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INTRODUCTION 

Nanostructured surface can provide numerous advanced and useful function such as for biosensors[1-3], imaging[4-

6], point of-care testing (POCT) for medical diagnostics[7-9] and biomimetics[10-12]. Glass-based micro/nano structured 

devices are more desirable, since there are superior in terms of imaging performance, thermal stability and chemical 

resistance compare to its polymer counterpart. To reduce the process cycle time as well as the manufacturing cost, new 

fabrication techniques to obtain nanostructured glass surfaces have been an interesting research topic recently. 

 At present, the fabrication of nanostructured glass devices relies on the well-established semiconductor manufacturing 

techniques, for example photolithography[13], extreme ultraviolet lithography (EUV)[14], electron beam lithography 

(EBL) and etching[15]. These fabrication processes are well known to be very accurate and reliable. Nevertheless, these 

processes require very expensive and sophisticated equipment, low in throughput and not suitable for mass production. 

In addition, all the process must be carried out in a clean room environment. Direct laser texturing had also been 

demonstrated. Nevertheless, the process of writing the small pattern features size such as nanograting, nanoholes or nano-

pillars is time consuming. Besides that, secondary process such as etching and heat treatment is necessary to improve the 

morphology and surface roughness of the pattern. Mechanical machining on glass had also been demonstrated. 

Unfortunately, the pattern resolution that can be achieved typically could not be less than 50 µm[16-17]. High surface 

roughness value of the machined glass surface also generally cannot be used in the application of high precision optical 

devices. In the meantime, thermal imprinting also had been identified as one of a promising method due to its relatively 

low-cost equipment setup[18-21]. However, several problems are recognized in the existing conventional glass thermal 

imprinting including a long thermal cycle and difficulties in ensuring good imprinting quality.  

In this paper, a rapid energy-efficient method to directly pattern nanoscale features on glass substrate using thermal 

imprinting combined with CO2 laser irradiation was proposed. Prominently, this method utilizes a CO2 which irradiates 

through an infrared (IR) transparent mold. The glass strongly absorbed the 10.6 µm wavelength irradiation for CO2 laser 

triggering substantial heating of a thin layer on the glass surface, which significantly enhanced the filling of pressed glass 

ABSTRACT – Thermal imprinting is a promising low cost and reliable method for direct replication 

of glass nanostructures without the use of mask and the serial lithography and etching processes. 

However, direct thermal imprinting on glass is a very challenging task and it is difficult to obtain 

complete replication height even with long pressing time and high pressing load. In this paper, 

laser-assisted thermal imprinting of glass nanostructures was demonstrated. Compare to the 

conventional glass thermal imprinting, this method significantly reduced the contact imprinting time 

and imprinting load while preserving the replication fidelity.The quality of the replicated glass 

nanostructures revealed by field emission scanning electron microscope (SEM) and atomic force 

microscope (AFM) exhibited a very smooth surface finish that closely matched the profile of the 

silicon mold. As proof-of-concept, the utility of laser-assisted, imprinted glass nanostructures as 

guided mode resonant (GMR) optical filter was evaluated. The peak spectral values obtained were 

satisfactory; which yielded an average full width at half maximum (FWHM) and peak wavelength 

value (PWV) of 4.6 nm and 691.39 nm respectively. This method provide a new alternative for  a 

more energy efficient and rapid fabrication of nanostructured glass optical devices. 
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material into nanostructured mold cavities.As proof-of-concept of our work, we evaluated the utility of laser-assisted, 

imprinted glass nanostructures as GMR sensors.  

 

EXPERIMENTAL SETUP 

Figure 1 shows the schematic of the custom built laser assisted thermal imprinting system which consists of a CO2 

laser head, a reflective mirror, a beam expander and a mold assembly. The mold assembly includes top plate, upper 

insulator and upper heating block with a drilled hole opening at the center of the for the laser beam to pass through, lower 

heating block, lower insulator and cartridge heaters. Both the upper and lower heating block were made of heat treated 

hot work tool steels, grounded to mirror surface finish and coated with 1µm diamond like carbon (DLC). The silicon 

mold with nanograting structures was attached circumferentially at the upper heating block by means of mechanical 

clamping. Two sheathed K-type thermocouples were embedded at the center of the molds connected to PID controller 

and data logger for online monitoring of the mold temperature profile. An external computer controlled program was used 

to set the desired laser beam intensity profile. CO2 laser which can deliver a maximum power of 30W and the operating 

wavelength is 10.6µm was used. The procedure of the imprinting begins by first applying a pressure to the glass 

sandwiched between the silicon mold and the flat lower mold. Then immediately the laser irradiation with laser beam 

diameter of 3mm at 1/e2 from the laser source was enlarged accordingly by laser beam expander propagates through the 

transparent silicon mold and absorbed by the glass. To avoid glass fracture due to the sudden temperature rise induced 

from the laser source, the bulk of the glass was preheated. After the laser irradiation was interrupted, the upper mold was 

retracted and glass was released for cooling.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the CO2 laser assisted thermal imprinting setup 

