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ABSTRACT 

 

The purpose of controller tuning is to determine the parameters of controller in 
order to ensure the time response of close-loop control system at the desired 
performance. Proportional Integral Derivative (PID) controller has been used in the 
industry since 1940’s for this purpose. However, the PID controller can not completely 
compensate for the complexity of industrial processes and desired high product quality 
due to interactions, nonlinearities, and time delay of the process variables. Internal 
model control (IMC) has been developed to overcome the deficiencies of the PID. 
Unfortunately, IMC yields very good performance for set point tracking, but gives 
sluggish response for disturbance rejection problem. The present study has developed a 
controller for disturbance rejection based on feedback / feedforward IMC structure. The 
controller is then called as feedback 2DOF-IMC. A new tuning method has been 
proposed for the controller. The proposed tuning method consists of three steps: Firstly, 
determine the worst case of the model uncertainty. Secondly, specify the parameter of 
set point controller using maximum peak (Mp) criteria. And thirdly, obtain the 
parameter of the disturbance rejection controller using gain margin (GM) criteria. The 
proposed method is called Mp-GM tuning method.  

 
 The effectiveness of the proposed feedback 2DOF-IMC and Mp-GM tuning 
method has evaluated and compared with standard 2DOF-IMC using IMCTUNE and 
Kaya 2DOF-IMC using Mp-GM tuning as bench mark. The evaluation and comparison 
are investigated through simulation and implementation on a number of first order plus 
dead time (FOPDT) and higher order processes. The FOPDT process tested include 
processes with controllability ratio in the range 0.7 to 2.5. The higher processes include 
second order with underdamped and third order with nonminimum phase processes. 
Although the two of higher order process are considered difficult processes, the 
proposed feedback 2DOF-IMC and Mp-GM tuning method were able to obtain the 
optimal controller even under process uncertainties. The proposed feedback 2DOF-IMC 
and the proposed Mp-GM tuning are also successfully implemented in real-time on a 
laboratory scale air heater pilot plant. The process model is divided into two regions. 
The time responses show that the proposed feedback 2DOF-IMC and the proposed Mp-
GM tuning gave faster set point tracking and disturbance rejection responses than 
1DOF-IMC and standard 2DOF-IMC in both regions.  
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ABSTRAK 

 

Tujuan dari talakan kontroler adalah untuk menentukan parameter pengawal 
iaitu memastikan waktu sambutan sistem kawalan gelung tertutup pada prestasi yang 
dikehendaki. Kawalan kamiran terbitan berkadaran (PID) telah digunakan dalam 
industri sejak tahun 1940 an untuk tujuan ini. Namun, pengawal PID tidak boleh 
sepenuhnya mengimbangi kekompleksan proses-proses industri dan kualiti produk yang 
dikehendaki. Ini karena tingginya interaksi antara proses, proses tak lelurus, dan masa 
tunda pembolehubah proses yang lama. Kawalan model dalam (IMC) telah 
dibangunkan untuk mengatasi kekurangan PID. Malangnya, IMC memberikan 
sambutan lamban untuk masalah penolakan gangguan. Penyelidikan ini telah 
membangunkan sebuah pengawal untuk penolakan gangguan berdasarkan struktur suap 
balik / suap depan IMC. Pengawal  ini kemudian disebut sebagai suap balik 2DOF-
IMC. Sebuah kaedah penalaan yang kuat dan sederhana telah dicadangkan untuk 
pengawal ini. Kaedah penalaan yang dicadangkan terdiri daripada tiga langkah: Pertama, 
menentukan kes terburuk dari ketidakpastian model.Kedua, menentukan parameter 
daripada pengawal titik set menggunakan kriteria puncak maksimum (Mp). Dan ketiga, 
menentukan parameter daripada pengawal penolakan gangguan menggunakan kriteria 
jidar gandaan (GM). Kaedah penalaan yang dicadangkan ini disebut Mp-GM.  

 
Keberkesanan daripada suap balik 2DOF-IMC dan kaedah penalaan Mp-GM 

yang dicadangkan dikaji dan dibandingkan dengan piawai 2DOF-IMC dengan penala 
IMCTUNE dan Kaya 2DOF-IMC dengan penala Mp-GM. Pengkajian dan 
perbandingan dilakukan melalui penyelakuan dan pelaksanaan di beberapa proses 
urutan pertama plus waktu mati (FOPDT) dan proses urutan yang lebih tinggi. Proses 
FOPDT yang diuji termasuk proses dengan nisbah kebolehkawalan daripada 0.7 
sehingga 2.5. Proses urutan tinggi yang diuji adalah proses urutan kedua dengan tak 
teredam dan proses urutan ketiga dengan sistem fasa tak minimum. Walaupun dua 
proses urutan tinggi itu termasuk proses yang sukar, suap baik 2DOF-IMC dan kaedah 
penalaan Mp-GM yang dicadangkan boleh memberikan parameter pengawal yang 
optimum pada ketakpastian proses. suap baik 2DOF-IMC dan kaedah penalaan Mp-GM 
yang dicadangkan juga berjaya dilaksanakan secara masa nyata dengan skala makmal 
pada loji pandu pemanas udara. Model proses dibagi menjadi dua daerah. sambutan 
waktu menunjukkan bahawa maklum balas yang dicadangkan suap balik 2DOF-IMC 
dengan penala Mp-GM memberi sambutan penolakan yang lebih cepat dan mencapai 
set yang lebih cepat dibandingkan oleh 1DOF-IMC atau piawai 2DOF-IMC pada 
kedua-dua daerah. 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

1.1  INTRODUCTION  

  

 A chemical industry generally consists of many unit operations, which must be 

operated on a specific operating condition such as: temperature, pressure, and flow. This 

operating condition(s) is maintained for the purpose of safety and product quality. 

Proportional Integral Derivative (PID) controller has been used in the industry since 

1940’s for this purpose because the PID controller uses a simple algorithm (Willis, 

1999). Various designs and tuning strategies were developed for the PID controller so 

that the controller can be used for various process characteristics.  However, the PID 

controller can not completely compensate for the complexity of industrial processes and 

desired high product quality due to interactions, nonlinearities, and time delay of the 

process variables (Anandanatarajan et al., 2006; Normey-Rico and Camacho, 2007). 

The rapid development of computer technologies has encouraged the development of 

various types of controllers to overcome the deficiencies of the PID. These controllers 

include Artificial Neural Network (ANN) controller (Hussain and Ho, 2004; Mohanty, 

2009), Fuzzy Logic controller (Galluzzo and Cosenza, 2009; Sarma and Rengaswamy, 

2000) and Model Predictive Control (MPC) (Bezzo et al., 2005; Nikandrov and Swartz, 

2009; Qin and Badgwell, 2003). 

 

  Internal Model Control (IMC) is a class of model based control proposed by 

Garcia and Morari (1982). The structure of IMC controller is shown in Figure (1.1). 

IMC uses a model explicitly and it is internally stable. This implies that if a plant is 

stable, the stability of the process response can be guaranteed by using a controller with 

stable model.  
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1.2  INTERNAL MODEL CONTROL (IMC) 

 

 The principle of IMC structure can be explained from (Figure 1.1); Gpm is 

process model. Difference between model response and actual measurement (e) is used 

as input signal to IMC controller (Gc1). In general, e ≠  0, due to the modeling error and 

unknown disturbances (d Gd) that are not accounted in the process model (Seborg et al., 

2004).  Unfortunately, IMC controller provides a very slow response to the case of 

disturbance rejection. Therefore, several researchers have attempted to overcome this 

weakness by developing two-degree-of freedom-IMC (2DOF-IMC) (Morari and 

Zafiriou, 1989). Figure 1.2 shows the standard structure of 2DOF-IMC controller.  

 

 
Figure 1.1 Structure of standard IMC controller 

 

Where e is error between measurement and model, E is error between set point and e, 

Gp is transfer function of the process, Gpm is transfer function of the model and Gc1 is 

transfer function of the controller, ysp is set point value, y is controlled variable, d is 

disturbance input, and Gd is disturbance transfer function. 

 
 
1.3  TWO-DEGREE-OF- FREEDOM INTERNAL MODEL CONTROL 

(2DOF-IMC) 

 

 Figure 1.2 shows the controller for set point (Gc1) and the controller for 

disturbance rejection (Gc2) in a 2DOF-IMC structure. The set point controller is in an 

open loop form and the disturbance rejection controller is in a feedback structure. The 

parameter of set point controller is designed as 1DOF-IMC controller, while the 

Gc1 Gp y 

Gpm 

ysp 

IMC Controller 

E 

e 

- + 

+ 
- 

+
+

Gd d
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disturbance rejection controller is designed such that the disturbance can be rejected as 

soon as possible. 

 
Figure 1.2 Structure of standard 2DOF-IMC 

 

 
 These tuning parameters can be easily obtained in the case of no error in the 

model. However, the setting of parameter becomes a complicated matter if there is an 

uncertainty model. On the other hand, the models developed will always contain 

inaccuracies or contain uncertainty. 

 

 The model uncertainty comes from several sources as follows (Laughlin et al, 

1986);  

(i) The variation of real parameters affecting plant operation.  

(ii)  The inherent non-linearity of the processes.  

(iii) The experimental identification of the process.  

(iv)  The mathematical model development. 

 

1.4  PROBLEM STATEMENTS  

 

 As mentioned in the previous section the tuning parameters in the case of model 

uncertainty is difficult to obtain. Many researchers have tried at different ways in tuning 

of 1DOF-IMC based on model uncertainty (Brosilow and Joseph, 2001; Laughlin et al., 

1986; Liu et al., 1998; Morari and Zafiriou, 1989). Several works concentrating on the 

2DOF-IMC tuning based on model uncertainty has done by Brosilow and Joseph (2001), 

Gd 

Gc1 Gp y 

Gpm 

ysp 
E

e 

- + 

+ 
- 

+
+

d

Gc2 
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Morari and Zafiriou (1989) and Stryczek et al. (2000). One of the difficulties of Morari 

and Zafiriou’s method is the use of weighting transfer function in the formulation of 

robust performance. Stryczek (1996) has introduced Mp-tuning method to facilitate the 

completion of tuning that does not involve the weighting transfer function. This method 

is easily applied in obtaining the parameter of 1DOF-IMC based on model uncertainty. 

Unfortunately, for 2DOF-IMC structure, the Mp-tuning method uses partial sensitivity 

function that involved disturbance transfer function (Stryczek et al., 2000). Disturbance 

is very difficult to be modeled, because disturbance can come from more than one 

sources. Besides, the use of partial sensitivity function is restricted to overdamped 

system (Brosilow and Joseph, 2001).  As a consequence, tuning of 2DOF-IMC using 

Mp-tuning method has its limitation. Recent research on the structure and tuning of 

2DOF-IMC is very limited. Kaya (2004b) has developed a 2DOF-IMC structure and 

how to design the controller based on the gain and phase margins. He used IMC 

algorithm for controller tuning, however PD (Proportional Derivative) was used for this 

structure. It was because the structure and the tuning were only tested on integrating 

process. Meanwhile, the attention of recent researchers is the application of IMC on 

specific cases rather than on IMC tuning, for example unstable and integrating process 

(Chia and Lefkowitz, 2010; Liu and Gao, 2011; Tan, 2010; Tan et al., 2003; Wang and 

Watanabe, 2007), nonlinear process (Cheng and Chiu, 2007; Ganeshreddy Kalmukale et 

al., 2005; Toivonen et al., 2003). Therefore, study on the structure and tuning of 2DOF-

IMC for general purpose (stable process) is needed to develop a tuning method which 

simplifies the existing tuning of the 2DOF-IMC under model uncertainty. 

 

1.5  OBJECTIVES AND SCOPE OF THE RESEARCH 

 

The main objectives of the research are stated as follows: 

1. To develop and analyze the 2DOF-IMC based on feedback control structure for 

both set point and disturbance rejection controllers. 

2. To develop tuning method for 2DOF-IMC to meet robust performance criteria. 

3. To implement and validate the performance and tuning method of 2DOF-IMC. 

 

The scope of this research covers the followings: 

1.  Theoretical development of the structure of 2DOF-IMC 
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2. Theoretical review of the maximum peak and gain margin for 2DOF-IMC tuning.  

3.  Determine the optimal constants that involved in the tuning of 2DOF-IMC. 

4. Simulation of several process characteristics that employ the structure and the 

tuning method of 2DOF-IMC.   

5. Application of the proposed method to experimental study in AFPT (air flow 

pressure and temperature control system) pilot plant made by Syntec Sdn Bhd.  

The plant is installed in laboratory of Chemical and Natural Recourses 

Engineering University Malaysia Pahang. The experimental process is modeled 

as FOPDT. 

 

1.6  METHODOLOGY OF THE RESEARCH 

 

 The objectives of the research can be realized by creating a new structure of 

2DOF-IMC into feedback control structure. By using feedback control structure, the 

principle of robust performance that is usually used in conventional control such as 

maximum peak (Mp) or resonant peak and gain margin (GM) can be applied.  

  

 Resonant peak (Mp) and its relationship between time responses of IMC 

structure has been studied by (Brosilow and Joseph, 2001) using Mp-Tuning (maximum 

peak) method. The maximum peak is the maximum of magnitude of frequency response 

of complementary sensitivity function set as 1.05. This value corresponds to about 10% 

overshoot of time response. With this method the parameters of the set point controller 

on the model uncertainty can easily be determined.  

  

 The difficulties in tuning of disturbance rejection controller can be solved by the 

principle of Gain Margin. Gain margin is a criterion that often used to measure the 

stability of a control system (Kuo, 1995). In the Nyquist plot, gain margin is the 

frequency response of open loop transfer function on the real and imaginary axis 

(Seborg et al., 2004). Open loop transfer function of proposed feedback 2DOF-IMC can 

be derived easily. The disturbance rejection controller parameters can be determined 

using this method after the set point controller parameter is calculated.  
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 There are three specifications in the Mp-GM tuning that needs to be specified 

i.e; Mp, λ2/λ1 and GM. The best Mp value is determined where the overshot of the 

worst case should not exceed than 10%. The value of the λ2/λ1 and GM is determined 

from the closed loop response, where the corresponding minimum average of ISE 

(Integral Square Error) value in the worst case, nominal case and slowest case will be 

selected as tuning parameter. The Specifications above are selected with FOPDT 

simulation process with θ/τ = 1, θ/τ > 1 and θ/τ <1.  

