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The present study investigated the magnetohydrodynamic (MHD) flow and heat 
transfer on a stagnation point past a stretching sheet in a blood-based Casson 
ferrofluid with Newtonian heating boundary conditions. The ferrite Fe3O4 and cobalt 
ferrite CoFe2O4 ferroparticles suspended into Casson fluid represent by human blood 
to form blood-based Casson ferrofluid are numerically examined. The mathematical 
model for Casson ferrofluid which is in non-linear partial differential equations are 
first transformed to a more convenient form by similarity transformation approach 
then solved numerically by using the Runge-Kutta-Fehlberg (RKF45) method. The 
characteristics and effects of the stretching parameter, the magnetic parameter, the 
Casson parameter and the ferroparticle volume fraction for Fe3O4 and CoFe2O4 on 
the variation of surface temperature and the reduced skin friction coefficient are 
analyzed and discussed. It is found that the blood-based Casson ferrofluid provided 
up to 46% higher in temperature surface compared to blood-based fluid with the 
presence of magnetic effects. 
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1. Introduction 
 

Study on the heat transfer over a stretching sheet is important due to its numerous industrial 
applications in manufacturing and process engineering such that in paper and fibres production, 
glass blowing, continuous casting, as well as sheeting material through extrusion process like 
polymer extrusion and aerodynamic extrusion [1].  

Since the pioneering works of Crane [2], many investigations regarding the study on stretching 
sheet have been made with the extension to other effects like magnetohydrodynamic effect, 
thermal radiation, viscous dissipation, suction and blowing effect, slip effect, chemical reaction, 
heat generation, porous effects etc [3-8]. This topic becoming more attractive year by years with 
the introduction of numerous industrial fluid such as nanofluid, hybrid nanofluid, ferrofluid, as well 
as other non-Newtonian fluid like viscoelastic fluid, Jeffrey fluid and Casson fluid [9-14].  
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 The flow of non-Newtonian fluids shows different characteristics compared to a Newtonian 
fluid like water. The usual Navier-Stokes equations did not fulfil the characteristics presented by the 
fluid. Therefore, some modifications to the Navier-Stokes equations are proposed in many previous 
studies [15]. Casson fluid model is one of the non-Newtonian model introduced to characterized 
the fluid elastic solid behaviour. This model is identified as the most preferred rheological model for 
describing human blood flow [16]. 

On the other hand, the flow of magnetohydrodynamic (MHD) plays an important role in 
medicine. It is employed in cancer treatment, reducing bleeding in severe injuries, magnetic 
resonance imaging and other diagnostic tests [17]. This type of fluid coin as ferrofluid. Ferrofluid 
containing engineered colloidal suspensions of magnetic nanoparticles like cobalt, magnetite and 
ferrite scattered based fluid like water and oil.  

Ferrofluid was invented by NASA as liquid rocket fuel at no gravity situation [18]. Today, 
ferrofluid played an important role in medicine and electrical devices like heat controlling agents in 
electric motor, Hi-Fi speakers as well as computer hard disc [19]. 

Motivated from the above literature, the study on blood-based fluid blended with magnetic 
nanoparticles to formed a ferrofluid on a stagnation flow with stretching surface is an interesting 
topic to consider. The Casson non-Newtonian fluid model combines with Tiwari and Das nanofluid 
model [20] is numerically examined. The realistic Newtonian heating boundary conditions is applied 
instead the common constant wall temperature boundary conditions. To the best of the author’s 
knowledge, this study had never been discussed before, thus the results published here is new.  
 