RESULT AND DISCUSSION  

Imprinted Pattern Quality 

The replication quality of the laser-assisted imprinted glass was characterized using SEM and AFM measurement. The 

SEM images and AFM morphologies of the silicon molds and imprinted glasses are shown in Figure 2 and Figure 3 

respectively. Glass was imprinted via one-spot laser irradiation (power 30 W, laser irradiation time 5 s, beam diameter 

2.5 mm, imprinting load 0.4 MPa). Based on many trials, under above conditions, laser irradiation time for about 5 s 

ensured replication pattern fidelity. The replication width and height very closely matched the inverse values of the silicon 

mold. However, when assessing imprint height, measurement error was possible; the thickness and location of the 

measurement line defined by the operator might be associated with errors ± 20 nm. The discrepancies were very small; 

the flat rectangular profile of the polished crosssectional SEM image showed that the replication height was as expected 

[Figure 2(b)]. We believed that the successful rapid imprinting indicates that our proposed fabrication method was 

minimally dependent on feature size when using laser assisted imprinting. To achieve complete pattern transfer employing 

conventional glass thermal imprinting, optimization of temperature, pressure, and holding time are highly dependent on 

pattern size (thus the line width, and the duty and aspect ratios ) It should be noted that the total cycle time for thermal 

imprinting previously demonstrated in the literature are generally more than 15 minutes [18,21,22].The data imply that 

the method could be used to imprint even smaller nanoscale patterns of higher aspect ratio; this is a task for the future.  
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Figure 2: (a) SEM image (top view), b) SEM image of the polished cross section, c) an AFM 3D profile and d) an 

AFM 2D cross-section of the silicon mold. The nanograting pattern was 230 nm line width, 455 nm pitch and 155 nm 

height. 
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Figure 3: (a) SEM image (top view), b) SEM image of the polished cross section; inset view showing an enlarge view, 

c) an AFM 3D profile and d) an AFM 2D cross-section, of the imprinted glass obtained via the CO2 laser-assisted 

scanning process. The imprinted nanograting pattern was 230 nm line width, 460 nm pitch and 155 nm height. 
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Evaluation of Laser-assisted Thermal Imprinting of a Guided Mode Resonant Optical Filter 

To evaluate the performance of a laser-assisted, imprinted guided mode resonant (GMR) optical filter, a glass surface 

with a nanograting was coated with 115 nm of silicon nitride Si3Nx of refractive index 2.05 via plasma-enhanced chemical 

vapor deposition (PECVD). From top to bottom, the device featured an air layer, Si3N4, and the substrate glass. The 

method used to evaluate filter performance [using an Ocean Optics spectrometer and transverse magnetic (TM) polarized 

white light] is shown in Figure 4. Based on the measurement, the full width at half maximum (FWHM) and peak 

wavelength value ( PWV) were recorded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Measurement of FWHM, PWV and PWV shift using white light source and spectrometer system Schematic  

 

Six samples were evaluated three times, and averages calculated. Figure 5 shows the FWHM and PWV data collected 

after addition of phosphate-buffered saline (PBS) to the tops of the samples. The average FWHM and PWV were 4.6 and 

691.39 nm respectively (Table 1). Rigorous coupled wave analysis (RCWA) simulation yielded FWHM and PWV values 

of about 0.5 and 690 nm respectively. The differences may be attributable to any one of several factors. The simulation 

assumed that the nanograting was perfectly rectangular and smooth-walled. However, fabrication errors such as 

reductions in grating width and height caused by shrinkage, variations in the thickness of the silicon nitride coating and 

the roughness of the nanograting surface and wall are to be expected. Notably, GMR filters are very sensitive to fabrication 

error. Here, the nanograting design was not optimized prior to simulation, but the peak spectral values were satisfactory 

and the device sensitive. Although not demonstrated in this study, it is fair to assume that the glass GMR optical filter 

will exhibit better temperature stability than filters fabricated from polymers, which generally degrade above 100°C. 
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Figure 5: PWV and FWHM measurement of the laser assisted imprinted glass GMR filter via spectrometer  

 

 

 

Table 1: Measured FWHM and PWV value of the glass GMR optical filter obtained via the spectrometer 

 

Sample 
 No. 

Measured FWHM     

(nm) 
Measured PWV    

(nm) 
1 4.5 690.53 

2 4.5 692.02 

3 4 691.91 

4 4 692.08 

5 6  691.14 

6 5 690.64 

Average 4.6 691.39 
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CONCLUSION 

We imprinted a high-quality nanograting onto K-PG375 optical glass using laser-assisted thermal imprinting. The pattern 

exhibited a very smooth surface finish that closely matched the profile of the silicon mold. The nanograting (LS 230 nm; 

height 160 nm) was deposited onto 100-nm-thick highly refractive SiNx and integrated with a spectrometer, wherein the 

nanograting served as a GMR optical filter. The average FWHM and PWV were 4.6 and 691.39 nm respectively. Even 

though the nanograting design was not optimized prior to simulation, but the peak spectral values were satisfactory and 

the device sensitive. The detail evaluation performance of fabricated glass as a GMR label-free biosensor is ongoing. 
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