  

 The proposed feedback 2DOF-IMC structure and proposed Mp-GM tuning 

method are evaluated both in simulation and experimental. For simulation, this work 

studies; 

(i) FOPDT (first order plus dead time) transfer function. It is because; typically 

chemical process can be approximated by FOPDT form. Three 

characteristics of FOPDT are analyzed i.e FOPDT with θ/τ (ratio between 

time delay and time constant) equal to 1, less than 1 and more than 1.  

(ii) Higher order process i.e SOPDT (second order plus dead time) with 

underdamped and third order with non-minimum phase system.  

The proposed structure and tuning method is also evaluated in nonlinear process of 

AFPT (air flow pressure temperature) control system pilot plant. The detail of AFPT 

pilot plant is presented in experimental study (Chapter 4). 

 

 Closed-loop response of the proposed feedback 2DOF-IMC with Mp-GM tuning 

is compared with the standard 2DOF-IMC with IMCTUNE and Kaya 2DOF-IMC with 

Mp-GM tuning. However, when IMCTUNE could not calculate the controller 

parameters then standard 1DOF-IMC with IMCTUNE is performed.  If standard 1DOF-

IMC with IMCTUNE still could not calculate the parameters then 1DOF-IMC with Mp-

GM is applied. 
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1.7  CONTRIBUTIONS OF THE RESEARCH 

 

 The main research contributions from this study are as follows: 

1. New 2DOF-IMC structure based on feedback/feedforward control structure was 

proposed. It is designed and simulated for open loop stable process which 

commonly representing the chemical process system.  

2. New robust and simple method to tune parameters of 2DOF-IMC was employed 

using Mp-GM (Maximum peak and Gain Margin) criteria.  

3. An air heater control system has been developed in laboratory for experimental 

study in order to validate the above finding. 

 

1.8  STRUCTURE OF THE THESIS 

 

 Chapter 2 reviews the related literatures about the weaknesses, advantages, 

design and tuning of 1DOF-IMC controller structure. The design and tuning of 2DOF-

IMC under model uncertainty are reviewed and the chemical process uncertainty is 

described.  

 

 Chapter 3 discusses the proposed Mp-GM tuning for 2DOF-IMC. The proposed 

tuning method is derived from proposed design of 2DOF-IMC based on 

feedback/feedforward structure control system (feedback 2DOF-IMC). The method can 

then be implemented to a standard 2DOF-IMC structure.  The results are compared with 

some existing tuning method of 2DOF-IMC. The Mp-GM tuning is applied to several 

FOPDT process from small to long time delay. There are three specifications that affect 

to closed loop time response using Mp-GM tuning i.e; maximum peak (Mp), ratio filter 

time constant of set point and disturbance rejection controller (λ1/λ2), and gain margin’s 

values. The specifications are determined by simulating of FOPDT model. The effects 

of simplification model are described with examples by using simulation of difficult 

higher order process such as underdamped and nonminimum phase system. The closed 

loop responses of proposed structure 2DOF-IMC and Mp-GM method are compared to 

standard 2DOF-IMC with IMCTUNE and Kaya 2DOF-IMC with Mp-GM.  
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 Chapter 4 describes the implementation of feedback 2DOF-IMC and Mp-GM 

tuning method to the air heater system in AFPT pilot plant. The AFPT pilot plant is a 

nonlinear plant particularly in the low to medium temperature range. It has nearly linear 

model at high temperature range. Therefore, the effects of nominal model selection in 

different range of operating conditions are presented in this chapter.   

 

 Finally, chapter 5 concludes the research study. Summarizes the results obtained 

from previous chapters. The recommendations for future work are outlined. The 

recommendations are given based on assessment of the significant findings, limitations, 

conclusions obtained and difficulties encountered in this study. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION   

 

 The IMC was developed by Morari and coworkers (Garcia and Morari, 1982; 

Morari and Zafiriou, 1989; Rivera et al., 1986). Internal Model Control (IMC) is a type 

of model based control that has applied in the process industry (Brosilow and Joseph, 

2001). IMC uses model explicitly in controller algorithm. This controller is actually a 

generation of Smith predictor (SP) controller which was designed for a process with 

long time delay (Smith O, 1959). The standard PID controller can not handle them 

optimally because (Kaya, 2003; Normey-Rico and Camacho, 2007; Romagnoli and 

Palazoglu, 2005); 

-  The disturbances are not detected immediately (detected until certain time 

with delay). 

-  The control actions based on the delay is not in accordance with the 

purposes of information. 

-  The control action took some time to determine its effects on the process. 

  

 Smith (1959) proposed delay compensator that aims to eliminate the delay 

element of the feedback loop. This was done by including delay model in the controller 

algorithm (Romagnoli and Palazoglu, 2005). SP controller has some weaknesses. If the 

primary controller is not properly tuned, may be unstable when a small mismatch in the 

dead time is considered (Palmor, 1980) and the disturbance rejection response can not 

be faster than the open loop (Normey-Rico and Camacho, 2007). These weaknesses 

could be overcome by IMC. SP can be considered as part of IMC. Modified version of 

SP controller such as Filtered-SP (FSP), Filtered Predictive Proportional Integral (FPPI), 
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Two Degree of Freedom-Dead Time compensator (2DOF-DTC) and Dead Time 

Observer disturbance compensator (DO-DTC) can be represented by the 2DOF- IMC 

(Normey-Rico and Camacho, 2007). The advantages and weaknesses of IMC are further 

discussed in section 2.2. 

 

2.2  STRUCTURE OF STANDARD INTERNAL MODEL CONTROL 

 

2.2.1 Principle of IMC controller  

 
 The structure of a standard IMC controller illustrated in Figure 1.1 can be 

simplified into classical control feedback (Figure 2.1) (Chia and Lefkowitz, 2010).  

 

 
 

Figure 2.1 Simplified IMC controller to classical feedback control 
 

 

 

Gc Gp y ysp + 
- 

+
+

Gd d

Gc1 Gp y 

Gpm 

ysp 

IMC Controller 

+ 

+ 

+ 
- 

+
+

Gd d

Classical controller
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From Figure 2.1 the classical controller (Gc) can be derived as follow  

 

 
mGpGc

GcGc
.1 1

1
−

=                 (2.1) 

  
It shows that the classical controller can be derived from IMC controller structure, or 

the IMC controller can be analogous to the classical controller Gc. However, it is very 

easy to design Gc1 than to design Gc. this is because some properties following IMC 

structure (Economou and Morari, 1986): 

Property 1: Assuming that the process model is the same as the plant then the closed 

loop stability can be guaranteed if the plant and the controller is stable. 

Property 2: Assuming that the controller Gc1 = 1 / Gpm generate a stable IMC structure, 

then a perfect set point controller can be achieved. 

Property 3: For all Gc1 with Gc1 (0) = 1 / Gpm (0) produces a stable IMC structure, then 

an offset free control can be achieved.  

 

 The first property can be seen from equation 2.1 in which the stability of the 

closed loop response is only affected by the stability of the plant and controller. While 

the second character can be derived as follows. For the SISO system, the IMC controller 

can be derived from Eq. (2.2) to (2.4) (Morari and Zafiriou, 1989). 

 

 Eeysp =−               (2.2) 

 

 EGcGpye m 1−=          (2.3) 

 

Then,   

 EGcGpEyy msp 1−=−        (2.4) 

 

          E* EGcGpm )1( 1−=                 (2.5) 

 

Where e is error between measurement and model, E is error between set point and e 

(see Figure 1.1), Gp is transfer function of the process, Gpm is transfer function of the 

model and Gc1 is transfer function of the controller. The other abbreviations that are 
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used in Figure 2.1 and in the next figures are;   Gd is transfer function of disturbance, d 

input of the disturbance, ysp is setpoint input and y is a process variable (measurement / 

controlled variable). 

 

 In the nominal case Gp = Gpm. Gc1 is designed to yield minimum value of E*; 

 

 212 )1(min*min
11

EGcGpE m
GcGc

−=           (2.6) 

 

In order to get minimal value of E*,  

 

 Gc1 = 1/Gpm.           (2.7) 

 

Eq. (2.6) states that optimal controller can be achieved if Gc1 = 1/Gpm (Eq.2.7) or the 

error will be zero. It means that the process variable is always the same with set point.  

However, Gc = 1/Gpm does not apply in some cases such as processes which has right 

half plane zero and time delay. Fortunately, It can be done by following two steps as 

below (Rivera et al., 1986): 

Step 1. Factor the model, 

 

 −+= mGpGpGp mm          (2.8) 

 

 The Gpm
+ consists of all of the time delay and the right half plane (RHP) zeros. 

It has the general form of 

 

 )1( +−Π= −+ seGp i
i

s
m βθ     Re(βi)>0      (2.9) 

 

 Where θ is time delay of the process, βi is zeros constants of the process transfer 

function. 
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Step 2. Make the IMC controller with, 

 

 f
Gp

Gc
m
−

=
1

1          (2.10) 

 

 Where, f is the low pass filter which must be chosen so Gc1 is proper. The 

simplest form of filter is 

 

 
rs

sf
)1(

1)(
+

=
λ

        (2.11) 

 

 Where, r is a scalar to make Gc1 proper.   

 

 The value of λ affects the speed of response. The smaller is the value of λ, the 

faster is the response (more sensitive controller). In order to maintain stability of the 

system, for FOPDT model, Rivera et al.(1986) suggested that λ = 0.8 θ, Chien and 

Fruehauf (1990) proposed τ > λ > θ and Skogestad (2003) recommended λ = θ.   

  

2.2.2 Advantages of IMC controller 

 

 The relationship between the response variable (y) and set point (ysp) and 

disturbance (d) can be expressed by Eq. (2.12)  

 

 ( ) ( ) d
GpGpGc

GcGp
y

GpGpGc
GpGc

y
m

m
sp

m −+
−

+
−+

=
1

1

1

1
1

1
1

    (2.12) 

  

 Eq. (2.12) shows that, if there is no error in the model (Gp = Gpm), the IMC 

structure is open-loop system for set point tracking. In this situation, the speed of time 

response is function of filter time constant. The smaller in the filter time constant the 

faster time response will be achieved.  IMC structure is internally stable, if both of the 

model and controller are stable. A control system is internally stable if bounded signals 

is injected at any point of the control system generates bounded responses at any other 

point. The internally stable is more comprehensive than the usual stability concept, 
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where the stability of the system is checked by examining the root of characteristic 

equation (Morari and Zafiriou, 1989). 

  

 IMC can be analogous to PID algorithms, and then parameters of PID controller 

can be determined using IMC tuning. Many tuning method have been proposed for PID 

controller based on IMC structure (IMC-PID). More detail about IMC-PID tuning will 

be presented in section 2.2.4. 

 

 Another advantage of the IMC is it can be designed for disturbance rejection 

with 2DOF-IMC. The structure of standard 2DOF-IMC is depicted in Figure 1.2. With 

2DOF-IMC, the disturbance rejection response can be accelerated. The effect of a 

2DOF-IMC structure is to include one lead lag transfer function to the feedback loop. 

The parameters of the lead lag transfer on 2DOF-IMC can be derived easily if there is 

no error in the model (Horn et al., 1996). More details will be discussed in Section 2.2.5. 

  

 Improvement of filter design in IMC for disturbance rejection can be done 

adding one more filter in Gc1 which can generally be written as follows (Horn et al., 

1996);   

 
rs

ssf
)1(
1)(

+

+
=

λ

β         (2.13) 

 

For FOPDT model, r = 2, the value of β is selected to cancel the open lop pole at s =-1/τ 

that causes the sluggish response to load disturbances. 

 

 ( ) ( )( )
( )τθτ

λτλλτθτθλβ
2

222
+

−+−+
=       (2.14) 

 

 

2.2.3 Limitations of 1DOF-IMC 

 

 When the model is not perfect, the closed-loop response of IMC control 

structure is much more complicated and can even be unstable if the filter is not detuned 

sufficiently (Brosilow and Joseph, 2001). Since, almost all chemical processes are non 
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linear, then the linearization of the plant model makes the model no longer 

perfect. Other factor that makes the model inaccurate is different operating conditions, 

for example, change in flow rate, temperature and or pressure. Therefore, the model 

uncertainty needs to be considered in designing the IMC controller. Section 2.3 

describes model uncertainty in more detail. While tuning method for robust 

performance criteria are described in Section 2.4. 

 

 IMC has weakness in an unstable process. Internally stable is only valid for a 

stable process. IMC structure can not be implemented on unstable processes (Morari 

and Zafiriou, 1989; Tan et al., 2003), because the input in a point (disturbance) will 

cause an infinite response if the process is unstable. The IMC structure may be able to 

be used for unstable process if the following conditions are met: 

a. Gc1 is stable 

b. GpGc1 is stable  

c. (1-GpGc1)Gp is stable 

However the above requirements are not easy to achieve. Tan et al. (2003) has proposed 

a modification to IMC structure for unstable processes. However the structure and 

tuning of the modified IMC was complicated. Several researchers investigated of 

implementation IMC for unstable process are Chia and Lefkowitz (2010), Liu and Gao, 

(2011), Tan (2010), Tan et al. (2003) and Wang and Watanabe (2007). 

 

 Another weakness of IMC is it may fail on handling disturbance rejection. Since 

the feedback signal of IMC structure is the difference between plant output with 

disturbance and plant model, the disturbance therefore should be anticipated by the 

controller. However, IMC design is only to the set point problem, and in many cases the 

disturbance rejection response is not as expected. Therefore, IMC modification is 

needed to cater the disturbance rejection problem. Some methods have been proposed to 

improve disturbance rejection in IMC structure. These methods include specifying a 

difference IMC filter design procedure (Horn et al., 1996) and using 2DOF (two-degree-

of-freedom) IMC (Kaya, 2004b; Morari and Zafiriou, 1989). Horn et al. (1996) added a 

lead transfer function (numerator) in the controller of 1DOF-IMC structure. The extra 

lead constant was selected to cancel an open-loop pole at s = 1/τ that causes the sluggish 

response to load disturbances. However, it made excessive overshot in the set point 
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response (Shamsuzzoha and Lee, 2007). 2DOF-IMC was designed to improve both 

disturbance and set point performance, since the set-point and disturbance controller can 

be set ‘independently’.   

 

2.2.4 2DOF-IMC 

 

 The 2DOF-IMC structure can be seen in Figure 1.2. The figure shows that it 

only required a forward path if no error in the model and no disturbances. Since there 

are no perfect models for the real plant, the feedback path is always required. Therefore, 

it is clear that 2DOF-IMC is designed for disturbance rejection. 

