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Abstract: (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic
curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion
properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cy-
totoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was
aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle,
and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were
performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC
treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive
MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A.
BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray
and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like
miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7
cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes
like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by
altering the expressions of apoptotic-regulating miRNAs and associated genes.

Keywords: breast cancer; 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC); MCF-
7; apoptosis; miRNA
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1. Introduction

Breast cancer remains as a prominent oncological disease worldwide by making
up 14% of the total cancer deaths in 2008 [1] and it is the most prevalent cancer that
affects women worldwide [2]. Breast cancer can be classified into different sub-types
based on their molecular features [3] and one of these features is the presence of estrogen
receptor (ER) [4]. With the advancement in the breast cancer diagnostic and management
technology, incidences of breast cancer were found to show slower increase since year
2000 [1]. Compared to the incidence of ER negative breast cancer, which was estimated to
be decreasing, the incidence of ER positive cancer was estimated to show an increasing
trend from year 2009 to 2016 [4]. Despite the success of endocrine treatment, not all
ER-positive breast cancer patients are responsive to this first line treatment and some of
them might eventually face relapse or recurrence [5]. Thus, it is crucial to identify novel
potential therapeutic agent to treat ER positive breast cancer. Besides, more study should
be conducted to unravel the detailed biological processes and signaling pathways that lead
to the development of ER positive breast cancer as these could help improve the endocrine
therapy efficacy in treating ER positive breast cancer.

Indeed, natural products are known as powerful resources for drug discovery and
development [6]. It has contributed for approximately 36% of the US Food and Drug
Administration (FDA)-approved compounds in between 1998 and 2008 [7]. Among these
natural products, curcumin is a natural dietary pigment present in the root of turmeric
Curcuma Longa [8]. It has been well documented to possess anti-tumor and anti-metastatic
properties against breast cancer [9]. A previous study has reported that curcumin is
more selective on ER negative breast cancer cells due to the differential regulation of SKP2-
CIp/Kips signaling pathway [10]. Rapid development in the chemical synthesis technology
advances the potential to discover novel, synthetic anti-cancer compounds as it overcomes
the supply problems in getting similar compounds from natural products, and it also helps
to discover anti-cancer compounds with improved cytotoxicity and selectivity via suitable
chemical modifications [6,11]. To improve the in vivo bioactivity of curcumin, a curcumin
analogue (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) was
previously synthesized and characterized, and it has demonstrated significantly better
in vivo anti-tumor and anti-metastasis effects than curcumin on murine ER negative 4T1
breast cancer cells [8]. A previous study has shown that cyclohexanone modification
may further enhance the cytotoxicity of compounds on estrogen positive cancer cells [12].
However, to the best of our knowledge, the cytotoxicity effects of BHMC on the estrogen-
positive breast cancer cells was not widely evaluated.

A previously discovered class of small (19–25 nucleotides) non-coding RNAs, known
as the microRNAs (miRNAs) have been linked to the development of several human
diseases [13]. Growing evidences have shown that several alterations in the miRNA
profiles are involved in the progression of pathological conditions like cancer [14,15].
miRNAs represent an important group of non-coding RNA molecules due to their ability to
regulate multiple downstream mRNA targets that play essential roles in regulating a vast
range of cellular biological processes, including apoptosis [16,17]. Since miRNAs could act
as crucial apoptosis regulators in tumorigenesis and cancer cells, these non-coding RNAs
could also be potentially manipulated to regulate cancer cells survival and this strategy
would help to improve sensitivity in cancer therapy [17].

In recent years, several published studies have reported that curcumin possesses
the ability to regulate miRNAs expressions in cancers such as colon cancer [18] and lung
cancer [19]. However, for curcumin analogue BHMC, not many studies have reported its
potentials to regulate miRNAs expressions in cancers, particularly in human breast cancer.
Therefore, this study was aimed to evaluate the ability of BHMC to regulate the miRNAs
expression profiles in ER positive human breast cancer cell line, MCF-7. In addition, this
study was also aimed to elucidate the potential of BHMC to induce apoptosis in MCF-7
and it was hypothesized that BHMC was able to regulate apoptotic signaling pathways in
MCF-7 via a unique miRNA-mRNA interaction, which is yet to be reported elsewhere.
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2. Results
2.1. BHMC Selectively Inhibits the Proliferation of MCF-7 Cell and MDA-MB231

