEE Secur. Privacy,
vol. 11, no. 4, pp. 14–26, Jul. 2013, doi: 10.1109/MSP.2013.49.

[21] B. Zhang, S. Wang, L. Dong, and P. Chen, ‘‘Surgical tools detection based
on modulated anchoring network in laparoscopic videos,’’ IEEE Access,
vol. 8, pp. 23748–23758, 2020, doi: 10.1109/ACCESS.2020.2969885.

[22] F. F. D. Santos, L. Carro, and P. Rech, ‘‘Kernel and layer vulnerability
factor to evaluate object detection reliability in GPUs,’’ IET Comput. Digit.
Techn., vol. 13, no. 3, pp. 178–186, May 2019.

[23] M. Islam, D. A. Atputharuban, R. Ramesh, and H. Ren, ‘‘Real-time
instrument segmentation in robotic surgery using auxiliary supervised
deep adversarial learning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 2188–2195, Apr. 2019, doi: 10.1109/LRA.2019.2900854.

[24] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[25] G. Li, K. Pattabiraman, C. Y. Cher, and P. Bose, ‘‘Understanding error
propagation in GPGPU applications,’’ in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Salt Lake City, UT, USA, Nov. 2016,
pp. 240–251, doi: 10.1109/SC.2016.20.

[26] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, ‘‘Deep learning
for healthcare: Review, opportunities and challenges,’’ Briefings Bioinf.,
vol. 19, no. 6, pp. 1236–1246, Nov. 2018, doi: 10.1093/bib/bbx044.

[27] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo,
K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, ‘‘A guide to deep
learning in healthcare,’’ Nature Med., vol. 25, no. 1, pp. 24–29, Jan. 2019.

[28] Z. Liang, G. Zhang, J. X. Huang, and Q. V. Hu, ‘‘Deep learning for
healthcare decision making with EMRs,’’ in Proc. IEEE Int. Conf. Bioinf.
Biomed. (BIBM), Nov. 2014, pp. 556–559.

[29] T. Pham, T. Tran, D. Phung, and S. Venkatesh, ‘‘Predicting healthcare
trajectories from medical records: A deep learning approach,’’ J. Biomed.
Informat., vol. 69, pp. 218–229, May 2017.

[30] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya,
‘‘Deep learning for healthcare applications based on physiological sig-
nals: A review,’’ Comput. Methods Programs Biomed., vol. 161, pp. 1–13,
Jul. 2018.

[31] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘‘A survey of the recent
architectures of deep convolutional neural networks,’’ Artif. Intell. Rev.,
vol. 53, pp. 5455–5516, Apr. 2020.

[32] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[33] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

[34] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 1–9, doi:
10.1109/CVPR.2015.7298594.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 2,
pp. 84–90, Jun. 2012, doi: 10.1145/3065386.

[36] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger,
‘‘Convolutional networks with dense connectivity,’’ IEEE Trans. Pattern
Anal. Mach. Intell., early access, May 23, 2019, doi: 10.1109/tpami.
2019.2918284.

[37] J. Lai, Y. Chen, B. Han, L. Ji, Y. Shi, Z. Huang, W. Yang, and Q. Feng,
‘‘A DenseNet-based diagnosis algorithm for automated diagnosis using
clinical ECG data,’’ Nan Fang yi ke da xue xue bao= J. Southern Med.
Univ., vol. 39, no. 1, pp. 69–75, 2019.

[38] Z. Huang, X. Zhu, M. Ding, and X. Zhang, ‘‘Medical image classifi-
cation using a light-weighted hybrid neural network based on PCANet
and DenseNet,’’ IEEE Access, vol. 8, pp. 24697–24712, 2020, doi: 10.
1109/ACCESS.2020.2971225.

[39] R. D. Gottapu and C. H. Dagli, ‘‘DenseNet for anatomical brain segmen-
tation,’’ Procedia Comput. Sci., vol. 140, pp. 179–185, Nov. 2018, doi: 10.
1016/j.procs.2018.10.327.