2. Mathematical Formulations 
 

A steady two-dimensional stagnation point flow over a stretching sheet (Figure 1) immersed in 

Casson ferrofluid with ambient temperature, .T  Assuming that u and v are the velocity 

components along the x and y axes, respectively. Next, the stretching velocity ( )wu x ax= and the 

free stream velocity U bx =  are assumed in linear forms where a  and b  are positive constants 

[21]. Further, the stretching sheet is subjected to a Newtonian heating boundary condition as 
proposed by Merkin [22]. The Navier-Stokes equations can be governed as follows 
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,u U T T = → as .y →              (4) 

 
The Casson ferrofluid kinematic viscosity, dynamic viscosity, electrical conductivity and its 

density is denoted as , , ,ff ff ff   and ,ff  respectively.  and oB  is the Casson parameter and 

magnetic field strength while T is the temperature of the Casson ferrofluid inside the boundary 

layer. ( )p ff
C is the heat capacity of hybrid nanofluid and ffk  is the thermal conductivity of hybrid 

nanofluid. Other properties related to base fluid (blood) and the ferroparticles are denoted with 

subscript 
f

 and s  respectively as follows [23] 

 

( )

( ) ( ) ( )

2.5
, (1 ) , , ,

(1 )

2 2 ( )
(1 ) , .

2 ( )

ff ff f

ff ff f s ff ff

ff p ff

ff s f f s

p p pff f s
f s f f s

k

C

k k k k k
C C C

k k k k k

 
      

 


    



= = − + = =
−

+ − −
= − + =

+ + −

       (5) 

 
where are ferroparticles volume fraction. Noticed that the Eq. (1)-(3) are non-linear partial 

differential equations which consist many dependent and independent variables. It is also in 
dimensional forms which is difficult to solve directly. Therefore, the similarity transformation 
approach is applied [23] 
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Eq. (6) shows the similarity variables where ,  and   is a non-dimensional variable, stream 

function and temperature, respectively. The similarity variables (6) satisfy the continuity Eq. (1) by 
definition 
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Next, substitute the similarity variables Eq. (6) and (7) into governing equations Eq. (2) and (3) gives 
the following transformed ordinary differential equations 
 

2 2

2.5

1 1
1 ( ) 0,

(1 ) 1 ( ) / ( )s f

f ff f M f 
   

 
   + + − + − − = 

 − − +   

        (8) 

 
/1

0.
Pr (1 ) ( ) / ( )

nf f

p s p f

k k
f

C C
 

   
 + =

− +
           (9) 

 
The boundary conditions become 
 

( )(0) 0, (0) 1, (0) 1 (0) ,f f    = = = − +  
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( ) , ( ) 0,f     → → as .y →                        (10) 

 

By definition, 
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temperature (0), the heat transfer rate (0)−  and the skin friction coefficient
fC which given by  
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and reduced by Bhattacharyya [24] as  
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
=  is the Reynolds number. 

 
Fig. 1. Physical model and the coordinate system 

 
3. Results and Discussion 
 

The Runge-Kutta-Fehlberg (RKF45) are applied in solving the system of ordinary differential 
equations Eq. (8) and (9) with boundary conditions (10). The numerical results obtained for the 

surface temperature (0)  and the reduced skin friction coefficient 
1/2Ref xC  for a various values of 

stretching parameter , magnetic parameter ,M  Casson parameter   and the ferroparticle volume 

fraction   for ferrite 3 4Fe O and cobalt ferrite 2 4 .CoFe O  It is worth mentioning that the boundary 

layer thickness from 4 to 8 is sufficient to provide the accurate numerical results. Besides, the 
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values of thermophysical properties of blood as a based-fluid with the ferroparticles consider are 
tabulated in Table 1. 
 

Table 1 
Thermophysical properties of water and ferroparticles [16] 
Physical Properties Blood (f) 3 4Fe O  2 4CoFe O  
 (kg/m3) 1053 5180 4907 

pC (J/kg·K) 3594 670 700 

k(W/m·K) 0.492 9.7 3.7 

 
For comparison purpose, Table 2 is tabulated. It is shown that the comparison values of (0)f   

with previous results by Nazar et al., [25] and Bhattacharyya [24]. It is found that the numerical 
results are in good agreement.  
 