 

 The closed loop response of 2DOF-IMC is expressed as follow 

 

 
( ) ( )

( )m

msp
GpGpGc

dGpGcyGpGc
y

−+

−+
=

2

21
1

1
      (2.15) 

 

 

If Gp = Gpm then 

 

 ( ) ( ) spyGpGcdGpGce 12 11 −−−=       (2.16) 

 

 From equation (2.16), it can be concluded that Gc2 is designed to compensate 

the disturbance d. In order to reject the disturbance then Gc2 = 1/Gpm or it is equal to the 

design of Gc1. However, if Gc2 = Gc1 then the disturabnce can not be rejected optimally. 

Therefore, design and tuning 2DOF-IMC needs to be taken attention by the researcher. 

In detail, tuning standard 2DOF-IMC presented in section 2.4.2. 

 

2.2.5 1DOF and 2DOF IMC for PID controller design 

 

 One of advantage of IMC is that it can be analogous with PID controller (see 

Figure 2.1). The IMC structure is simplified to conventional feedback structure and the 

algorithm then analogous to PID algorithm. There are many PID tuning method based 

on the principles of IMC (Arbogast et al., 2008; Chen and Seborg, 2002; Chien et al., 
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2002; Fruehauf et al., 1994; Kaya, 2004a; Lee et al., 2006; Panda et al., 2004; Rivera et 

al., 1986; Skogestad, 2003; Vilanova, 2008; Wang et al., 2001). Broadly speaking, 

tuning of IMC-PID can be done with analogous IMC in PID structure as  

 

 
mGpGc

Gc
Gc

1

1
1−

=         (2.17) 

 

This Gc form can then be converted into PI/PID controller. For first order plus dead 

time (FOPDT) model, 
1+

=
−

s
keGp

s

τ

θ

,  the classic controller Gc can be expressed as (Chen 

and Seborg, 2002).     

 

 ( )sk
sGc

θλ
τ

+
+

=
1         (2.18) 

Where τ is process time constant, λ filter time constant and k is gain process.  

Then the PI controller setting are  

 

 ( )θλ
τ
+

=
k

Kc          (2.19) 

            and ττ =I          (2.20) 

Where Kc is proportional gain and τI is integral gain. 

For second order plus dead time (SOPDT), ( )( )11 21 ++
=

−

ss
keGp

s

ττ

θ

, give PID controller 

with parameter are  

 

 
λθ
ττ

+
+

= 211
k

Kc         (2.21) 

 

 21 τττ +=I          (2.22) 

 

 
21

21
ττ

ττ
τ

+
=D          (2.23) 

Where  τD is derivative gain  
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 An IMC-PID tuning for any processes are summarized by Rivera et al. (1986) 

and Skogestad (2003).  Various types of PID controller for FOPDT and SOPDT in 

various types of process are reviewed by Panda et al. (2004). Tuning of 2DOF-PID 

based on 2DOF-IMC for integrator and dead time process is proposed by Zhang et 

al.(2006). While IMC-PID tuning for disturbance rejection for time delay process with 

various process characteristics is proposed by Shamsuzzoha and Lee (2007). 

 

2.3  CHEMICAL PROCESS UNCERTAINTY 

 

 Inaccuracies between model and real plant are called model uncertainty. Model 

uncertainty comes from several sources as follows (Laughlin et al., 1986);  

(i) The variation of real parameters affecting to plant operation.  

(ii) The inherent non-linearity of the processes.  

(iii) The experimental identification of the process.  

(iv) The mathematical model development. 

 

 Most importantly, the real process is non linear. If the process model obtained 

via linearization, then this is accurate only in the neighborhood of the currently selected 

linear condition. In some cases the process may be accurately represented by linear 

models, but different operating conditions will cause changes in the parameters of linear 

models. For example, increasing the flow rate will result in dead time and time constant 

will be smaller (Morari and Zafiriou, 1989). 

 

 Various sources of uncertainty can be classified in two categories namely 

parametric (real) uncertainty and dynamic (frequency-dependent) uncertainty. 

Parametric uncertainty, here the model structure is known but some parameters are 

uncertain. It is quantified by assuming that each uncertain parameter is bounded within 

some regions. Dynamic uncertainty, here the dynamic model error because miss 

understanding of the physical process (Skogestad and Postlethwaite, 2005).   

 

 Parametric uncertainty is usually referred to as structured uncertainty, because 

the model is made in the form of structured uncertainty. In the plant, it is described by a 
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set of unknown parameters that lie within some bound.  A set Π representing real 

parameter variations in the linearization process around different steady state for 

FOPDT model is given by (Brosilow and Joseph, 2001; Laiseca, 1994):  

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
==Π

−
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s
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s

τ
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       (2.24) 

 

Uncertainties of all three parameters are; 

 
maxmin
maxmin
maxmin

θθθ
τττ

≤≤
≤≤
≤≤ kkk

 

 

 Dynamic uncertainty can be described with norm bound complex gain and phase 

perturbations or uncertainty bound (Laiseca, 1994). The norm-bound uncertainty 

includes additive and multiplicative uncertainty (see Figure 2.2) (Morari and Zafiriou, 

1989; Skogestad and Postlethwaite, 2005). Mathematically additive uncertainty can be 

written as; 

 

 laGpGp m +=         (2.25) 

 

Where la is additive uncertainty. 

 

 
Figure 2.2 Additive (la) dan multiplicative (lm) uncertainty. 
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And multiplicative uncertainty can be written as; 

 

 )1( lmGpGp m +=         (2.26) 

 

Where lm is multiplicative uncertainty.  

 

 Skogestad and Postlethwaite (2005), summarized that if all sources of 

uncertainty included in the multiplication then the general form of model uncertainty is; 

 

 ( );)()(1)()(: sswsGsGp II ∆+=Π      ωω ∀≤∆ 1)( jI    (2.27) 

 

 Where, ∆I is any stable transfer function which at each frequency is less than or 

equal to 1 magnitude. Subscript I indicate input, nevertheless for a single input single 

output (SISO) system does not matter whether the perturbation in input or output of the 

plant. ω is frequency. Some examples of transfer function of ∆Ι which qualify with ∞H  

norm less than 1, are 

 

 
11.0

1.0,
)15(

1,
1

1
23 ++++ ssssτ

      (2.28) 

 

Whereas, wI is weighting transfer function that can be derived from the multiplication 

uncertainty that is often expressed by: 

 

 
)(

)()(max
)(

ω
ωωω

jGpm
jGpmjGp

Gp
lm −

Π∈
=      (2.29) 

 

Where, jω means that the transfer function is in frequency domain.  

with rational weight  

 

 ωωω ∀≥ ),()( lmjwI        (2.30) 
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An example of weighting transfer function that is eligible for inequalities above for the 

gain and time delay uncertainty is as follow 
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Where, 
k
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2
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=      (2.32) 

 

In general, the weighting function form of modeling dynamic uncertainty can be 

expressed as  

 

 
1)/(

)(
+

+
=

∞ sr
rs

sw o
I τ

τ
         (2.33) 

 

Where, ro is relative uncertainty at steady state, 1/τ is approximate the frequency at 

which uncertainty reaches 100%, and ∞r  is the magnitude of the weight at high 

frequency. However, (Skogestad and Postlethwaite, 2005) stated that it is necessary to 

revise the formulas because the formulas are not always qualified for all frequency. 

 

2.4  TUNING OF IMC UNDER MODEL UNCERTAINTY  

 
2.4.1 Tuning of 1DOF-IMC 

 
 From section 2.2.5, the choice of smaller λ gives faster process response. With 

the previous guidelines for the λ, then stability would be no problem, but it is not 

necessarily optimal for all cases. Consequently, tuning parameter based on robust 

performance should be applied.  

 

 Laughlin et al., (1986) proposed mapping uncertainty regions for SISO robust 

controller design. The method then was applied to IMC structure. The mapping 

uncertainty procedure consists of several steps: 



22 

1. Locate process uncertainty region π(ω). The process uncertainty can be located 

with  

 (i). Locating polynomial rectangles 

 (ii). Inverting the denominator rectangle 

 (iii). Locating the rational uncertainty region 

 (iv). Multiplying by the time-delay uncertainty 

2. Once process uncertainty regions π(ω) have been located, then controller design 

can begin. The procedure involves the step  

 (i). Specifying performance criteria 

 (ii). Designing a controller for nominal plant 

 (iii). Selecting the IMC filter 

 (iv). Determining the controller Gc1(jω) 

 (v). Mapping the regions π(w) Gc1(jω) 

 (vi). Testing performance robustness 

 (vii). Testing stability robustness 

 (viii). Testing performance robustness 

 

 Uncertainty region at a frequency value usually can be described as in Figure 2.3 

and expanded for a range of frequency the mapping region illustrated in Figure 2.4. 

While Figure 2.5 shows the mapping region after robust performance is achieved.   
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Figure 2.3 The uncertainty region π(ω) evaluated at a ω value. The smallest circle 
containing π(ω) could be used as a norm-bounded approximation to the actual 

uncertainty.(Laughlin et al., 1986). 
 

 
 

Figure 2.4 Uncertainty region π(ω) for 30 frequencies range 0.001-1. The nominal 
model passes through the center of each region.(Laughlin et al., 1986). 
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Figure 2.5 Uncertainty region π(ω) Gc1(jω) on Nyquist plane. Robust stability requires 
that none of the regions contain the critical (-1,j0).(Laughlin et al., 1986). 

 

 The mapping region method is very complicated for the computational. The 

method for checking robustness suffers either from conservatism or from exponential 

increase in computational complexity with the size of problem. 

 

 Morari and Zafiriou (1989) summarized the IMC design procedure as follows; 

a. Required information: 

1. Process model 

2. Type of input (set point and disturbance) affecting the process output. 

3. Performance specifications: 

- closed loop system  (no offset for step) 

- maximum allowed peak weigh (w-1) of the sensitivity function S 

(typically 0.3 < w < 0.9) 

4. Uncertainty information lm (w) 

 Family of plant considered for robust design  
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b. Design procedure for robust stability and performance: 

1. Robust stability: 

Check if  

 

 1 1 <lmGcGpm  for w = 0      (2.35) 

 

This condition is necessary and sufficient for filter time constant λ >0 to exist 

for which the system is robustly stable.  

2. Robust performance:  

Increase λ just enough to meet the condition 

 

 1<+ SwTlm     w∀        (2.36) 

 

 1)11(1 <−+ wGcGplmGcGp mm    w∀     (2.37) 

 

i.e. choose λ to make the above equation an equality for some specific of w.  

Where S is sensitivity function and T is complementary sensitivity function. For IMC 

controller S and T are response y to d and response y to r respectively, expressed as: 
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And     
)(1 mGpGpGc

GpGc
r
yT

−+
==        (2.39) 

 

While w is weighted function and lm is a bound of multiplicative uncertainty. To design 

the filter for robust performance is difficult. It is because, there might not exist any filter 

to satisfy Eq. (2.37) for the particular choices of weights w and lm (Morari and Zafiriou, 

1989).  

   

 Brosilow and Joseph (2001) used principal of resonant peak of complementary 

sensitivity function also called as maximum peak (Mp-tuning or Mp-synthesis). In Mp-
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synthesis, robust performance specified using maximum peak (Mp) of the closed loop 

transfer function such as sensitivity function (S) and complementary sensitivity function 

(T). The Mp-synthesis can be summarized as: 

Select the filter time constant, λ for the IMC controller Gc1 so that the magnitude 

of the complementary sensitivity function T(jω) is equal to or less than a specified 

value Mp for all process Gp(s) in a predefined set Π. For at least one process in P 

the magnitude of T(jω) must equal the specified Mp at one or more frequencies. 

That is 

 

  ( ) MpjwT ≤λ,    wP ∀Π∈∀ ,      (2.40) 

 

and  

 

  ( ) MpjwT =λ,  for some Π∈Gp  and     (2.41) 

 

      some frequencies, ωc 

  

Mp-tuning procedure to find filter time constant is summarized as 

1. A process model 

2. An uncertainty description in term of upper-bound on process parameter 

3. An initial value for the filter time constant. The default is the value of filter time 

constant that satisfies the maximum noise amplification specification. 

4. An Mp specification and tolerance. The default are Mp = 1.05 and tolerance = + 

0.005. 

5. The maximum allowable high frequency controller noise amplification (i.e. 

( ) ( )( )1,01/,1 GcGc λ∞ . The default is 20. 

6. Upper and lower bond of the frequency range for the optimization. The default 

are:  

 Low frequency: reciprocal of 10 times the largest time constant or dead time 

 High frequency: 1000 times the low frequency 

 Number of point and scale for plotting: 30, logarithmic 
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7. Upper and lower bound of the frequency range for plotting. The default are 

 Low frequency: one-tenth the break frequency  

 High frequency: 100 times the break frequency 

 Number of point and scale for plotting: 30, logarithmic  

 

 Liu et al. (1998) proposed IMC tuning filter by using combination of maximum 

peak (Mp) of T(jω) and integral square error (ISE). The ISE is determined by 

 

 ( )∫ −= ∞
0

2)()( dttrtyJ ISE        (2.42) 

 

Based on the block diagram of controller system, the system error E(s) can be written as 

 

 ( ) )()()(1)(
)()(1

1)( sYsFsGpmsY
sGcsGp

sE ++=
+

=    (2.43) 

 

         ( ) )(
)()(

1
1

...

...
1

1
10

1
10

sD
sNsR

sasasa

bsbsb

k
kk

m
mm

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++++

+++
−=

−

−

λ
 

 

         
p

pp
p

ppp

dsdsd

cscscsc

+++

++++
=

−−

−−

...

...
42

1
22

0

11
10  

 

The ISE will be obtain as 

 

 ( ) ( )λf
Hc

H
J

p

dp
ISE =−= −

0

1
2

1       (2.44) 

 

Where Hp is the Hurwitz determinant of D(s) with dimension of p x p, and Hd is a 

matrix obtained by replacing the first row Hp (c1, c2, … 0, …) with (d0, d1, …, dp-1). 

Because JISE is a function of parameter λ, then the performance can be use for adjusting 

the parameter λ.  
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 While the Mp of T (jω) is formulated as  

 

 ( )λfjwTMp
ww

==
>

)(max
0

       (2.45) 

 

In order to obtain the optimal λ, it is necessary to make combination between the two 

measures. That is 

 

 ( )ISEJMp .min γ
λ

+         (2.46) 

 

Where γ is a weighting function.  

 

 Chawankul et al. (2005) proposed integration of design and controller in IMC 

structure, which they use optimization to minimize operating costs and also capital cost. 