[40] A. Corana. (Apr. 2016). Architectural Evolution of NVIDIA GPUs
for High-Performance Computing. [Online]. Available: https://www.
researchgate.net/publication/301363311

[41] E. Strohmaier, J. Dongarra, H. Simon, and H. Meuer. (Nov. 2018). The Top
500 List. [Online]. Available: https://www.top500.org/lists/2018/11

65822 VOLUME 9, 2021

http://dx.doi.org/10.1109/ISBI.2017.7950597
http://dx.doi.org/10.1016/j.jocs.2018.11.008
http://dx.doi.org/10.5489/cuaj.4116
http://dx.doi.org/10.1145/3126908.3126964
http://dx.doi.org/10.1109/TC.2015.2444855
http://dx.doi.org/10.1109/TC.2015.2444855
http://dx.doi.org/10.1371/journal.pone.0151470
http://dx.doi.org/10.1371/journal.pone.0151470
http://dx.doi.org/10.1109/ACCESS.2020.2968129
http://dx.doi.org/10.1109/ACCESS.2020.2968129
http://dx.doi.org/10.1109/DSN-W.2017.47
http://dx.doi.org/10.17485/ijst/2016/v9i34/100988
http://dx.doi.org/10.1109/MSP.2013.49
http://dx.doi.org/10.1109/ACCESS.2020.2969885
http://dx.doi.org/10.1109/LRA.2019.2900854
http://dx.doi.org/10.1109/SC.2016.20
http://dx.doi.org/10.1093/bib/bbx044
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/tpami.2019.2918284
http://dx.doi.org/10.1109/tpami.2019.2918284
http://dx.doi.org/10.1109/ACCESS.2020.2971225
http://dx.doi.org/10.1109/ACCESS.2020.2971225
http://dx.doi.org/10.1016/j.procs.2018.10.327
http://dx.doi.org/10.1016/j.procs.2018.10.327


K. Adam et al.: Selective Mitigation Technique of Soft Errors for DNN Models

[42] J. S. Cook and N. Gupta, ‘‘History of supercomputing and supercom-
puter centers,’’ in Research and Applications in Global Supercomputing.
Hershey, PA, USA: IGI Global, 2015, pp. 33–55.

[43] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, ‘‘NVIDIA tesla:
A unified graphics and computing architecture,’’ IEEE Micro, vol. 28,
no. 2, pp. 39–55, Mar. 2008.

[44] F. F. D. Santos and P. Rech, ‘‘Analyzing the criticality of transient faults-
induced SDCS on GPU applications,’’ in Proc. 8th Workshop Latest Adv.
Scalable Algorithms Large-Scale Syst., Nov. 2017, pp. 1–7.

[45] N. DeBardeleben, S. Blanchard, L. Monroe, P. Romero, D. Grunau,
C. Idler, and C. Wright, ‘‘GPU behavior on a large HPC cluster,’’ in Proc.
Eur. Conf. Parallel Process., 2013, pp. 680–689.

[46] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, ‘‘GPGPUs:
How to combine high computational power with high reliability,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014, p. 341.

[47] I. Anarado, M. A. Anam, F. Verdicchio, and Y. Andreopoulos, ‘‘Mitigating
silent data corruptions in integermatrix products: Toward reliablemultime-
dia computing on unreliable hardware,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 11, pp. 2476–2489, Nov. 2017.

[48] D. A. G. D. Oliveira, L. L. Pilla, M. Hanzich, V. Fratin, F. Fernandes,
C. Lunardi, J. M. Cela, P. O. A. Navaux, L. Carro, and P. Rech, ‘‘Radiation-
induced error criticality in modern HPC parallel accelerators,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 577–588.

[49] F. Kastensmidt and P. Rech, ‘‘Radiation effects and fault tolerance tech-
niques for FPGAs and GPUs,’’ in FPGAs and Parallel Architectures for
Aerospace Applications. Cham, Switzerland: Springer, 2016, pp. 3–17, doi:
10.1007/978-3-319-14352-1_1.