To examine the selective cytotoxicity effect of BHMC on breast cells, MTT assay was
conducted on both MCF-7 and MDA-MB-231 breast cancer cell lines as well as on the
human normal breast MCF-10A cell line (Table 1). BHMC was shown to exhibit more
superior cytotoxicity on both cancer cell lines, and the effect was found to be time dependent
as the IC50 of BHMC on both cancer cell lines showed decreasing trend from 24 to 72 h.
When comparing between MCF-7 and MDA-MB-231, it was observed that generally lower
BHMC concentrations were needed to kill 50% of MCF-7 cells at three different timepoints
(24, 48 and 72 h) as compared to MDA-MB-231. This suggested that BHMC might exhibit
higher selectivity to kill ER positive MCF-7 than ER negative MDA-MB-231. When taking
into consideration of selectivity index (SI) by dividing the IC50 of MCF-10A with IC50 of
either cancer cell lines, it was shown that selectivity of BHMC was higher in MCF-7 (SI > 7)
than MDA-MB-231 (SI > 5) against MCF-10A. At 24 h, the SI for MCF-7 was not statistically
different (p > 0.05) to the SI for MDA-MB-231. However, as time progressed, the difference
in the SI for MCF-7 and MDA-MB-231 became significant (p < 0.05) and this suggested that
BHMC would induce a more selective cytotoxicity against MCF-7 than MDA-MB-231 at
prolonged exposure. In short, the selectivity of BHMC on the three breast cell lines could
be summarized as MCF-7 > MDA-MB-231 > MCF-10A.

Table 1. IC50 values and selectivity index (SI) of MCF-7, MDA-MB-231, and MCF-10A treated with
BHMC or curcumin. IC50 was reported as mean + standard deviation (SD) and the results were
generated from three biological replicates, and each biological replicate contained three technical
replicates. SI: Selectivity index.

Cell Lines Treatment 24 h 48 h 72 h

MCF-7
BHMC (µM) 23.50 ± 2.41 12.50 ± 1.87 10.98 ± 1.33

Curcumin (µM) 55.72 ± 2.77 45.15 ± 2.12 39.79 ± 1.51

MDA-MB-231
BHMC (µM) 29.35 ± 3.15 20.05 ± 1.94 19.69 ± 3.14

Curcumin (µM) 32.00 ± 2.81 26.00 ± 2.33 23.00 ± 2.15

MCF-10A
BHMC (µM) 180.00 ± 3.11 108.00 ± 2.15 98.40 ± 3.22

Curcumin (µM) 188.00 ± 4.52 112.00 ± 4.57 100.00 ± 4.31

SI MCF10A/MCF7
BHMC (µM) 7.66 8.64 8.96

Curcumin (µM) 3.37 2.48 2.51

SI MCF10A/MDA-
MB-231

BHMC (µM) 6.14 5.38 5.00
Curcumin (µM) 5.88 4.31 4.35

On the other hand, when comparing BHMC and curcumin, it was observed that
generally, BHMC exhibit better cytotoxic effects on the three human breast cell lines,
evidenced by the recordings of lower IC50 of BHMC at three different timepoints on the
three cell lines as compared to curcumin. However, curcumin shower higher SI for MDA-
MB-231 than MCF-7. This implied that curcumin possessed more selective cytotoxicity
against MDA-MB-231 than MCF-7. Besides, SI value of curcumin reduced across the time
showing that selectivity of curcumin to both MCF7 and MDA-MB-231 against MCF-10A
cells was reduced when the incubation time was prolonged.

2.2. Morphology Observation of MCF-7 Treated with BHMC

The morphological changes of untreated MCF-7 cells and MCF-7 cells treated with
8.2 µM of BHMC for 48 h are illustrated in Figure 1. With the 48 h of treatment, light mi-
croscopic observation (Figure 1B) revealed that BHMC reduced the MCF-7 cells number
and severely distorted the MCF-7 cells shape. The treated MCF-7 cells underwent cell
shrinkage and detachment. Meanwhile, the untreated MCF-7 cells (Figure 1A) displayed
normal and polygonal cells shape evidenced by the clear and distinctive cell membrane
boundary. Fluorescent microscopic examination was performed on MCF-7 cells stained
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with acridine orange and propidium iodide to assess the presence of apoptosis in both
untreated and BHMC-treated MCF-7 cells. As shown in Figure 1C, untreated MCF-7 cells
were viable and emitted green fluorescence light with clear, intact, and rounded shapes.
In contrast, treated MCF-7 cells (Figure 1D) presented the morphological characteristics of
apoptotic cells, which were evidenced by the presence of cells shrinkage and membrane
blebbing as well as necrotic or late apoptotic morphological features, which emitted red
fluorescence light.