As for getting the output controller when there is a disturbance they used the following 

criteria; 

 ϖ
ϖτ

ϖϖ ∀<
+

,1
1

1)().(1
22

jGdjGc      (2.47) 

One disadvantage of this method is to obtain optimal Gc1 then we must have a 

disturbance transfer function. 

 

 Liu et al. (2010) proposed iterative learning for design IMC controller with 

uncertainty in time delay. In the iterative learning, in addition to Gc1 controller design is 

also need for corrective value of set point and controller output. Figure 2.6 shows the 

block diagram of the proposed iterative learning on IMC controller. 
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Figure 2.6 Iterative learning IMC controller by Liu et al. (2010) 

 
 

 From Figure 2.6 an iterative learning controller is done in block dashed line, the 

iterative learning controller (ILC)  is added to the set point and output controller. If the 

transfer function model are stated in 

 

 )(
0. sm

mm eGpGp θ−=  with 
D

NNkGpm
−+=

.
0     (2.48) 

 

Where all zeros of D and N- are located in the complex left-half-plane (LHP) and all 

zeros of N+ are located in the right-half-plane (RHP).  

Gc1 can be stated as; 

 

 
nmsNNk

AGc −
+− +

=
)1.(.

1
λ

       (2.49) 

 

Where m is order of D and n is order of N-. In ILC controller the Gc1 will be GILC as 

equation (2.50) below;  
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Where kc and λ are designed such that the equation (2.51) below is satisfy.  
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From this equation shows that for design IMC controller is needed to find the value of 

kc and λ. Besides, it is needed to calculate the v (k) and u (k) using iterative learning. 

These make this method more complicated.  

 

 

2.4.2 Tuning of 2DOF-IMC 

 

 Morari and Zafiriou (1989) summarized that the design problems for nominal 

performance are independent. If the ∞H  performance objective is chosen then Gc1 and 

Gc2 are designed to satisfy  

 

 ( ) 11 1 <− ∞rm wGcGp        (2.52) 

 

 ( ) 11 2 <− ∞dm wGcGp        (2.53) 

 

Robust stability depends only on Gc2 

 

 12 <∞mm lGcGp         (2.54) 

 

The robust performance for disturbance rejection is  

 

 1<∞dSw  Π∈∀Gp         (2.55) 
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Which equivalent to 

 

 1<+ md TlSw   ω∀         (2.56) 

 

2DOF-IMC design for robust tracking performance specification is 
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mm
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 ϖ∀Λ∈∀ ,mml     (2.57) 

 

Where the set )( ϖimΛ   is defined by 

 

 { })()(:)()( ϖϖϖϖ mmmm lilili <=Λ      (2.58) 

 

From above equations can be derived for the condition  

 

 ( ) 1111
2

1
21 <⎥

⎦

⎤
⎢
⎣

⎡
−++− rmmrm w

Gc
Gc

lGcGpwGcGp     ϖ∀    (2.59) 

 

The first term expresses nominal performance. The second term is proportional to the 

multiplication uncertainty lm and to disturbance controller magnitude i.e the disturbance 

controller Gc2 affects the robust setpoint tracking performance. Thus the design of Gc2 

and Gc1 are not independent when the objective is robust performance. 

 

 Stryczek et al. (2000) stated that the simplest controller design for speeding up 

the response to disturbance is to choose Gc2 as Gc1, but to select λ2 to be smaller than λ1. 

The smaller filter time constant is feasible because the filtering action of the disturbance 

lag Gd(s) reduce the amplitude of the disturbance frequencies that enter the feedback 

loop. This reduces the magnitude of loop oscillations and allows the selection of a 

smaller filter time constant, thereby speeding up the disturbance rejection. 
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 Stryczek et al. (2000) and Brosilow and Joseph (2001) stated that to tune the 

feedback loop of 2DOF-IMC for good disturbance rejection, it seems reasonable to 

focus on the disturbance to output transfer function, called the sensitivity, which is 

given by 

 

 
( )

( )( )m

m
GpGpGc
GdGcGp

sd
syS

−+
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==
2

2
1

1
)(
)(       (2.60) 

 

The controller tuning seeks to achieve a specified, frequency-dependent, upper bound 

on the magnitude of the sensitivity function. Unlike complementary sensitivity function, 

the maximum magnitude of the sensitivity function is often greater than 1, even when 

there is a perfect model. Maximum magnitude of sensitivity function is model 

dependent. Because it is not a simple matter to set bounds on the magnitude of the 

sensitivity function so as to achieve desirable time domain behavior, they introduced 

modification of sensitivity function also called partial sensitivity function. The partial 

sensitivity function is defined as 

 

 ( )( ))()(1
)0(/)()()(  

2

2
sGpsGpGc

GdsGdsGcsGpFunctionySensitivitPartial
m−+

≡    (2.61) 

 

The above definition is motivated by the first term of the sensitivity function 

( )( ))()(1
)(

2 sGpsGpGc
sGd

m−+
 is output response to the disturbance, as modified by the 

closed-loop. The second term, ( )( ))()(1
)()()(

2

2
sGpsGpGc

sGdsGcsGp

m−+
 represent the response of the 

output to the control effort. This term is the negative of the model output response to a 

set point that is filtered by the disturbance lag Gd(s). If the model in numerator is 

replaced with Gp(s) and if the IMC controller is taken as Gc2, then this term is the same 

as a complementary sensitivity function filtered by a lag. This observation suggests the 

possibility of applying the Mp-tuning to partial sensitivity function. The controller 

tuning is very dependent on its disturbance model.  The zeros of Gc2 controller, α, is 

(are) selected to makes zeros of (1- Gpm Gc2) cancels selected poles in Gd: 
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Where n is number of poles in Pd to be canceled by the zeros of (1- GpmGc2). Mp-

tuning software developed by Stryczek et al. (2002) is presented in Appendix C namely 

as IMCTUNE. 

 

 Tuning of the standard 2DOF-IMC is not easy task then Kaya (2004b) proposed 

2DOF-IMC structure as in Figure 2.7 below. After this the IMC proposed by Kaya 

(2004b) is known as Kaya 2DOF-IMC. 

 
Figure 2.7  2DOF-IMC proposed by Kaya (2004). 

 

The closed loop transfer of Kaya 2DOF-IMC can be written as; 

 

Gdd
GpmGpGcGpGc

GcGpmGpy
GpmGpGcGpGc

GcGpmGcGpy sp .
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=  (2.63) 

 

The Kaya 2DOF-IMC structure proposed for integrating processes and used 

proportional derivative (PD) controller. The PD parameters were determined using 

principle of gain and phase margin theory.  
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 Shreesha and Gudi (2003) proposed control relevant identification methodology 

and used the model for 2DOF-IMC in controller. The objective is to minimize the 

model mismatch which is most relevant from closed loop performance.  The structure of 

2DOF controller is described in Figure 2.8 below. 

 
Figure 2.8 2DOF controller used by Shreesha and Gudi (2003).  

 

The models are estimated using prefilter based on specification for set point and 

disturbance rejection. Then the 2DOF-IMC is designed based on Morari and Zafiriou 

(1989).  

 

 Gorez (2003) proposed 2DOF controller (such in Figure 2.8) from IMC structure 

which the dead time is approximate by a first order parameterization or the FOPDT 

model transfer function is expressed as below; 
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Here, the pole zero are transformed to a variable called model adaptation parameter (v) 

= θN/θ, then equation (2.64) became; 
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The Gc1 can be expressed in equation (2.66) below. 
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where θC  = (µ-1) θN = (γ-v)θ   

The value of µ and v are set to determine the parameters of PID controller. The µ has 

correlation with sensitivity (S) of closed loop transfer function as below; 
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If Mp is the maximum value of S at frequency domain then the µ can be related to the 

desired sensitivity by  

 

 
1−

=
Mp

Mpµ          (2.68) 

 

 Where µ is set as 2 for time responses with a small amount of oscillatory transients, and 

µ = 3.5 for more robust but slower responses with no or negligibly small oscillations. 

While, the value of v = 0.5 for PID controller and v = 1 for PI controller.  

 

2.5  SUMMARY 

 

In the case of no error in the model, IMC can be tuned to be a perfect controller. 

However, the perfect controller can only be valid if there is no disturbance. If any 

disturbances occur, then it is retuned that the 2DOF-IMC structure to reject the 

disturbances quickly. In the case of model uncertainty, 2DOF-IMC may produce a 

controller that is not optimal or even produce the unstable response. Therefore, to 

optimize the controller it is necessary to pay attention to model uncertainty (robust 

performance). However, the existing methods were mathematically complicated.  
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Various structures and tuning of 2DOF controller using IMC structure have been 

investigated. However, among them even adds specifications and parameters become 

more than the standard 2DOF-IMC and some of their objective is to find the parameters 

of PID controller. Therefore, a robust and simple tuning method for a 2DOF-IMC is a 

challenge for the researcher and is urgently needed.  
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CHAPTER 3 

 

 

NEW Mp-GM TUNING METHOD FOR 2DOF-IMC 

 

 

3.1  INTRODUCTION 

 

 The purpose of controller tuning is to determine the parameters of controller in 

order to ensure the time response of close-loop control system at the desired 

performance. Performance of a controller is considered good if the controlled variable is 

always at the desired set point (Marlin, 2000). Therefore, if there are disturbances 

entered to the system, both predicable and unpredictable disturbances, the control 

system with proper controller tuning will be able to eliminate it quickly. Likewise, if 

there is a change of set point then the control system can also quickly reach the desired 

set point.  

  

 In IMC controller, there are several factors that affect the performance of the 

control system. These factors are structure, algorithm and parameter of the controller. 

As mentioned in Chapter 2, there are two standard IMC structures available namely, 

1DOF-IMC and 2DOF-IMC. A new proposed structure of 2DOF-IMC based on 

principle of feedback / feedforward control system will be presented in subsection 3.4.1. 

The algorithm for disturbance rejection controller (Gc2) is setpoint controller (Gc1) 

multiplied with a lead lag transfer function. In order to generate a good performance of 

time response, it needs a tuning approach that meets the robust performance criteria. 

One of the approaches of tuning that is typically used in the control system is frequency 

response. 

 

 Frequency response analysis is an important technique in control system design 

in the frequency domain. One of the quantity that can be analyzed in frequency response 
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is complementary sensitivity function (T), where the maximum value of |T (jω)| is 

called the resonant peak (Mp). Resonant peak indicates the stability of closed-loop 

system (Kuo, 1995). Another quantity that is often used to determine the controller 

parameters with frequency response is gain margin (GM). Gain Margin is a criterion 

that is often used to measure the stability of a control system (Kuo, 1995). In the 

Nyquist plot, gain margin is the frequency response of open loop transfer function on 

the real and imaginary axis (Seborg et al., 2004).  

  

 In the present study, the method proposed for tuning 2DOF-IMC uses Mp 

criteria for tuning of set point controller and GM criteria for tuning of disturbance 

rejection controller. The brief theory of Mp and GM will be discussed in subsection 3.2 

and 3.3. Section 3.4 presents derivation of proposed feedback/feedward 2DOF-IMC, 

tuning method and tuning implementation to several types of plant. 

 

3.2  MAXIMUM PEAK (Mp) 

 

 Mp is defined as the maximum magnitude of the closed-loop frequency response. 

In general, the magnitude of Mp gives an indication of the relative stability of a stable 

system. The closed loop transfer function (Gcl) is the response between controlled 

variable (y) to desired set point (ysp). In feedback control structure shown in Figure.3.1, 

Gcl(s) has transfer function given in Eq. (3.1) below (Levine, 1995): 
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Figure 3.1 General structure of a feedback control system. 
 

Figure 3.2 shows the typical closed loop response, |Gcl(jω)|, in frequency domain. It has 

a peak value (Mp) at certain frequency (ωp). 

 

 
Figure 3.2 Resonant peak (Mp) Vs frequency (Levine, 1995). 

 

 Mp has strong correlation with the time response of system which can be 

presented in second order transfer function. Normally, a large Mp corresponds to a large 

maximum overshoot of the step response in the time domain (Levine, 1995). A system 

that has Mp value of 1 to 1.4 will have damping ratio (ζ ) value of 0.4 to 0.7 in the time 

response while when Mp is more than 1.5 then the time response will be oscillatory and 

has a large overshoot (Subrahmanyam, 1996). The mathematical relationship between 

damping ratio and overshoot (OS) can be written as follows (Nagrath and Gopal, 2006):  

 

ysp Gc Gp y 
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 OS=  ⎟
⎠
⎞

⎜
⎝
⎛ −− 21/exp ζπζ  10 ≤≤ ζ      (3.4) 

 

OS is fractional overshoot, OS = (maximum change in output – change in set point) / 

change in set point.  

 

 Correlation between Mp and OS can be described as (Brosilow and Joseph, 

2001);  

 

 ( )( ),/111exp 2MpMpOS −−−= π    0>Mp      (3.5) 

 

Whereas the relationship between damping ratio of the second order response and Mp 

can be written as; 

 

 
2

111
2Mp

−−
=ζ         (3.6) 

 

Figure 3.3 shows the correlation between Mp, OS andζ .  

  

 From this correlation, if the models of the process (Gp) and the controller 

algorithm (Gc) in Eq. (3.1) are known then the value of controller parameter can be 

arranged so that Mp meet to its performance criteria. For most control systems, it is 

generally accepted in practice that the desired Mp should be in the range between 1.1 to 

1.5 (Kuo, 1995). 

 

 For the IMC structure as shown in Figure 2.1, the closed-loop response between 

y and ysp can be expressed as follows; 

 

 ( ) spy
GpmGpGc

GpGcy
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=
1

       (3.7) 
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For the case of no error in the model, the Gc parameter can be easily set as explained in 

section 2.2.5. For the case at which model uncertainty exists, the principle of Mp can be 

applied. Brosilow and Joseph (2001) proposed that the Mp value of 1.05 and this Mp 

value gave overshoot in time response domain about 10%. Selection and effect of Mp 

value to overshoot is described in section 3.4.4. 

 

 
 

Figure 3.3 Correlations between Mp, OS and ζ  (Nagrath and Gopal, 2006). 
 

    

3.3  GAIN MARGIN 

 

 Gain margin is one of the frequency response specifications to determine the 

stability of the control process. Gain margin can be described through Nyquist plot. 

Nyquist plot of open loop transfer function (Gol (s)) is plotted in a polar coordinates of 

the imaginary of |Gol (jω)| versus the real of |Gol (jω)| with the frequency, ω, from 0 

to ∞ . If G (s) is the forward path and H (s) is the feedback path, the Gol (s) can be 

written as 

 



42 

 Gol(s)= G(s) H(s)         (3.8) 

 

The stability of the closed-loop system can be obtained if the frequency response of Gol 

in Nyquist plot do not circle of point (-1, j0) (Kuo, 1995).The gain margin in the 

Nyquist plot is shown in Figure 3.4.  