Table 2 
Comparison values of (0)f   for some values of   when Pr 7, 1, 0M = = = =  and 𝛽 = ∞ 

  Nazar et al., [25] Bhattacharyya [24] Present 

0.1 -0.9694 -0.969386 -0.969395 
0.2 -0.9181 -0.918107 -0.918108 
0.3 -0.6673 -0.667263 -0.667264 
2 2.0176 2.017503 2.017503 
3 4.7296 4.729284 4.729282 

 
Figure 2 shows the variation of the surface temperature (0)  for various values of the 

stretching parameter .  It is found that the values of (0) is decreasing with the increase of .  

From Figure 2, it is observed that as   is absent ( )0 , = the blood-based Casson ferrofluid with 

cobalt and ferrite provided 17.1% and 21.4% higher in (0) values compared to the blood-based 

fluid. As   increases, the temperature difference between blood-based Casson ferrofluid and its 
based fluid decreases. This is a physical sign that the high value of   will fully eliminate the effects 
of ferroparticles on temperature in Casson ferrofluid.  
 

 
Fig. 2. Variation of (0) with various values of  when 

Pr 21, 0.5, 0.1M = = = =  and 𝛾 = 1 
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The effect of magnetic parameter M on surface temperature (0) is illustrated in Figure 3. Form 

figure, it is clearly shown that the increase of M enhanced the values of (0) . Further, from 

numerical calculation, the blood-based Casson ferrofluid with 0.1 vol. of ferrite gave at least 20.8% 
enhancement in (0)  compared to the blood-based fluid. Ferrofluid with 0.2 vol. ferroparticles 

score better with 46% increment in (0) . The positive increment increases as M increases.  

 

 
Fig. 3. Variation of (0) with various values of M when 

Pr 21, 0.5 = = =  and 𝛾 = 1 

 
In discussing the fluid friction with stretching surface, Figure 4 and 5 are illustrated. From Figure 

4, it is found that the values of the skin friction coefficient 
1/2Ref xC  is negative for 1,  due to the 

fact that the stretching surface and fluid move in an opposite direction. As 1, = the values of 
1/2Re 0,f xC = as the stretching plate and a fluid have the same velocity and direction. Next, it is 

found that the increase of   for 1  results to the increase in 
1/2Re .f xC  

This is realistic since the increase of   implies to the increase of ratio for free stream velocity 

over a stretching velocity. The velocity differences increase thus reflect to the increase in 
1/2Re .f xC  

Next, it is suggested that the values of 
1/2Ref xC  for 3 4Fe O blood-based Casson ferrofluid and 

cobalt ferrite 2 4CoFe O  blood-based Casson ferrofluid gave closed results. The present of 

ferroparticles in ferrofluid influence to the increase in 
1/2Ref xC and the temperature difference 

between the blood and the blood-based Casson ferrofluid is more significant as   increasing. 

Figure 5 shows the variation of skin friction coefficient 
1/2Ref xC against magnetic parameter M 

with various ferroparticle volume fraction  . It is observed that the values of 
1/2Ref xC  are negative 

due to the fact that the opposite direction between stretching plate and the fluid flow. The increase 
of M results to the increase of these quantities. In considering the effects of ferroparticle volume 
fraction ,  the blood-based Casson ferrofluid with 0.1 vol of ferroparticles sparks a significant 

increment of 
1/2Ref xC compared to the blood-based fluid. Noticed that, doubling the ferroparticles 
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(0.2 vol) shows an only small increment in 1/2Re .f xC  Further, it is worth mentioning that the effects 

of   are more significant as M increases.  
 