Figure 1. Morphological changes of MCF 7 cells viewed under light microscope after exposure
to: (A) Untreated, (B) 8.2 µM of BHMC for 48 h. Fluorescent microscopy of acridine orange
and propidium iodide dual staining of human breast cancer cells lines (MCF-7) (C) untreated and
(D) 8.2 µM of BHMC for 48 h. Note: Figures shown were representative of one of at least three
independent replicates with similar parameter (magnification 100×).

2.3. BHMC Induced G2/M Cell Cycle Arrest Followed by Apoptosis on MCF-7

To determine whether BHMC-induced growth inhibition was associated with the
regulation of the cell cycle, the cell cycle distribution was analyzed using flow cytometry.
As shown in Figure 2A, it was observed that there was an increase in the percentage of
cells at G2/M phase from 19.60% to 24.26% after 24 h of BHMC treatment. This indicated
the occurrence of cell cycle arrest with increment in the percentage of cells at subG0/G1
phase from 0.29% to 6.64% after 24 h of BHMC treatment. Accumulation of cells at the
G2/M phase was accompanied by a significant increment in the percentage of hypodiploid
cells of the subG0/G1 population from 6.64% at 24 h of treatment to 22.80% at 72 h of
treatment. This possibly signified the occurrences of DNA fragmentation leading to cell
death. To further confirm the presence of apoptosis-inducing cell death, BHMC-treated
cells were stained with AnnexinV/7ADD and subjected to flow cytometry. Translocation
of phosphatidylserine (PS) to the outer plasma membrane is a feature to recognize cellular
apoptosis and this could be identified through the detection of Annexin V-7ADD fluores-
cence uptake in BHMC-treated MCF-7 cells. This method could be used to discriminate
between early and late apoptosis. AnnexinV/7ADD staining (Figure 2B) revealed that from
24 to 72 h of BHMC treatment, there was an increase in the occurrences of early apoptosis
from 10.34% to 43.44% and late apoptosis from 8.81% to 38.22%. This presumably suggested
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that BHMC treatment promoted G2/M arrest in early time point and subsequently induced
apoptosis at a later time point.

Figure 2. DK2 induces apoptosis in MCF 7 cells via G1/S cell cycle arrest. (A) Histogram analysis of the cell cycle machinery
in MCF-7 after BHMC treatment for 24, 48, and 72 h. (B) Detection of phosphatidylserine (PS) exposure through the
detection of Annexin V-PE and 7ADD fluorescence uptake in BHMC treated MCF-7 cells. Note: Values are mean ± SD
of three replicates and significantly different from the untreated group (* p < 0.05) by ANOVA and followed by Duncan’s
multiple range test. Figures shown are representative of one of at least three independent replicates with similar parameter.

2.4. BHMC Dysregulated miRNA and Gene Expression Profiles of MCF-7 Cells

After normalization using Expression Console (Affymetrix, Santa Clara, CA, USA),
differential analysis between control MCF-7 and BHMC-treated MCF-7 cells was performed
using Transcriptome Analysis Console (TAC) 2.0 Software, (Affymetrix, Santa Clara, CA,
USA) and Partek Genomics Suite software (Cat 4462922G, Partek Inc., St. Louis, MO,
USA) (Figure 3). FDR multiple test correction was used for identifying differentially
expressed genes between the two groups. Overall, 109 miRNAs were identified to be
differentially expressed in the BHMC-treated MCF-7 cells under the threshold of p < 0.05
and fold-change > 5.