 
Figure 3.4 Gain and phase gain margins on nyquist plot (Seborg et al., 2004). 

 

 Gain margin is also commonly used for tuning the parameters of controller. 

Typical value of GM for well tuned controller is 2 (Marlin, 2000), 1.7 - 4 (Seborg et al., 

2004), or 2 – 5 (Astrom et al., 1998). Many researchers used GM criteria for PID tuning. 

These researchers included Hang et al. (1994), Hang et al. (1994), Ho et al. (1995), Ho 

et al. (1998), Wang et al. (1999) and Yaniv and Nagurka (2004).   

  

 The usage of gain margin for the tuning of 2DOF-IMC has not been previously 

investigated. This is probably caused by two reasons. Firstly, in the structure of the 

standard 2DOF-IMC, Gc1 is not in the feedback path, but it is in the forward path. On 

the other hand, from the equation of the closed-loop response, Eq. (3.9), the open-loop 

transfer function Gol(s) is Gc2 (Gp-Gpm). It seems that Gc1 is not involved in the Gol (s), 

even Gc1 is not involved in sensitivity function of 2DOF-IMC (see Eq. (2.54)).  

 

 
( ) ( )

( )m

m
GpGpGc

dGpGcrGpGc
y

−+
−+

=
2

21
1

1
      (3.9) 

  



43 

In section 3.4.1 a new proposed structure of 2DOF-IMC based on the feedback / 

feedforward control will discuss to clarify the effect of Gc1 on the closed loop response.  

 

The second reason for GM has not been used for the tuning of 2DOF-IMC might be due 

to the Gol (s) is equal to 0 when no error in the model. In this case, it is not possible to 

use GM principle for tuning purpose. On the other hand, the form of Gol(s) which 

contains (Gp-Gpm) has advantageous to GM analysis. It is because the GM can be used 

easily to prove that the system is stable for any process modeling error (Marlin, 2000). 

Therefore, the use of the GM for tuning 2DOF-IMC can be seen as a great opportunity 

in improving the overall performance. Selection and effect of GM value to output 

response is described in section 3.4.6. 

 

3.4  MP-GM TUNING METHOD OF 2DOF-IMC 

 

3.4.1 Structure of feedback/feedforward 2DOF-IMC 

 

One of drawback of feedback control is that there is no action before the 

deviation between controlled variable and its set point occurs. It does not provide 

prediction effect to compensate the disturbance. For the situation where feedback 

control by itself is not satisfactory, feedforward control can be added (Seborg et al., 

2004). The main target of feedforward control is to initiate action before disturbing the 

process. The weakness of feedforward control is that it needs measurable disturbance. 

The usage of feedback /feedforward combination becomes an alternative to increase 

performance. Classic scheme of feedback/feedforward control is shown in Figure 3.5. 

 
Figure 3.5 Classic feedback/feedforward control structure. 
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 Effect of disturbance to output response is: 
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        (3.10) 

 

In order to get perfect disturbance compensation, the feedforward controller 

(Gcf ) can be expressed by: 

 

 
Gp
GdGc f =          (3.11) 

 

The optimal Gcf depends on the feedback controller Gc and the disturbance d. 

For IMC structure, Morari and Zafiriou (1989) recommended feedback/feedforward 

IMC controller as presented in Figure 3.6. The advantage of feedback/feedforward IMC 

parameterization is that it separates the effect of the feedforward controller (Gcf )and the 

feedback controller Gc and allows them to be designed independently. The effect of the 

disturbance on the output is described by: 
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Figure 3.6 Feedback/feedforward IMC controller. 
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If there is no error in the model or Gdm (disturbance model) = Gd and Gpm = Gp 

then  
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       (3.13) 

 

From Eq. (3.13) it is clear that the optimal Gcf is similar to the classic 

feedback/feedforward control. 

 

 
Gp
GdGc f =          (3.14) 

  

Morari and Zafiriou (1989) concluded that if perfect feedforward compensation 

is possible then IMC feedback/feedforward structure does not offer any specific 

advantage over the classic structure. This is because the performance of a feedforward 

controller is more sensitive to model mismatch than that of a feedback controller. Model 

error forces the feedback controller to be detuned for robustness and nominal 

performance to be sacrificed. 

 

 A new proposed controller structure has been proposed in the present study  

based on an idea that the deviation between y and output plant model is unknown 

disturbance and it is assumed as e = d Gd (see Figure 3.7) (Juwari et al., 2008). A 

feedback controller is depicted in Figure 3.7. Response y can be expressed by 
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Figure 3.7 2DOF IMC from feedback/feedforward structure. 
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 From Figure 3.7 it can be seen that although the development of this structure is 

from feedback / feedforward form, the result is identical with the feedback control 

system (no feedforward controller is needed). Therefore, this structure is denoted as 

proposed feedback 2DOF-IMC. In this structure, those disturbances introduced to the 

process are estimated and included in the controller algorithm. It is expected that the 

disturbances can be rejected in a short time. Figure 3.7 and Eq. (3.16) show that Gc1 is 

involved in the feedback loop. The development of Mp-GM tuning (see section 3.4.2) 

was derived from this structure. Nevertheless, Mp-GM method also can be applied to 

the standard structure of 2DOF-IMC.  

 

3.4.2 Procedure Mp-GM tuning method for 2DOF-IMC 

 

 The proposed tuning method consists of three steps:  

(i)    Determine the ‘worst case’ of the model uncertainty;  

(ii)   Specify the parameter of set point controller (Gc1) using Mp criteria; and  

Gd 

Gc1 Gp y ysp +

- 
+ 

+ 

d

Gc2 
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(iii)  Obtain the parameter of the disturbance rejection controller (Gc2) using GM 

criteria.  

 

 Second and third steps are conducted based on the worst case model uncertainty 

as Gp and nominal model as Gpm. The first step is determining the ‘worst case’ of 

uncertainty model. The worst case can be found from the limit of the uncertainty model 

in terms of upper and lower on process model parameters. The worst case is the nearest 

condition that unstable responses will occur. This condition usually occurs at the 

uncertainty model with the larger (upper limit) steady state gain process, the larger 

(upper limit) time delay and the smaller (lower limit) process time constant. The worst 

case of a set process uncertainty can be identified at the biggest maximum value of 

magnitude of frequency response of complementary sensitivity function. When 

determining the worst case, filter time constant (λ) value is set equal to the time delay of 

nominal model. Here, the θ (time delay of nominal model) is as initial value of λ1 as in 

second step. 

   

 The second step is specifying the parameter of set point controller (Gc1) using 

1DOF-IMC structure, based on the Mp-Tuning criteria as follow;  

- Set λ1 (filter time constant Gc1) initial value i.e λ1 is set equal to the time delay 

(θ) of nominal model. 

- Calculate max )( ωjT  in the range of frequency ω = 10-3 to 103. 

- If max )( ωjT  > 1.05 then add λ1 with small number, for example λ1 + 0.01. 

  

 The third step is obtaining parameter of disturbance rejection controller (Gc2) 

using feedback 2DOF-IMC structure, based on the GM criteria as follow: 

- Set λ2 (filter time constant Gc2) smaller than λ1. In this study λ2 = 0.9 λ1 was 

used. It is reasonable value, because a better performance for disturbance 

rejection can be obtained if λ2 is always smaller than λ1 (Brosilow and Joseph, 

2003). 

- Set initial α equal to λ2. Add α with small number such that the value of GM for 

the open loop system of 2DOF-IMC is equal to 2.4 (section 3.4.5). Here, the 

open loop system ))((5.0 21 mGpGpGcGcGol −+=  
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 The proposed method is called (Mp-GM tuning method) because it uses the 

principle of Mp criterion for tuning the set point controller (Gc1) and the principle of 

GM criterion for tuning disturbance rejection controller (Gc2). Mp value is set to be 

1.05 based on the recommendation of Brosilow and Joseph (2001). The number of 

variables that affect the performance of Mp-GM tuning such as the ratio λ1 / λ2 and the 

value of GM will be demonstrated through the examples below. These examples reflect 

the First Order plus Dead Time (FOPDT) process with θ/τ =1, θ/τ > 1, and θ/τ <1. 

Difficult higher order i.e second order with underdamped and nonminimum phase third 

order process are also presented in this chapter. Whereas, implementation of the 

proposed method to a real plant will be discussed in Chapter 4.  

 

3.4.3 Comparison of parameter and time response of proposed feedback and 

standard 2DOF-IMC 

 
 Comparison of parameter of proposed feedback and standard 2DOF-IMC 

structure is done by using proposed Mp-GM and IMCTUNE (Stryczek et al., 2002).The 

IMCTUNE design has been explained in section 2.4.2. The proposed method also could 

be implemented on standard 2DOF-IMC. Matlab code of the proposed method is 

presented in Appendix B. Meanwhile, the procedure of IMCTUNE method is enclosed 

in appendix C.  Comparison of parameters and time responses of two controller 

structures to a process plant is shown through the case study of FOPDT. Consider a 

blending system investigated by Chang et al., (1998) with θ/τ > 1:  
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Figure 3.8 shows tuning output of the proposed feedback 2DOF-IMC controller using 

Matlab. The worst case of uncertainty is determined from the largest value of the 

magnitude Mp or max |T(jω)| i.e  4th case.  

 

 

 

Figure 3.8 Tuning output of the proposed feedback 2DOF-IMC controller. 
 

 Transfer functions of Gp, Gpm, Gc1, and Gc2 used in the control system are 

displayed on the output of the programming i.e in command window (Figure 3.8). 

Additional information are the set of Mp-GM specifications i.e λ2/λ1, Mp and GM.  

 

 Table 3.1 shows the comparison of parameter values by using proposed Mp-GM 

tuning method for the proposed feedback 2DOF-IMC, the standard 2DOF-IMC and 

Kaya 2DOF-IMC structure. In the proposed Mp-GM tuning method, there are 3 

parameters that are specified i.e. the value of Mp, λ2/λ1 and GM. Where, the Mp value 

is set equal to 1.05 (see section 3.4.4), λ2/λ1 is specified equal to 0.9 (see section 3.4.5), 
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and GM is set equal to 2.4 (see section 3.4.6).  In the table for the standard 2DOF-IMC, 

the IMCTUNE by Stryczek et al. (2002) was also investigated. The Gc2 transfer 

function of (Stryczek et al., 2002) is expressed as; 

 

 
1

1
1

1

22
2 +

+
+

+
=

s
s

s
sGc

λ
α

λ
τ        (3.19) 

 

Table 3.1 Parameters of 2DOF-IMC, FOPDT with θ/τ > 1 
 

Structure λ1  λ2  α 
Proposed Feedback 
2DOF-IMC 
- Proposed Mp-GM 

 
 
0.524 

 
 
0.4716 

 
 
1.5616 

Standard 2DOF-IMC 
- Proposed Mp-GM 
- IMCTUNE  

 
0.524 
0.8091 

 
0.4716 
0.2765 

 
1.0216 
0.6825 

Kaya 2DOF-IMC 
 - Proposed Mp-GM 

 
0.524 

 
0.4716 

 
0.4816 

 

 A typical frequency response for the FOPDT transfer function model of |T(jω)| 

and GM are shown in Figure 3.9 and 3.10 respectively. The Kaya 2DOF-IMC gives GM 

value less than 2.4 (see Figure 3.11). This occurs because λ2/λ1 has been set, in the 

initial iteration this structure gives the GM close to less than 2.4 (as GM criteria). It is 

evident from table 3.1 that the α value nearly equal to λ2. The difference between α and 

λ2 is just because the first iteration.  
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Figure 3.9 The magnitude of |T (jω)| vs frequency (ω). 
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Figure 3.10 Interpretation gain margin of FOPDT process on Nyquist plot of proposed 

feedback 2DOF-IMC 
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Figure 3.11 Interpretation gain margin of FOPDT process on Nyquist plot of Kaya 

2DOF-IMC 
 

 The time responses of the three structures with Mp-GM tuning method are 

shown in Figure 3.12. The time responses are for the set point tracking (at time 1) and 

the disturbance rejection when a magnitude of 0.5 disturbance with transfer function of 

1
1
+

=
s

Gd  is introduced to the system at time 10.  From these figures and integral 

absolute error (IAE) values, it can be seen that with the same criteria (Mp and GM), 

standard and proposed feedback 2DOF-IMC controller structures yield almost the same 

time responses. The same result is indicated in all cases that studied in this research. 

Therefore in the next section the comparison standard 2DOF-IMC with Mp GM tuning 

is not done anymore. Comparison is done by standard 2DOF-IMC with IMCTUNE.  

 

 The result shows that Kaya 2DOF-IMC gives oscillatory response or sensitive 

controller. This is because, the GM value can not be set to 2.4 as in the requirement of 

MP-GM method. To determine overall performance, the three controllers need to be 

tested in a different cases i.e. nominal and slowest case. Figure 3.13 and 3.14 show the 

output responses of nominal and slowest case. 
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Standard 2DOF-IMC with Mp-GM,  IAE = 1.3308
Proposed Feedback 2DOF-IMC with Proposed Mp-GM, IAE = 1.3295
Kaya 2DOF-IMC with Mp-GM,  IAE = 1.5974

 
 

Figure 3.12  Time response of the feedback 2DOF-IMC and standard 2DOF-IMC, 
FOPDT with θ/τ > 1.  
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Standard 2DOF-IMC with IMCTUNE,  IAE = 1.513
Proposed Feedback 2DOF-IMC with Proposed Mp-GM, IAE = 1.3242
Kaya 2DOF-IMC with Mp-GM,  IAE = 1.306

 
 

Figure 3.13 The output response for no-error in the model are imposed, FOPDT with 
θ/τ > 1. 
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Standard 2DOF-IMC with IMCTUNE,  IAE = 1.6467
Proposed Feedback 2DOF-IMC with Proposed Mp-GM, IAE = 1.5312
Kaya 2DOF-IMC with Mp-GM,  IAE = 1.4892

 
Figure 3.14 The output response for slowest case, FOPDT with θ/τ > 1. 

 

 Table 3.2 shows the IAE values of the three controllers for each case and mean 

of IAE for each controller. From the mean value of IAE, it can be seen that proposed 

feedback with Mp-GM tuning method gives the smallest IAE.  

 
Table 3.2 The IAE value of FOPDT process with θ/τ > 1. 