[50] Preview Road Vehicles—Functional Safety Part 1: Vocabulary,
Standard ISO-26262, ISO 26262-1:2018, 2018. Accessed: Sep. 13, 2019.
[Online]. Available: https://www.iso.org/standard/68383.html

[51] N. N. Mahatme, S. Jagannathan, T. D. Loveless, L. W. Massengill,
B. L. Bhuva, S.-J. Wen, and R. Wong, ‘‘Comparison of combinational and
sequential error rates for a deep submicron process,’’ IEEE Trans. Nucl.
Sci., vol. 58, no. 6, pp. 2719–2725, Dec. 2011.

[52] J. Noh, V. Correas, S. Lee, J. Jeon, I. Nofal, J. Cerba, H. Belhaddad,
D. Alexandrescu, Y. Lee, and S. Kwon, ‘‘Study of neutron soft error
rate (SER) sensitivity: Investigation of upset mechanisms by compara-
tive simulation of FinFET and planar MOSFET SRAMs,’’ IEEE Trans.
Nucl. Sci., vol. 62, no. 4, pp. 1642–1649, Aug. 2015, doi: 10.1109/TNS.
2015.2450997.

[53] A. P. Twinanda, S. Shehata, D. Mutter, J. Marescaux, M. de Mathelin,
and N. Padoy, ‘‘EndoNet: A deep architecture for recognition tasks on
laparoscopic videos,’’ IEEE Trans. Med. Imag., vol. 36, no. 1, pp. 86–97,
Jan. 2017, doi: 10.1109/TMI.2016.2593957.

[54] A. Jin, S. Yeung, J. Jopling, J. Krause, D. Azagury, A. Milstein, and
L. Fei-Fei, ‘‘Tool detection and operative skill assessment in surgical
videos using region-based convolutional neural networks,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2018, pp. 691–699.

[55] S. Panigrahi, A. Nanda, and T. Swarnkar, ‘‘A survey on transfer learn-
ing,’’ in Smart Innovation, Systems and Technologies, vol. 194. Singapore:
Springer, 2021, pp. 781–789, doi: 10.1007/978-981-15-5971-6_83.

[56] NVIDIA Corporation, ‘‘NVIDIA GeForce GTX 980 featuring Maxwell,
the most advanced GPU ever made,’’ 2014, pp. 1–32. [Online]. Available:
https://www.jaconnect.de/pdf/18408.pdf

[57] R. C. Baumann, ‘‘Radiation-induced soft errors in advanced semiconductor
technologies,’’ IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 305–316,
Sep. 2005.

KHALID ADAM received the B.Sc. degree
(Hons.) in computer engineering from the Faculty
of Electrical Engineering, Alzaiem Alazhari Uni-
versity, Sudan, in 2013, and the M.Sc. degree from
Universiti Malaysia Pahang (UMP), Malaysia,
in 2016, where he is currently pursuing the
Ph.D. degree with the College of Engineer-
ing. His research interests include reliability of
autonomous healthcare applications, deep learn-
ing, and big data analytics.

IZZELDIN IBRAHIM MOHAMED received the
Ph.D. degree in microelectronics and computer
engineering from Universiti Teknologi Malaysia.
He is currently a Senior Lecturer of electronics
engineering with Universiti Malaysia Pahang. His
research interests include networking, in partic-
ular, network traffic measurement and analysis,
network management, and traffic engineering, net-
work security, the Internet of Things (IoT) secu-
rity, cloud computing, and big data security. He is

also interesting in integrated circuit testing, in particular, system-level testing
of embedded analogue cores in SOC as well as quantitative research method
and questionnaire design and psychometrics assessment using Rasch mea-
surement and analysis.

YOUNIS IBRAHIM received the Ph.D. degree
from Hohai University, China, in 2021. He is cur-
rently working on the reliability of deep learning
systems as a Free Researcher. His research inter-
ests include reliability of AI models through AI
accelerators in safety-critical systems and accel-
erating deep learning models. More specifically,
computer-vision and convolutional neural net-
works (CNN).

VOLUME 9, 2021 65823

http://dx.doi.org/10.1007/978-3-319-14352-1_1
http://dx.doi.org/10.1109/TNS.2015.2450997
http://dx.doi.org/10.1109/TNS.2015.2450997
http://dx.doi.org/10.1109/TMI.2016.2593957
http://dx.doi.org/10.1007/978-981-15-5971-6_83