The top five miRNAs that were found to be overexpressed from miRNA microarray
analysis include miR-184, miR-3195, miR-149-5p, miR-30a-3p, and miR532-3p and these
miRNAs were found to be upregulated for at least 10-folds. Another five miRNAs were
shown to be downregulated in the BHMC-treated MCF-7 cells and these include miR-6813-
5p, miR-6132, miR-4725-3p, miR-1587, and miR-6779-5p. The expression of these miRNAs
was shown to be downregulated for at least 30-folds.
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Figure 3. miRNA microarray data revealed differential gene expression between control and BHMC treated MCF-7 cell;
(A) heatmap cluster analysis depicting differential miRNA (>2-fold change, p < 0.05) for BHMC treated cells and control
MCF-7 cells. Up-regulated genes are depicted in red, down-regulated genes are in blue (see color bar); (B) principal
component analysis plot; Tthe closer the dots, the more similar the gene expression profiles are; the farther apart the dots
are, the greater the differences are; (C) volcano plot.

2.5. Validation of Selected Genes and miRNAs by Quantitative Real-Time PCR (qPCR)

In order to validate the microarray data, qPCR analysis was conducted using 4 miR-
NAs and 2 target genes in which the expressions of these miRNAs and genes were altered by
the BHMC treatment. The miRNAs that were selected for qPCR analysis include miR-3195
and miR-30a-3p (for upregulated miRNAs) and miR-6813-5p and miR-6132 (for downreg-
ulated miRNAs). Using miRSystem (http://mirsystem.cgm.ntu.edu), VEGF and SNAIL
were the mRNA targets which were identified to be the downstream targets that could
be regulated by miR-3195 and miR-30a-3p, and thus, these two targets were selected for
further qPCR analysis. Compared to untreated MCF-7 cells (Figure 4), qPCR analysis
revealed that both miR-3195 and miR-30a-3p were overexpressed in the BHMC-treated
MCF-7 and the expression increments were at least 5-fold for both miRNAs. On the other
side, qPCR analysis demonstrated that the expressions of both miR-6813-5p miR-6132 were
downregulated for at least 10-folds in the BHMC-treated MCF-7 cells. As both miR-3195
and miR-30a-3p have been proven to be overexpressed in the BHMC-treated MCF-7 using
microarray and qPCR data, it is therefore not surprising to observe that SNAIL and VEGF
were also downregulated in the BHMC-treated MCF-7 cells using qPCR analysis, as these

http://mirsystem.cgm.ntu.edu
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two targets were known to be the downstream targets of miR-3195 and miR-30a-3p. Overall,
a high correlation between microarray (Table 2) and RT-qPCR data (Figure 4) was observed.

Figure 4. Validation of known miRNA and targeted genes using qPCR. Values are mean ± SD of
three replicates and significantly different from the untreated group (* p < 0.05) by ANOVA and
followed by Duncan’s multiple range test. Figures shown were representative of one of at least three
independent replicates with similar parameter.

Table 2. Top five up- and down-regulated miRNAs significantly altered in BHMC-treated MCF7 cell.

Transcript ID Upregulated Fold
Change Transcript ID Downregulated Fold

Change

hsa-miR-184 17.58 hsa-miR-6779-5p −33.07
hsa-miR-3195 16.21 hsa-miR-1587 −35.89

hsa-miR-149-5p 13.06 hsa-miR-4725-3p −41.51
hsa-miR-30a-3p 12.9 hsa-miR-6132 −61.96
hsa-miR-532-3p 11.73 hsa-miR-6813-5p −71.82

3. Discussion

BHMC has been reported to possess anti-tumor and anti-metastatic properties against
ER negative 4T1 breast cancer cells in vivo [8], and anti-invasive properties against ER
negative MDA-MB-231 breast cancer cells in vitro [20]. As the cytotoxic effects of BHMC
on ER positive breast cancer cells were not widely evaluated and explored, this study was
therefore aimed to determine the cytotoxic effects of BHMC on ER positive MCF-7 breast
cancer cells. The cytotoxic effects of BHMC on MCF-7 were verified using both cell viability
assay and light and fluorescence microscopic examinations. The current study discovered
that BHMC exhibits selective cytotoxic effects on MCF-7 cells as compared to MDA-MB-231
cells and normal breast cancer cell line MCF-10A. Besides, the cytotoxicity assay also
found that the selective cytotoxic effects of BHMC on MCF-7 cells were more evident
when MCF-7 cells were exposed to BHMC for longer than 24 h. A previous report has
highlighted that synthetic curcumin derivative was capable to induce selective cytotoxicity
against human breast cancer cell than other cell types in a time-dependent manner [21].
Thus, it is hypothesized that different curcumin analogues would exert different selective
cytotoxicity on different cell types when exposed at different duration length. On the other
hand, as compared to BHMC, curcumin was found to exert more selective cytotoxicity
against MDA-MB-231 than MCF-7. A previous report has demonstrated that a synthetic
curcumin analogue with a structure that is related to BHMC called diferuloyl-(4-hydroxy-
3-methoxycinnamoyl) moiety with mono-carbonyl was also found to exhibit potential
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cytotoxic effects against human breast cancer cells in vitro [22]. However, compared to
BHMC, diferuloyl-(4-hydroxy-3-methoxycinnamoyl) moiety with mono-carbonyl was
found to have better cytotoxic effects against MDA-MB-231 than MCF-7 cell lines [21].
This implied that diferuloyl-(4-hydroxy-3-methoxycinnamoyl) moiety with mono-carbonyl
has similar selective cytotoxicity effects toward MDA-MB-231 than MCF-7 like curcumin,
and synthetic curcumin analogue with different chemical structures and modifications
might exhibit different selective cytotoxicity against different cells as described in the
report [21].