  
 

IAE Controller 
Worst Nominal Slowest Mean 

Standard  2DOF-IMC 1.3308 1.513 1.6467 1.4969 
Proposed 2DOF-IMC 1.3295 1.3242 1.5312 1.3950 
Kaya 2DOF-IMC 1.5974 1.306 1.4892 1.4642 

 
 
3.4.4 Effects of Mp value to output responses.  

 
 Mp value has strong correlation with overshoot (section 3.2). From Figure 3.12 

to 3.14 show that overshoot occurred in the worst case only, while the nominal and the 

slowest case does not cause overshoot. Therefore the determination of Mp value is 

based on the overshoot when the set point is introduced in worst case. To keep the 
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process remains stable in the worst conditions overshoot is specified does not exceed 

10%. Table 3.3 below presented proposed feedback 2DOF-IMC controller parameter 

using Mp-GM tuning for various values of Mp and its percentage overshoot.  

Percentage overshoot is based on output response in Figure 3.15.  

 

 Table 3.3 Controller parameters and its percentage overshoot  
 

Mp λ1  λ2  α % OS 
1 0.6880 0.6192 2.8492 0.26 
1.05 0.5240 0.4716 1.5616 8.10 
1.1 0.4570 0.4113 1.1513 12.35 

 

 The smaller Mp, it will give sluggish control action for nominal and slowest 

case.  On the other hand, the bigger Mp produces the higher overshoot. It may results 

unstable response for worst case problem. From the Table 3.3 and Figure 3.15 the 

appropriate Mp value is 1.05. 
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Standard 2DOF-IMC
Mp = 1.0, OS = 1.0026
Mp = 1.05, OS = 1.081
Mp = 1.1, OS = 1.1235

 
 

Figure 3.15 Effects of Mp value to output response of FOPDT θ/τ >1  
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3.4.5 Effect of ratio λ2 to λ1 

 

 Brosilow (2001) stated that for better disturbance rejection, the value of λ2 is 

always less than λ1. A case study below shows how the ratio of λ2 to λ1 affects the 

output responses. The FOPDT model with θ/τ <1 is adopted from Vilanova et al. (2008).  

The uncertainty model is assumed + 20%.   

 

 Consider the FOPDT model with θ/τ <1 is described as below 
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The worst case is at plant with k = 1.2, τ = 2.4 and θ = 1.8. Using the Mp-GM tuning, 

the value of λ1 is 1.8510. The values of λ2 and α for the corresponding ratio of λ2 to λ1 

are presented in Table 3.3 below. For comparison, the controller parameters of the 

standard 2DOF-IMC with IMCTUNE are presented in Figure 3.16. From the figure, λ1, 

λ2, and α  is 0.70304, 0.46536 and 1.4438 respectively. The Kaya 2DOF-IMC with Mp-

GM tuning obtain parameters λ1, λ2 and α are 1.8510, 0.9255 and 0.9355 respectively.  

 

Table 3.4 The value of λ2 and α for the corresponding λ2/λ1 
 

λ2 / λ1  λ2  α 
0.7 1.2957 3.6957 
0.9 1.6659 4.4159 
1.1 2.0361 5.1661 
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Figure 3.16 Controller parameters of the standard 2DOF-IMC with IMCTUNE, FOPDT 
θ/τ <1 

 
 
 The responses of the worst case, no error in the model and slowest case are 

presented in Figure 3.17 – 3.19. In these figures, the time responses of specification 

(λ2/λ1) of Mp-GM tuning method are compared with standard 2DOF-IMC with 

IMCTUNE and Kaya 2DOF-IMC with Mp-GM as a base case. A unit set point is 

introduced at time 1 and at time 20 a 0.3 magnitude of disturbance is entered to the 

system. From Figures 3.17 to 3.19 show that IMCTUNE gives unstable response for 

worst and slowest case, but it produces very good response (smallest IAE) for nominal 

case. The Kaya 2DOF-IMC gives oscillatory response on worst case, but good 

responses on nominal and slowest case. Table 3.4 shows IAE value of several λ2/λ1 of 

proposed feedback 2DOF-IMC for worst, nominal and slowest case. The smallest mean 

of IAE is at λ2/λ1 = 0.9, then λ2/λ1 = 0.9 is selected as parameter specification of Mp 

GM tuning method.  

Table 3.5 Effect of λ2/λ1 to output response.  
 

IAE  
λ2/λ1  Worst  Nominal Slowest Mean 
0.7 3.4570 3.7072 4.3450 3.8364 
0.9 3.4635 3.7110 4.3161 3.8302 
1.1 3.5324 3.7158 4.2919 3.8467 
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Standard 2DOF-IMC,  IAE = 29482.4854
Kaya 2DOF-IMC,  IAE = 5.7472
λ2/λ1 = 0.7,  IAE = 3.457
λ2/λ1 = 0.9, IAE = 3.4635
λ2/λ1 = 1, IAE = 3.5324

 
Figure 3.17 The worst case responses for the case FOPDT with θ/τ < 1. 
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Standard 2DOF-IMC,  IAE = 2.3914
Kaya 2DOF-IMC,  IAE = 3.6237
λ2/λ1 = 0.7,  IAE = 3.7013
λ2/λ1 = 0.9, IAE = 3.711
λ2/λ1 = 1, IAE = 3.7158

 
Figure 3.18 The responses of the case FOPDT with θ/τ < 1 with no error in the model. 



59 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

Time 

O
ut

pu
t

 

 

Standard 2DOF-IMC,  IAE = 37.2992
Kaya 2DOF-IMC,  IAE = 4.0896
λ2/λ1 = 0.7,  IAE = 4.345
λ2/λ1 = 0.9, IAE = 4.3161
λ2/λ1 = 1, IAE = 4.2919

 
Figure 3.19 The worst case responses for the case FOPDT with θ/τ < 1. 

 

3.4.6 Effect of GM to output response 

 

 The effect of GM criteria to the process responses is shown through the case 

study below. Suppose a FOPDT with θ/τ ≅  1  (Brosilow and Joseph, 2001) 
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The worst case is at plant with k = 1.2, and θ = 1.2. The slowest case is at plant with k = 

0.8, and θ = 0.8. The Mp-GM tuning method gives λ1= 1.047 and λ2 = 0.9423. For GM 

criteria 1.7, 2.4 and 3.1, the value of α is 4.7723, 3.1023 and 2.1823 respectively. As a 

base case, IMCTUNE for standard 2DOF-IMC and Kaya 2DOF-IMC are also presented. 
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In this process, IMCTUNE produces λ1= 1.0352, λ2 = 0.6022 and α = 0.9418 and Kaya 

2DOF-IMC obtains λ1= 1.047, λ2 = 0.9423 and α = 0.9523. 

 

 Figure 3.20 – 3.22 show the responses of the system for the worst, no-error in 

the model and slowest case. A unit set point is entered at time 1 and a disturbance 

magnitude of 0.3 with transfer function of 
1

1
+s

 is introduced to the system at time 20. 

IMCTUNE gives a smaller IAE than Mp GM for the worst and no error in the model 

cases.  

  

 The smaller GM values produces more sensitive controller (Figure 3.20 to 3.22). 

It is because from the Nyquist plot (Figure 3.23 and 3.24), the smaller GM will yields 

the graph closer to critical point (-1, 0). And vice versa, the bigger GM will produce the 

graph at a longer distance from critical point; it will give more sluggish controller. The 

performance of the effect of GM on output response is described in IAE value. The 

corresponding GM at the smallest IAE value will be selected.   The values of IAE for 

the worst, nominal and the slowest case are described in Table 3.6. From this table show 

that the smallest mean of IAE value at GM = 2.4, then the GM 2.4 is selected for the 

best GM specification.  

  

Table 3.6 IAE values at difference GM specification  
 

IAE  
GM Worst Nominal Slowest Mean 
1.7 3.0224 2.6187 2.9863 2.8758 
2.4 2.6274 2.5186 2.8537 2.6666 
3.1 2.5224 2.5472 2.9827 2.6841 

 



61 

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

Time 

O
ut

pu
t

 

 

Standard 2DOF-IMC,  IAE = 2.479
Kaya 2DOF-IMC,  IAE = 3.2839
GM = 1.7,  IAE = 3.0305
GM = 2.4, IAE = 2.6299
GM = 3.1, IAE = 2.5229

 
Figure 3.20 The worst case responses of FOPDT with θ/τ ≅ 1. 
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Standard 2DOF-IMC,  IAE = 2.4643
Kaya 2DOF-IMC,  IAE = 3.1433
GM = 1.7,  IAE = 2.6142
GM = 2.4, IAE = 2.515
GM = 3.1, IAE = 2.5432

 
Figure 3.21 The responses of FOPDT with  θ/τ ≅ 1 with no error in the model. 
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Standard 2DOF-IMC,  IAE = 2.8584
Kaya 2DOF-IMC,  IAE = 3.256
GM = 1.7,  IAE = 2.9871
GM = 2.4, IAE = 2.8545
GM = 3.1, IAE = 2.9834

 
 

Figure 3.22 The output responses of FOPDT with θ/τ ≅ 1 for the slowest case. 
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Figure 3.23 Nyquist plot of FOPDT with θ/τ ≅ 1, GM = 1.7 
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Figure 3.24 Nyquist plot of FOPDT with θ/τ ≅ 1, GM = 3.1 

 
 

 

3.4.7 Effect of simplification model (Gpm) and controller form  

 
3.4.7.1. Second order with underdamped process 
 

 The performance of the proposed Mp-GM tuning method is tested on higher-

order process i.e a second order underdamped process.  Second order with underdamped 

can be found in the nonisothermal of continuous stirred tank reactor (CSTR) process. A 

dynamic model of nonisothermal of CSTR was developed by Marlin (2000). A transfer 

function of temperature to coolant flow is expressed as:  
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Approximation of the above transfer function to FOPDT can be performed with a 

combination of approaches by Skogestad (2003) and Panda et al. (2004). Skogestad 

approach produces the transfer function as follows; 
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Eq. (3.26) is then simplified by Panda et al. (2004), it gives transfer function as follows;
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Figure 3.25 shows open loop responses of the original second order underdamped 

process and FOPDT approximation.  

  

 Process uncertainty of the second order process in Eq. (3.25) is performed by Eq. 

(3.28). The value of a and b in Eq. (3.28) are varies + 20% from nominal values i.e 

86.428.7 −≤≤− a  and 67.3600.55 −≤≤− b   

 

 ( )
80.3579.12 ++

+
=

ss
basGp         (3.28) 

 

 Two strategies are imposed to design the controller; 

 (i)   Gc and Gm are in FOPDT form  

 (ii)  Gc is in FOPDT form and Gm is in the original second order process. 

The Mp-GM tuning method produces the worst case plant at 86.4−=a  and 00.55−=b . 

For the first strategy (Gc and Gm are in the form FOPDT) the proposed Mp-GM tuning 

method results λ1 = 0.9715, λ2 = 0.8744 and α = 1.9713. For the second strategy (Gc is 

in FOPDT form and Gm is in the original second order process) the proposed Mp-GM 

tuning method results λ1 = 0.9045, λ2 = 0.8141 and α = 3.4851.  
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Figure 3.25 FOPDT approximation of second order underdamped process. 
 

 Figure 3.26 and 3.27 show the Nyquist plot of two strategies. From these figures, 

the first strategy (Gc and Gpm are in FOPDT form) has lower degree of stability than 

second strategy (Gc is in FOPDT and Gpm in original form). This is because the Nyquist 

plot for the first strategy may easily be altered to enclose the (-1, j0) (Kuo, 1995). 

However, the above situation occurs when the Mp value is not restricted. In Mp GM 

tuning method, the Mp value has been appointed 1.05. Then the stability can be 

guaranteed.  
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Figure 3.26 Nyquist plot of Mp GM tuning for underdamp SOPDT system with 

controller transfer functions are FOPDT form. 
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Figure 3.27 Nyquist plot of Mp GM tuning for underdamp SOPDT system with Gc1 is  

FOPDT form and Gc2 is SOPDT form. 
 
  

 Comparison of closed-loop responses of the both strategies with standard 2DOF-

IMC can not be conducted. It is because in 2DOF-IMC system, IMCTUNE produces 

the λ2 as initial value (any number that is entered to the input). Here, comparison with 
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1DOF-IMC and Kaya 2DOF-IMC with Mp-GM tuning performance are presented. The 

filter time constant of 1DOF-IMC (λ1) for first and second strategy is 1.001 and 0.9159 

respectively and the Kaya 2DOF-IMC controller parameters are λ1 = 0.9045, λ2 = 

0.8141 and α = 0.8456. Figure 3.28 shows the time response when a disturbance 

magnitude of 0.5 with transfer function of 
15.0

1
+s

 is introduced to the system at time 

10. 
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First strategy 1DOF-IMC,  IAE = 1.4405
Second strategy 1DOF-IMC, IAE = 0.99366
First strategy Feedback 2DOF-IMC,    IAE = 1.3276
Second strategy Feedback 2DOF-IMC, IAE = 1.2213
Kaya1DOF-IMC, IAE = 0.99366

 
Figure 3.28 Time response of second order with underdamped process using two form 

controller strategies. 
 

 Figure 3.28 shows that the second strategy gives smaller IAE than first strategy 

both in proposed 2DOF-IMC and 1DOF-IMC. However, the proposed Mp GM yields 

bigger IAE than standard 1DOF-IMC and Kaya 2DOF-IMC. Here, Kaya 2DOF-IMC 

produces GM = 2.4 as in the requirement of Mp-GM tuning. It does not like in previous 

cases that Kaya 2DOF-IMC gives GM value less than 2.4.   
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 3.4.7.2  Third order with non minimum phase process 
 

 The proposed method can be imposed to non minimum phase (inverse response) 

with high order process as described in the case study below. The uncertainty of model 

parameter is assumed + 20%. The simplification of plant model to FOPDT model is 

based on Skogestad half rule (Skogestad, 2003).  

  

 Consider non-minimum phase with high order process below  (Skogestad, 

2003); 
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By using a strategy that Gc is in the FOPDT form and Gm in the original third order 

with nonminimum phase process, the proposed Mp-GM tuning method generates λ1 = 

4.865, λ2= 4.3785 and α = 12.1695. The worst case is at plant with zero = 2.4. Figure 

3.23 shows the GM criteria of third order with nonminimum phase process on the 

Niquist plot. 

   

 IMCTUNE obtains very large filter time constants (λ1) for both 1DOF-IMC and 

2DOF-IMC. Then the 1DOF-IMC tuning based on Mp criteria is used as comparison 

with proposed feedback 2DOF-IMC.  1DOF-IMC tuning by using Mp criteria is first 

step of proposed Mp-GM tuning method. As calculated above, the filter time constant 

for 1DOF-IMC is 4.865.  