 
Fig. 4. Variation of 1/2Ref xC with various values of when

Pr 21, 0.5, 0.1M = = = =  and 𝛾 = 1 
 

 
Fig. 5. Variation of 1/2Ref xC with various values of M when 

Pr 21, 0.5 = = =  and 𝛾 = 1 

 
Next, it is worth to investigates effects of fluid parameter on the temperature and the velocity 

distribution across the boundary layer as well as its thicknesses. Figure 6 and 7 illustrate the 
temperature profiles ( )  for various values of   and ,  respectively. From Figure 6, it is 

concluded that the increase in   results to a small increment in temperature and the thermal 

boundary layer thicknesses. Physically, this shows that the rheological behaviour in blood-based 
Casson ferrofluid contribute less effects on the heat transfer process and nearly similar to 
Newtonian-blood based ferrofluid ( ) → .  
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In Figure 7, the increase in ferroparticle volume fraction gave a significant increasing in 
temperature as well as the thickness of the thermal boundary layer. Since the heat transfer 
coefficient is directly proportional to the temperature Eq. (10), physically the increase of 
ferroparticle composition in blood-based Casson ferrofluid results to the enhancement to this 
quantity. It is worth to limit the ferroparticle volume fraction to a small composition (i.e; 10%) in 
order to prevent clogging, maintaining the stability and viscosity of a Casson ferrofluid. 
 

 
Fig. 6. Temperature profiles ( )  with various values 

of  when Pr 21, 0.1, 0.5M = = = =  and 𝛾 = 1 

 

 
Fig. 7. Temperature profiles ( )  with various values 

of  when Pr 21, 0.5M = = = =  and 𝛾 = 1 
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Lastly, the velocity profiles for various values of   and   are shown in Figure 8 and 9, 

respectively. The scenario for both parameters are contradict with the temperature profiles 
obtained in Figure 6 and 7. From Figure 8, it is suggested that the increase of Casson parameter 
results to a drastically reducing in velocity boundary layer thicknesses. Physically, from this pattern, 
it is shows that the blood-based Casson ferrofluid have a thicker velocity boundary layer compared 
to a Newtonian-blood based ferrofluid ( ) → .  

 

 
Fig. 8. Velocity profiles ( )f  with various values of 

 when Pr 21, 0.1, 0.5M = = = =  and 𝛾 = 1 

 

 
Fig. 9. Velocity profiles ( )f  with various values of 

 when Pr 21, 0.5M = = = =  and 𝛾 = 1 
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Further, the increase of velocity boundary layer thickness on blood-based Casson ferrofluid is 
the sign of the velocity gradient reduction thus suggested the blood-based Casson ferrofluid have 
low in skin friction coefficient compared to a Newtonian-blood based ferrofluid. On the other hand, 
the increase in ferroparticle composition in blood-based Casson ferrofluid had slightly reduced the 
velocity boundary layer thicknesses. The increase of ferroparticle volume fraction physically 
increase the fluid density thus results to the enhancing in skin friction coefficient. This situation can 
be determined clearly from the increase in velocity gradient in Figure 9. 
 
4. Conclusions 
 

The MHD stagnation point flow of a blood-based Casson ferrofluid on a stretching sheet with 
Newtonian heating was numerically studied. It was shown how the stretching parameter ,

magnetic parameter M and the ferroparticle volume fraction   in blood-based Casson ferrofluid 

affect the surface temperature (0)  and the skin friction coefficient 1/2Re .xfC   

As a summary, in the absence of stretching effects, it is found that surface temperature for 
cobalt and ferrite blood-based Casson ferrofluid provided 17.1% and 21.4% higher than the blood-
based fluid. The presence of stretching parameter reduced this difference while increase the skin 
friction coefficient. Next, the increase of M enhanced the values of surface temperature and skin 
friction coefficient.  

Further, it is concluded that the blood-based Casson ferrofluid with 0.1 vol of ferrite gave at 
least 20.8% enhancement in surface temperature compared to blood while the 0.2 vol. 
ferroparticles score better with 46% increment in surface temperature as magnetic parameter, M 
presence. Lastly, it is found that the increase of ferroparticle volume fraction gave a significantly 
increase in heat transfer coefficient. Meanwhile, it is worth mentioning that, from numerical 
computation, the blood-based Casson ferrofluid contribute lower skin friction coefficient compared 
to Newtonian-blood based ferrofluid.  
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