To further prove that BHMC could promote cell growth inhibition on MCF-7 cells,
cell cycle and apoptosis assays were conducted. The experiments found that BHMC
was able to induce cell cycle arrest at G2/M phase at early time point, followed by the
induction of apoptosis in MCF-7 cells at a later time point following BHMC administration.
These effects were similar with other synthetic curcumin analogues including DK1 on
breast cancer cells [22], A501 on lung cancer cells [23], and MC37 on colorectal cancer
cells [24]. The ability of BHMC to induce cell cycle arrest and apoptosis supported the
previous cell viability study finding, which suggested that BHMC is capable to produce
cytotoxic effects on MCF-7 cells.

In addition, microarray and qPCR analysis showed that BHMC was involved in up-
regulating several miRNAs like miR-3195 and miR-30a-3p and downregulating miRNAs
such as miR-6813-5p and miR-6132 in MCF-7 cells. Several synthetic curcumin analogues
have been previously reported to involve in regulating miRNAs expressions in cancer
cells [25,26]. Examples of these analogues include EF24 analogue, which was shown to
target miR-21 in human melanoma and prostate cancer cells [26], and CDF analogue,
which was found to increase expressions of miR-101, let-7, miR-26, and a few more miR-
NAs in pancreas cancer [25]. Curcumin, on the other hand, has been widely reported in
regulating miRNAs expressions in different human cancers like breast, colorectal, lung,
and oral cancers [27–29]. When focusing on the few miRNAs, which were dysregulated
following BHMC treatment, miR-3195 has been found to possess anti-tumor activity in
laryngeal cancer cell [30] and anti-angiogenic properties on prostate cancer cell [31]. Simi-
larly, miR-30a-3p has been reported to possess anti-tumor properties in gastric and liver
cancer cells [32,33]. Thus, both miR-3195 and miR-30a-3p could act as tumor-suppressing
miRNAs, and the upregulation of these two miRNAs in MCF-7 cells following BHMC treat-
ment was consistent with the cellular assay findings, which showed that BHMC exhibits
cytotoxic effects on the cancer cells. As for the miRNAs that were downregulated follow-
ing BHMC treatment, both miR-6813-5p and miR-6132 have been reported to promote
insulin resistance in hepatocellular carcinoma cell line and, therefore, these miRNAs could
be having tumor-promoting role [34]. miR-184, which was the most highly upregulated
target in the BHMC-treated MCF-7 cells, was not selected for validation analysis as this
miRNA was previously reported with both positive [35] and negative [36] regulation on
the progression of different types of cancer cells. The microarray study also postulated
that the role of miR-184 in breast cancer cells requires further investigation. Again, the
downregulation of miR-6813-5p and miR-6132 in BHMC-treated MCF cells supported the
findings, which showed that BHMC possesses cytotoxic effects on MCF-7 cells.