 

 Figure 3.29 shows Nyquist plot for the GM criteria of third order with 

nonminimum phase process on the Nyquist plot. This figure shows that for the 

minimum case, it has more positive phase shift as ω varies (Kuo, 1995). The closed 

loop stability criteria is also imposed to the system i.e the Nyquist path does not enclose 
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the (-1,j0). Figure 3.30shows the time response of proposed feedback 2DOF-IMC using 

proposed Mp-GM tuning method ,1DOF-IMC using IMCTUNE  and Kaya 2DOF-IMC..  
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Figure 3.29 GM criteria of third order with nonminimum phase process on the Niquist 
plot. 
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Figure 3.30 Time response of controller design for non minimum phase with high order 
process. 

 

 Figure 3.30 shows that the proposed feedback 2DOF-IMC with proposed Mp-

GM tuning obtains the better controller. The proposed feedback 2DOF-IMC yields 

smaller IAE than 1DOF-IMC with Mp tuning and Kaya 2DOF-IMC. These results 

prove the superiority of the proposed tuning for difficult process (third order process 

with nonminimum phase). In this type of process, the IMCTUNE does not give realistic 

parameters value because it produces very large filter time constant or a value as initial 

input.  

 

3.5  SUMMARY  

 
 A 2DOF-IMC controller based on feedback/feedforward control structure a 

robust and simple tuning method based on new structure have been proposed. The 

proposed structure then called as feedback 2DOF-IMC while the proposed tuning 

method is called Mp-GM tuning method. The parameters were calculated based on 
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frequency response i.e. maximum peak / resonant peak (Mp) and gain margin (GM) 

criteria. The calculation based on worst case in an uncertainty system.  

  

 The proposed method was compared and analyzed with standard 2DOF-IMC 

with IMCTUNE (Stryczek et al., 2002) and Mp-GM and Kaya 2DOF-IMC with Mp-

GM. The proposed method has been successfully implemented to FOPDT and higher 

order processes. The FOPDT process are varies controllability ratio i.e.; θ/τ ≤ 1,  θ/τ ≅  

1 and θ/τ ≥ 1. The higher processes are second order with underdamped and third order 

with nonminimum phase process. Although the two of higher order process are difficult 

processes, the proposed feedback 2DOF-IMC and Mp-GM tuning method able to obtain 

controller parameter under uncertainty system. In the contrast, IMCTUNE did not give 

robust result for studied system with results for underdamped and nonminimum phase 

system.  

 

 There are several specifications that can be specified in this Mp-GM tuning 

method i.e. the value of Mp, λ2/λ1, and GM. The best value of Mp is 1.05, λ2/λ1 is 0.9, 

and GM is 2.4. The Mp value is determined from the overshoot response when set point 

is introduced to the system. The best Mp value is selected when the overshoot response 

is no more than 10%. While the λ2/λ1 and GM specifications are determined from the 

smallest mean of IAE output response of FOPDT process for the worst, nominal and 

slowest case. The inputs of the output response are set point and disturbance rejection. 

FOPDT system is used to determine the specification values, because the chemical 

process model commonly can be simplified to FOPDT transfer function. However, the 

specifications can be used for higher order difficult process such as underdamped and 

nonminimum process.  

  

 Although Mp-GM tuning is derived from proposed feedback 2DOF-IMC 

structure, but it can be used for other structures such as the standard 2DOF-IMC and 

Kaya 2DOF-IMC structure. From the value of IAE, the Mp-GM does not always give 

the smallest value of IAE as in second order with underdamp process. However, Mp-

GM gives smaller IAE values for other studied cases.  
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CHAPTER 4 

 

 

EXPERIMENTAL IMPLEMENTATION OF PROPOSED Mp-GM TUNING 

METHOD  

 

 

4.1  INTRODUCTION 

 

This chapter describes the practical aspect of the research through the 

implementation of proposed Mp-GM tuning of 2DOF-IMC on proposed feedback 

2DOF-IMC and standard 2DOF-IMC as studied in Chapter 3. An experimental test rig 

has been developed by modification of existing air flow pressure and temperature 

(AFPT) process control pilot plant. A hardware-in-the-loop setting was developed using 

MATLAB and simulink through the use of specific data acquisition card and Data 

Acquisition Toolbox facilities. The controller was evaluated and compared with 

standard 2DOF-IMC and IMC control scheme tuned by  IMCTUNE (Stryczek et al., 

2002) as benchmarking.   

 

4.2  PLANT DESCRIPTIONS   

 

 This work adopts the pilot plant AFPT (Air Flow Pressure Temperature) control 

system, containing three control loops for flow, temperature and pressure control. For 

simplicity, the pilot plant diagram is described in Figure 4.1. A heater consists of 

heating element that is spooled on asbestos cement as shown in Figure 4.2. The asbestos 

cement is assembled inside of galvanize iron pipe (Figure 4.3). The plant can be 

operated either manually or using Distributed Control System (DCS) in the control 

room. Temperature (TE91) is manipulated by the electric power. The pressure is 

manipulated by the compressed air inlet to the system. Under normal operation, the air 

pressure is 55 psia. The flow rate is manipulated using control valve (FCV91). The 
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maximum flow rate is 50 kg/hr. The heater is installed in the 6 m pipe. The temperature 

sensor is installed about 1 m from heater outlet. For safety reason, the maximum air 

temperature is 200oC (Sintech.SDN.BHD, 2003). 

 

 

Figure 4.1 Air heater system. 
 

 

 

 

 

 

Figure 4.2 Installation of heating element in asbestos cement board. 
 

 
 

Figure 4.3 Installation of heating element and asbestos cement in galvanized pipe. 
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4.3  EXPERIMENTAL SETUP 

 

 This study was conducted by modifying the equipment of existing pilot plant. 

Block diagram of field signals to the DCS of AFPT pilot plant shown in Figure 4.4. 

While the process flow diagram of AFPT pilot plant shown in Figure 4.5.  

Modifications are made by tapping the input signal i.e flow, pressure, temperature and 

density. While the output signal is tapped to manipulate the flow and heater power 

supply.  Wiretapping conducted in the Marshalling rack (see Figure 4.4). Signals are 

forwarded and then inserted into Advantech I/O card via the I/O connector (Figure 4.6).  

Here, the safety action is carried out in the DeltaV workstation. For example, if the 

temperature of air is more than 200oC or the air flow is fail then the heater will shut off.  

 

 

 
Figure 4.4 The field signal connected to DCS. 
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Figure 4.5 Human interface of AFPT pilot plant of deltaV workstation. 

 
 

 

 
Figure 4.6 I/O connector. 
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 This study uses matlab simulink R2009a as human interface software.  The 

software uses data acquisition toolbox to communicate with hardware. Figure 4.7a 

shows the human interface in simulink program.  Figure 4.7b and 4.7c show output and 

Input data acquisition toolbox (DAT). The hardware uses Advantech PCI-1713 as 

analog input and advantech PCI-1720U as analog output.  

 

 The Advantech PCI-1713 analog input provides 32 analog input channels with a 

sampling rate up to 100 kS/s, 12-bit resolution and isolation protection of 2,500 VDC. 

The Advantech PCI-1720U provides four 12-bit isolated digital-to-analog outputs for 

the universal PCI bus. With isolation protection of 2,500 VDC between the outputs and 

the PCI bus, the PCI-1720U is ideal for industrial applications where high-voltage 

protection is required. The I/O cards were mounted in expansion slot of Pentium 4 PC, 

with RAM (Read Access Memory) 512MB. 

 

 The input signals were filtered by Butterworth lowpass filter (Butterworth, 

1930). This filter is approximated by the property that its magnitude response is flat in 

both passband and stopband. The magnitude-squared function of an Nth-order lowpass 

filter is given by Parks and Burrus (1987): 
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The laplace transform of the Butterworth filter can be derived by the following 

equation; 
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(a) 

 

(b) 

 

(c) 

Figure 4.7 (a) Human interface in matlab simulink program, (b) Analog ouput Data 
acquisition toolbox in simulink, and (c) Analog input data acquisition toolbox. 
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Where is cut off frequency (bandwidth), ω is frequency and N is Nth filter order. From 

Eq. (4.2) shows that two parameters (ωc and N) are specified to get laplace transform. 

The parameters are set by trial and error, so that output signal has same in trend and 

magnitude with input signal. The Matlab code of Butterworth filter is presented in 

Appendix D. 

 

 Lookup table is used to convert the measurement signal to the real unit such as 

flow (kg/hr), temperature (oC) and pressure (psia). The value of the lower and upper are 

calibrated. As an instance, lower and upper temperature is 0 – 200oC. These values are 

corresponding to lower and upper signal of 1 – 5 volt.  Here, the lower and upper values 

are captured from the existing pilot plant as in Deltav Workstation.  

 

4.4  MODEL IDENTIFICATION AND CONTROLLER TUNING 

 

4.4.1 Model identification using step response model  

 
 Step response is conducted by manual mode controller. At a certain time a step 

change of power of electrical heater is introduced. Figure 4.8 to 4.11 are the step 

responses of the process. Based on these Figures, FOPDT model identification are 

determined. Gain process (k) is deviation final and initial temperature divide by 

magnitude of the step. Process time constant (τ) is the time required to reach 63.2%. 

Dead time is response time delay after the step is given. The model identification 

method can be seen in Figure 4.12. The FOPDT step response models are presented in 

Table 4.1 

 

 Table 4.1 shows the value of  FOPDT parameters, τ is ranged from 596-870, and 

θ is ranged 36-60, and gain values (k) is ranged from 4.1 - 4.9 (data no 1-7). Data no 9 

and 10 has k value equal to1.7. Based on the gain (k) values of the process models, the 

uncertainty model is divided into two regions. Region 1 is data no.1-8 (temperature 
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more than 50oC) and region 2 is data no. 8-10 (temperatures less than 55oC). Maximum, 

minimum and nominal values of the process model are presented in Table 4.2. 
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Figure 4.8 Step responses of the plant from 30% to 40%, 40% to 30%, and 30% to 20 % 

 

 
Figure 4.9 Step responses of the plant from 5% to 30% with increment 5% 
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Figure 4.10 Step responses of the plant from 20% to 10% and 10% to 20% 

 

 
Figure 4.11 Step responses of the plant from 15% to 10% to 5% 
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Figure 4.12 Identification of FOPDT model 

 

 Data no.10 shows step response from 5-10% and gives temperature from 25oC to 

33.8oC. The ambient temperature is about 25oC, it means that step response from 0-5% 

produces zero gain value or electrical power does not give temperature change for step 

less than 5%. 

 

Table 4.1 The FOPDT step response models of the plant 
 

No Step change 
[%] 

Init temp 
[oC] 

New temp 
[oC] 

k, gain  τ 
[sec] 

θ 
[sec] 

1 40 – 43 170.5 184 4.5 726 50 
2 40 – 37 170.5 156 4.8 870 60 
3 40 – 30 173 132 4.1 605 45 
4 30 – 40 130 174 4.4 693 36 
5 20 - 10 82 37 4.5 596 45 
6 15 - 10 60.5 40 4.1 682 50 
7 10 - 20 37 85 4.8 720 50 
8 10 - 15 34 58.5 4.9 644 50 
9 10 – 5 40.5 31.5 1.7 707 51 
10 5 -10 25 33.8 1.7 653 55 
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Table 4.2 Two regions of process model of AFPT pilot plant. 

 

Region  k τ, [sec/min]  θ, [sec/min] 
Region 1 

Max : 
Min : 
Nominal (mean): 

 
4.8 
4.1 
4.5 

 
870/14.5 
596/9.9 

733/12.2 

 
60/1 

36/0.6 
48/0.8 

Region 2 
Max : 
Min : 

  Nominal (mean): 

 
4.9 
1.7 
3.3 

 
707/11.8 
653/10.9 
680/11.3 

 
55/0.917 
50/0.833 

52.5/0.875 
   

 
 
4.4.2 The controller tuning and time responses of AFPT pilot plant 

 

 The Mp-GM tuning method of proposed feedback 2DOF-IMC is applied to the 

AFPT pilot plant. The Mp-tuning method of standard 2DOF-IMC and IMC 

(IMCTUNE) is designed as benchmarking. In IMCTUNE, the time unit of the transfer 

function should be converted to minutes and converted to second again in 

implementation of controller.  However, IMCTUNE for 2DOF-IMC suggested the Gc2 

controller as a first order. The Gc2 controller transfer functions are presented in Table 

4.3. 

 

 The three controller parameters for both regions are shown in Table 4.3. The 

responses of the three controllers system change to set point and disturbance are 

compared. The step of the disturbance is flow rate from 40 kg/hr to 20 kg/hr entered at 

time 100 (min). The responses on operating condition region 1 are shown in Figure 4.13. 

Meanwhile, the responses of control system on region 2 are presented in Figure 4.14. 

 

 

 

 

 

 

 



83 

 

Table 4.3 The three controller parameters for both of regions 
 

Controller type and 
region 

Gc1 Gc2 

1DOF-IMC  
Region 1 : 
 
 
Region 2 : 

 

⎟
⎠
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‐ 
 
‐ 

Standard 2DOF-IMC 
Region 1 : 
 
 
Region 2 : 

 

⎟
⎠
⎞

⎜
⎝
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+
+
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Feedback 2DOF-IMC 
Region 1 : 
 
 
Region 2 : 
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 Figure 4.13 shows the proposed feedback 2DOF-IMC tuned by proposed Mp-

GM tuning yields the fastest response to reach the new set point and the fastest response 

to reject the disturbance. It shows that IMCTUNE can not determine the optimal 

parameters in the air heater system. Even, standard 2DOF-IMC produces larger IAE 

than 1DOF-IMC. It is because IMCTUNE suggests that the Gc2 is first order that has 

filter time constant similar to Gc1 time constant. 

 

 The disturbance rejection responses of the three of controllers system are still 

very slow to return to the initial set point may take up to 30 minutes (Figure 4.12). This 

is because a change in flow rate is significant from 40kg/hr to 20kg/hr. At a high 

temperature the heater is very hot, so if there is a significant decrease in flow rate so the 

temperature will be increase quickly and then decrease slowly even though the 

percentage of electrical power is 0%. The saturation lower limit of the control system is 
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0%, it could not be worth the negative as in simulation. It is because the real plant has 

the minimum value of control action is 0% (saturation) and maximum value is 100%. 