As VEGF and SNAIL have been identified to be the downstream targets of miR-3195
and miR-30a-3p (http://mirsystem.cgm.ntu.edu), qPCR analysis on these two genes were
later performed and it was shown that the expressions of both VEGF and SNAIL were
suppressed in the BHMC-treated MCF-7 cells. The VEGF signaling pathway in cancer cells
is responsible in promoting carcinogenesis by promoting angiogenesis, invasion, migration,
and apoptosis resistance [37] whereas SNAIL has been reported to promote breast cancer
tumerigenesis by inducing epithelial-to-mesenchymal transition (EMT) [38]. Since both
VEGF and SNAIL are tumor-promoting genes [37,38], the downregulation of these two
targets by miR-3195 and miR-30a-3p secondary to BHMC treatment would probably induce
cellular death in the MCF-7 cells. Subsequent pathway analysis showed that several cellular
biological pathways like p53 and Wnt signaling pathways were dysregulated in the BHMC-

http://mirsystem.cgm.ntu.edu
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treated MCF-7 cells. p53 is a tumor-suppressing protein that plays an essential role in
inducing apoptosis [39] while Wnt signaling pathway has been demonstrated to regulate
early and late phases of apoptosis in human cells [40]. Dysregulation of these apoptosis-
related pathways possibly triggered the occurrence of cellular suicide in the BHMC-treated
MCF-7 cells.

4. Materials and Methods
4.1. Source of Curcumin and Preparation of BHMC

Curcumin used in this study was of analytical grade and was purchased from Sigma-
Aldrich (St. Louis, MO, USA). BHMC (Figure 5) was synthesized and characterized as
previously reported [8].

Figure 5. Chemical structure of BHMC [8].

4.2. Breast Cells Culture Conditions

Estrogen-positive MCF-7 and estrogen-negative MDA-MB-231 breast cancer cells
were maintained in RPMI 1640 (Sigma, St. Louis, MO, USA) or DMEM (Sigma, USA),
respectively, supplemented with 10% fetal bovine serum (FBS) (Gibco Thermo Fisher
Scientific, Waltham, MA, USA). Normal MCF-10A cell was maintained in DMEM-F12
(Sigma, USA) supplemented with 0.5 µg/mL hydrocortisone, 10 µg/mL insulin, 20 ng/mL
human epidermal growth factor (hEGF) (Sigma, USA), and 10% FBS (Gibco Thermo Fisher
Scientific, Waltham, MA, USA). All cells were cultured at 37 ◦C in 5% CO2 environment
and the cells passage ranged from passage 10 to 20. In addition, all breast cells used
were negative for mycoplasma growth. Upon reaching 80% confluency, the corresponding
adherent cells were harvested using TypLE (Thermo Fisher Scientific, Waltham, MA, USA)
for subsequent experiments.

4.3. MTT Cell Viability Assay

The MTT cell viability assay for MCF-7, MDA-MB-231 and MCF 10A cells were con-
ducted according to a previously reported protocol [41]. MCF-7, MDA-MB-231, and MCF-
10A were seeded in a 96-well plate at a concentration of 0.8 × 105 cells/mL and left
overnight in a CO2 incubator set at 37 ◦C. Then, BHMC with 2-fold dilution ranging
between 180 and 3 µM was added to the respective cell lines while the last row of the
96-well plate served as untreated control cells. After 24, 48, and 72 h of incubation, 20 µL
of 5 mg/mL MTT solution was added to all wells and the plate was further incubated for
three hours. Then, 180 µL of supernatant was carefully discarded and added with 100 µL
of DMSO to solubilize the purple crystals. Optical density was measured at 570 nm wave-
length using ELISA Reader (Bio-tek Instrument, Winooski, Vermont, USA). The percentage
of cell viability was calculated following deduction of the blank cell absorbance using the
formula (Equation (1)) [42]:

Cell viability (%) =
Absorbance of treated cells

Absorbance of untreated control
× 100% (1)
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The dose–response curve was plotted, and the concentration that yields 50% inhibition
of cell growth (IC50) was obtained as a parameter for cytotoxicity. Starting from this point,
BHMC with IC50 value was used throughout the study to induce cell death. On the other
hand, selectivity index (SI) was obtained by using the following formula (Equation (2)) [43]:

Selectivity index (SI) =
IC50 of MCF− 10A

IC50 of MCF− 7 or MDA−MB− 231
(2)

4.4. MCF-7 Cell Treatment

MCF-7 cells were seeded at 0.8 × 105 cells/mL in a 6-well plate and left overnight
in a CO2 incubator set at 37 ◦C. After reaching 80–90% confluent, the cell was treated
with IC50 at 48 h (12.50 µM) of BHMC. Untreated control was prepared simultaneously.
After 24, 48, or 72 h of incubation, the cell was harvested using TrypLE (Gibco Thermo
Fisher Scientific, Waltham, MA, USA), washed with phosphate buffer saline (PBS), and
subjected to the following assays. All assays were tested with three biological replicates.

4.5. Light and Fluorescent Microscopic Observation

Morphology of control and BHMC-treated MCF-7 cells was observed under light mi-
croscope (Nikon, Minato City, Japan). For fluorescent microscope observation, control and
BHMC-treated MCF-7 cells (2 × 105 cells) were stained with 10µL of 100 µg/mL acridine
orange (AO) and 100 µg/mL propidium iodide (PI) for 10 min. After that, the cells were
washed and examined under fluorescent microscope (Nikon FC-35DX, Minato City, Japan)
using an excitation filter and barrier filter at 450–490 nm and long pass filter of 520 nm.

4.6. Flow Cytometry Cell Cycle Analysis

Cell cycle progression of control and BHMC-treated MCF-7 cells was evaluated by
staining with BD Cycletest Plus kit (Becton Dickinson, Franklin Lakes, NJ, USA) and
subjected to BD FACS Calibur flow cytometer (Becton Dickinson, USA) analysis. In brief,
harvested cells were incubated with 250 µL of trypsin buffer for 10 min followed by
addition of 200 µL of trypsin inhibitor containing RNase buffer. After 10 min of incubation,
the samples were finally stained with 200 µL of PI solution. Flow cytometer analysis was
carried out after 10 min of incubation with the PI stain solution. A minimum of 10,000 cells
in the population was captured. Three independent experiments were repeated with
similar parameter.

4.7. Flow Cytometry AnnexinV/PI Apoptosis Detection

Cell apoptosis assay was conducted based on a study method [44] with some changes.
Apoptosis of control and BHMC-treated MCF-7 cell was evaluated using AnnexinV-
FITC/PI apoptosis detection kit (Becton Dickinson, USA). In brief, harvested cells were
washed and re-suspended in 100 µL of PBS. Then, the cell was stained with 10 µL of
AnnexinV-FITC/PI solution and incubated for 20 min in dark prior to analysis with BD
FACS Calibur flow cytometer (Becton Dickinson, USA). Approximately, 10,000 cells in the
population were captured. The experiment was qualitatively repeated for three times.

4.8. Total RNA and miRNA Extraction

Total RNAs including small RNAs were isolated from MCF-7 treated with BHMC
using miRNeasy kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions.
The quality of extracted RNA was assessed by the NanoDrop-1000 Spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, USA) and Agilent 2100 Bioanalyzer, and
samples with A260/A280 ratio between 1.8 to 2.1 and an RIN value of 8 and above was
used for further analysis.

4.9. Microarray Analysis of miRNA

Total RNA (8 µL) of control and BHMC-treated MCF-7 cells was directly labelled
using Flash Tag Biotin HSR Labeling kits (Affymetrix, Santa Clara, CA, USA) in accordance
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with the instructions of the manufacturer. RNA was heated to 80 ◦C for 10 min before
labeling to inactivate any residual DNase activity. RNA was hybridized for 42 h to the
GeneChip miRNA 2.0 array (Affymetrix, Santa Clara, CA, USA). The GeneChip miRNA
2.0 arrays contain 100% miRBase version 15 coverage of 131 organisms and contain probes
for 3439 humans non-coding RNAs (ncRNAs), including 1105 miRNAs and 2334 other
ncRNAs (including scaRNAs and snoRNAs). Washing and staining were automatically per-
formed using the Affymetrix Fluidics Station 450 (Affymetrix, Santa Clara, CA, USA), and
probe intensities were measured using the GeneChip® Scanner (Affymetrix, Santa Clara,
CA, USA).

4.10. Analysis of Microarrays Data

Data discussed in this publication have been deposited in the NCBI Gene Expres-
sion Omnibus and are accessible through the GEO Series accession number GSE155467.
Using the gene expression workflow in Partek Genomics Suite software (Cat 4462922G,
Partek Inc., St. Louis, MO, USA), the CEL files generated by the Affymetrix data file were
converted into .nFMT files. These data were later converted to .XLS files. and normalized
using the robust multi-array average (RMA) normalization procedure as described in a
published study [45]. Differentially expressed miRNAs (>5-fold change, p < 0.05) were
identified using analysis of variance (ANOVA) analysis. A list of differentially expressed
miRNAs between the control and BHMC-treated MCF-7 cell was exported in the table
form to an excel file and was also displayed in the form of heat map to visualize the list of
up- and down-regulated miRNAs between the two groups.