 

 Figure 4.13 shows when the disturbance entered to the system at time 100 min, 

the inverse response were detected for about 2 min. The temperature decreases for a 

short while due to the increase of pressure in the chamber. The pressure increase is 

because the control valve for flow is installed after air heater chamber. 
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1DOF-IMC with IMCTUNE,  IAE = 12364.795
Standard 2DOF-IMC with IMCTUNE,  IAE = 13271.9557
Proposed Feedback 2DOF-IMC with Proposed Mp-GM, IAE = 5634.0385

 
 
 

Figure 4.13 The responses of the three controllers system on region 1. 
   

 In region 2, Figure 4.14 shows the proposed feedback 2DOF-IMC with Mp-GM 

tuning produces the fastest set point tracking and disturbance rejection. The disturbance 

entered at 100 min. On this region 2, the disturbance can be rejected quickly by all the 

three controller system. Since at low temperature range, the heater is not too hot then 

the rising temperature due to changes in flow from 40kg/hr to 20kg/hr could still be 

overcome easily. 

 

 Data from Figure 4.13 and 4.14 proved that the proposed feedback 2DOF-IMC 

with Mp-GM tuning gives the better results both for set point tracking and disturbance 

rejection for both of the regions.  
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(a) 

Figure 4.14  The time responses of the three controllers system on region 2. 
 

 

4.5  SUMMARY 

 

 The air heater process has two regions that are very different characteristic from 

the parameters of the process transfer function. Then the use of one controller may not 

be appropriate. From the close loop response it can be seen that the disturbance in 

region 2 can be rejected easily. While in the region 1 the disturbance rejection is very 

slow. 

 

 IMCTUNE method encountered problem when the value of τ and θ are too large. 

The unit (sec) of τ and θ then should be converted to unit (min) to make its parameters 

are smaller. However, IMCTUNE method can not generate the good controller 

parameters of 2DOF-IMC in all regions as it suggested first order transfer function in 

Gc2 controller.  
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 In region 1,  the controller still can not reject of disturbance quickly because 

there are a few things; heater has a high temperature so that in addition to conduction 

and convection heat transfer process occurs radiation (radiation occurs when the surface 

temperature over 500oC). The occurrence of radiation process causes the pipe to be 

more heat than the air. So the pipe is also a heat source when the heater power is 

reduced. This is the reason that the disturbance response is very slow. This is evident in 

region 2, where the process is running at low temperatures. In this range, heater 

temperature is not too hot so that the radiation has not yet occurred. So the response to 

this disturbance may be faster. 
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1  CONCLUSIONS   

 

 In overall this research is to overcome the weaknesses of IMC controller which 

giving very sluggish response to disturbance rejection. The problem could be eliminated 

using 2DOF-IMC. However, the existing tuning method derivation under model 

uncertainty using structure of standard 2DOF-IMC is mathematically complicated and 

has its limitation. Therefore it is needed to develop a tuning method which will simplify 

the tuning of 2DOF-IMC under model uncertainty.   

 

This research proposed a new structure and a new tuning method for 2DOF-IMC. 

The new structure is derived based on feedback/feedforward IMC schema and it is 

called as feedback 2DOF-IMC.  The feedback loops is presented with Gc1 and 

feedforward controller is presented with Gc2. The Gc1 then is set as set point controller 

and Gc2 is set as disturbance rejection controller. With the principle of classical 

feedback structure, frequency response tuning such as Mp and GM can be implemented 

easily. Mp is used for tuning of Gc1 while GM is used for tuning of Gc2. The tuning is 

determined based on worst case of an uncertainty process. The proposed tuning method 

is then called as Mp-GM tuning.  

 

There are several specifications should be set to obtain the optimal controller 

parameters. The values of these specifications are determined based on time response 

and IAE value on the worst case, the nominal case and the slowest case of FOPDT 

processes. FOPDT with  1/ ≥τθ  was used to prove that the time response was identical 
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when feedback 2DOF-IMC and standard 2DOF-IMC were tuned by Mp-GM method. 

The FOPDT 1/ ≥τθ also used to determine the Mp value. FOPDT with 1/ ≤τθ  was 

used to find the best ratio of λ2/λ1. Meanwhile, FOPDT with 1/ ≅τθ  was used to get 

the best value of GM. Mp value is selected when the overshot of step response is less 

than 10%. The ratio of λ2/λ1 and GM are selected based on the minimum mean of IAE 

values on worst, nominal and slowest case. The specifications were obtained as follows.  

(i) Mp is set to 1.05. 

(ii) λ2 is set to 0.9 λ1 

(iii) GM is set to 2.4 

 

 The effectiveness of the proposed feedback 2DOF-IMC and Mp-GM tuning 

method is also simulated and compared through higher processes include second order 

with underdamped and third order with nonminimum phase processes. The comparison 

are conducted with standard 2DOF-IMC using IMCTUNE tuning and Kaya 2DOF-IMC 

using Mp-GM tuning. Although the two of higher order process are considered difficult 

processes, the proposed feedback 2DOF-IMC and Mp-GM tuning method were able to 

obtain the better controller even under process uncertainties. Effects of model and 

controller form simplification were studied. The results show that Gc in FOPDT form 

and Gm in the original high order form gave smaller IAE (better time response).  

 

 The proposed feedback 2DOF-IMC and the proposed Mp-GM tuning are also 

successfully implemented in real-time on a laboratory scale air heater pilot plant. The 

process model is divided into two regions. The time responses show that the proposed 

feedback 2DOF-IMC and the proposed Mp-GM tuning gave faster set point tracking 

and disturbance rejection responses than 1DOF-IMC or standard 2DOF-IMC in both 

regions.  
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5.2  RECOMMENDATIONS FOR THE FUTURE WORKS  

 

 A number of recommendations for future work that may enhance the superiority 

of the proposed Mp-GM method are outlined as follows: 

 

a. Implementation to auto tuning is a challenge for the Mp-GM tuning method. 

Parametric uncertainty model of a process can be identified in some range of 

operating conditions with the relay feedback test. The 2DOF-IMC controller 

parameters can be easily calculated with Mp-GM tuning method after 

identifying the model of the process. 

 

b. Experimental study to various types of chemical processes should be 

performed. 

Further ensure the benefit of the proposed method. It is necessary to test on 

other chemical processes that have different characteristics from those have 

been exemplified in the present study. 

 

c. Future research is needed to formulate Mp-GM method for multi input multi 

output (MIMO) system. 

Operating conditions such as temperature, pressure and flow should be 

maintained simultaneously to maintain the product quality. Operating 

conditions may be maintained at several different points. So the interaction 

between process variables can not be avoided. Process control in such cases is 

very difficult to resolve with SISO control system and it is necessary to apply 

MIMO control system. Feedback 2DOF-IMC and Mp-GM tuning is possible 

applied to the structure of MIMO control system. The main loop transfer 

function and interaction can be identified with a step response. Sensitivity, 

complementary sensitivity, open-loop and closed loop transfer function can be 

stated in a matrix. Mp-GM tuning criteria can be applied to these matrices.  
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APPENDIX B 

 

MATLAB CODE OF PROPOSED Mp-GM TUNING FOR 2DOF-IMC 

 
clear all 
clc 
%this program designed for SOPDT process 
% input lower and upper bound of plant model parameters (Gp) 
ap=[-7.28 -4.86]; 
bp=[-55 -36.66]; 
  
%input fix model parameters (Gpm) 
km=-1.28; 
taum=0.05; 
tetam=0.15; 
  
iter=0; 
w=logspace(-3,3,200); 
s=1i*w; 
hold off 
disp('   ') 
disp(' This program is designed by Juwari ...') 
disp(' Please wait.... ') 
disp('   ') 
for f1=1:2 
    a=ap(f1);     
    for f2=1:2 
        b=bp(f2); 
            lamda1=tetam; 
            pm=(km*exp(-tetam*s))./(taum*s+1); 
            pw=(a*s+b)./(s.^2+1.79*s+35.8); 
            iter=iter+1; 
            Cimc=(taum*s+1)./(km*(lamda1*s+1)); 
            T=abs((pw.*Cimc)./(1+ (Cimc.*(pw-pm)))); 
            CSm=max(T); 
            disp(sprintf('Case(%2.0f) a=%4.4f,b=%4.4f, max|T 
(jw)|=%4.4f',iter,a,b,CSm)); 
            figure(1) 
            loglog(w,T); 
            ylabel ('|T (j\omega)|') 
            xlabel('\omega (frequency)') 
            hold on 
            drawnow; 
            para(iter,:)=[a b CSm];         
    end 
end 
  
m=max(para(:,3)); 
iter=0; 
for i=1:size(para) 
    iter=iter+1; 
    if para(i,3)==m 
        param=para(i,:); 
        break 
    end 
end 
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%IMC 
disp('   ') 
disp (sprintf('The wosrt case is case (%2.0f)',iter)); 
disp('   ') 
app   =param(1); 
bpp   =param(2); 
  
fac=taum/20; 
Mp=3; 
while Mp >=1.05 
    fac= fac+0.001; 
    lamda1=fac; 
    w2=logspace(-3,3,201); 
    s=1i*w2; 
    pm=(km*exp(-tetam*s))./(taum*s+1); 
    pw=(app*s+bpp)./(s.^2+1.79*s+35.8); 
             
    C1=(taum*s+1)./(km*(lamda1*s+1)); 
    CS=abs((pw.*C1)./(1+C1.*(pw-pm))); 
    Mp=max(CS); 
  
end  
  
figure(2) 
loglog(w2,CS); 
ylabel ('|T (j\omega)|') 
xlabel('\omega (frequency)') 
text(1,2,['max = ',num2str(Mp)]) 
text(.1,.1,['\lambda 1 = ',num2str(lamda1)]) 
%2dof 
faklamd2=0.7; 
lamda2=faklamd2*lamda1; 
alpa=lamda2; 
GM=1; 
  
while GM<=1.7 
    alpa=alpa+0.0001;     
    w3=logspace(-3,3,1000); 
      
    s=1i*w3; 
    pm=(km*exp(-tetam*s))./(taum*s+1); 
    pwp=(app*s+bpp)./(s.^2+1.79*s+35.8); 
             
    C1=(taum*s+1)./(km*(lamda1*s+1)); 
    C2=C1.*(alpa*s+1)./(lamda2*s+1); 
    Cd=(C1+C2)/2; 
    S=abs((1-pm.*Cd)./(1+Cd.*(pwp-pm))); 
    T=abs((pwp.*C1)./(1+Cd.*(pwp-pm))); 
    OL=Cd.*(pwp-pm); 
    reg=real(OL); 
    img=imag(OL); 
    %cari GM pada axis real negatif 
    sudut=angle(OL); 
    err=0.1;    
    a=find(sudut<pi+err & sudut>pi-err); 
    b=OL(a) ;   
     
    re=real(b); 
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    im=imag(b); 
    g=abs(min(re)); 
    GM=1/g; 
     
end 
disp('.:              Robust and Simple Tuning of             :.') 
disp('.:       The Proposed Feedback 2DOF-IMC Controller      :.') 
disp('.:=====================By Juwari======================= :.') 
disp('     ') 
disp        (' 1. The wosrt case plant model     ') 
disp(sprintf('     Gp  = (%4.4f*s+%4.4f)/(s^2+1.79*s+35.8)',app,bpp)) 
disp(sprintf('     Gpm = %4.4f*exp(-
%4.4f*s)/(%4.4f*s+1)',km,tetam,taum)) 
disp ('     ') 
disp        (' 2. Controller paramaters') 
disp(sprintf('     Gc1 = (1/%4.4f) * 
(%4.4f*s+1)/(%4.4f*s+1)',km,taum,lamda1)) 
disp(sprintf('     Gc2 = Gc1 * (%4.4f*s+1)/(%4.4f*s+1)',alpa,lamda2)) 
disp ('  ') 
disp         (' 3. Additional informations') 
disp         ('    See the figures '); 
disp(sprintf ('          lamda2=%4.4f *lamda1', faklamd2)); 
disp(sprintf ('          max|T (jw)| = %4.4f', Mp)); 
disp(sprintf ('          GM          = %4.4f', GM)); 
 
xya=-1.2:0.01:1.2; 
gx=min(re):0.01:0; 
  
figure (3) 
plot(reg,img,xya,0,0,xya,gx,0.1,'r','linewidth',1.4) 
axis([-1 1  -1.5 1]) 
text(0.6,0.05,'Real part') 
text(-0.2,.8,'Imaginary part') 
text(min(re)-0.1,0.17,'1/GM') 
text(-.8,-.7,['\lambda 2 = ',num2str(lamda2)]) 
text(-.8,-.8,['\alpha     = ',num2str(alpa)]) 
text(-.8,-.1,['GM = ',num2str(GM)]) 
hold off 
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APPENDIX C 

 

TUNING PROCEDURE OF IMCTUNE 

 

 The Mp-tuning software is adopted from website of prentice hall publisher 

http://www.phptr.com/brosilow/ . The software is copyright by Karel Stryzek, Jiawen 

Dong, Tinnakom Kunsen, and Coloman B Brosilow (2002). Figure C.1 shows the 

primary IMCTUNE interface for 2DOF-IMC control system for the case where 

disturbance passes through the process. The controller is split into two parts: forward 

path and a feedback part. While the menu bar for 1DOF-IMC and 2DOF-IMC systems 

are the same, but contain of view and compute tab are different. 

  

 Several input data are needed i.e.; disturbance model (Pd), the process-bound 

uncertainty, the nominal model, the feedback path controller (qqd or Gc2), and the 

forward path controller (qr or Gc1). After all the data are inserted then the tuning can be 

done by click compute|2 degree of freedom tuning | inner loop tuning | partial 

sensitivity function (see Figure C.2) 

 

 

 
 

 
Figure C.1 Primary interface of IMCTUNE 2DOF-IMC  
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Figure C.2. Tuning 2DOF-IMC 

 
  
 Figure C.3 shows the result of the Mp-tuning of 2DOF-IMC. The main results 

are model of feedback controller (Gc2) and forward path controller (Gc1). The others are 

input and default variables. 

 
 

 
 

 
Figure C.3 Result of Mp-Tuning for 2DOF-IMC 
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APPENDIX D 

 

BUTTERWORTH FILTER CODE USING MATLAB S-FUNCTION  

 
function [B,A] = butterdesign(N,Wc) 
%BUTTERDESIGN Butterworth adopted by William Spinelli % 
p = Wc*exp(i*(pi*(1:2:N-1)/(2*N) + pi/2)); 
p = [p; conj(p)]; 
p = p(:); 
if rem(N,2)==1, p = [p; -Wc]; end 
A = poly(p); 
B = real(prod(-p)); 
 
 

 