4.11. Real-Time Quantitative PCR of miRNAs Expression

One microgram (µg) of total RNA was used in reverse transcription and the process
was conducted using the miScript II RT Kit (Qiagen/SABiosciences, Hilden, Germany)
according to the manufacturer protocol. Quantitative RT-PCR was carried out using CFX96
(BioRad, Hercules, CA, USA). RNU-6 (Qiagen, USA) was used as the internal control as
reported in the other study [46]. miScript SYBR Green PCR kit (Qiagen/SABiosciences,
Hilden, Germany) was used in the real-time PCR reaction according to the manufac-
turer’s suggested steps. The miRNA-specific primers for miR-3195, miR-30a, miR-6813-5p,
and miR-6132 were designed by miRprimer and commercially synthesized as listed in
Table 3. The expression of putative miRNAs was evaluated using geNorm algorithms.
PCR reactions were performed in triplicate for each sample. The relative amounts of
miRNAs were normalized against reference miRNAs and the fold change for each miRNA
was calculated by the 2−∆∆Ct method [47].

Table 3. List of miRNA-specific primers used in the study.

MicroRNA Targets Primer Sequence (5′–3′)

has-miR-3195
F: GCGCCGGGCCC

R: CAGGTCCAGTTTTTTTTTTTTTTTAAC

has-miR-30a-3p F: GCTTTCAGTCGGATGTTTG
R: GGTCCAGTTTTTTTTTTTTTTTGCT

has-miR-6132
F: GCAGGGCTGGGAT

R: GGTCCAGTTTTTTTTTTTTTTTGCA

has-miR-6813-5p F: AGGGGCTGGGGTTTC
R: CCAGTTTTTTTTTTTTTTTAGAACCTG

4.12. Real-Time Quantitative PCR of mRNA Expression

Real-time quantitative PCR was performed on SNAIL and VEGF, which were the
target of miR-30a [48] and miR-3195 [31]. One microgram (µg) of total RNA was reverse
transcripted using the QuantiTect Reverse Transcription Kit (Qiagen, USA) according to the
manufacturer protocol. Primers were designed using Primer-Blast (Table 2) and synthesized
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commercially. NEXpro qPCR Evagreen Master Mix (NEX Diagnostics, Gyeonggi-do, Korea)
was used to perform the mRNA qPCR based on the manufacturer protocol. The qPCR sys-
tem CFX96 (BioRad, USA) was used and the qPCR conditions were: 50 ◦C for 2 min, 95 ◦C
for 10 min, and 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 1 min. A final melting curve was
performed to ensure that only one amplicon was present. The relative amounts of mRNAs
were normalized against reference gene beta-actin (ACTB) as described previously [49]
and the fold change for each mRNA was calculated by the 2−∆∆Ct method [47]. The mRNA
primers sequences were listed in Table 4.

Table 4. Primer sequence of the gene detected in the qPCR assay.

Gene Primer Sequence (5′–3′)

SNAIL
F: GCCGACTTTTGTGGTCTTCC

R: GGTACAAGTATGCCTCTGCCA

VEGF
F: GCTGTGGACTTGAGTTGGG
R: GCTGGGTTTGTCGGTGTT

ACTB
F: AGAGCTACGAGCTGCCTGAC
R: AGCACTGTGTTGGCGTACAG

4.13. Statistical Analysis

Data are expressed as means ± standard deviations (SD). Statistical analyses were
performed using one-way analysis of variance (ANOVA) and were compared by FDR cor-
rection and Duncan’s post hoc test. The results were taken to be significant at a probability
level of p < 0.05.

5. Conclusions

This study showed that BHMC is capable to induce cytotoxic effects on the ER positive
human breast cancer cells, MCF-7, and alter the expressions of multiple miRNAs and genes
in the cancer cells. The dysregulation of these miRNAs and the associated downstream
targets were believed to trigger the occurrence of apoptosis in the MCF-7 cells. To validate
the in vitro findings reported in this study, we hope that in vivo and mechanistic study
could be performed in the near future to further prove that BHMC is able to initiate breast
cancer cells apoptosis by altering the expressions of apoptotic-regulating miRNAs and
associated genes.
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