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h i g h l i g h t s
� A process model for biomass torrefaction and gasification was developed.

� Introduction of steam into gasifier increased H2 concentration by 10.1%.

� The H2/CO ratio was higher with lower gasifier temperature, lower equivalence ratio and higher steam/biomass ratio.

� Optimum conditions for hydrogen production have been identified.
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Torrefaction is a pretreatment method that converts biomass to a fuel-like substance that

can replace coal for sustainable power generation. In this work, a thermodynamic-based

process simulation model was developed to simulate the gasification of empty fruit

bunch (EFB), with torrefaction as pretreatment, to determine the optimum conditions;

equivalence ratio, reactor temperature, torrefaction medium concentration, steam-to-

biomass (S/B) ratio and system configuration were studied to determine their influence

on hydrogen concentration, higher heating value (HHV), syngas ratio and cold gas effi-

ciency (CGE). The highest hydrogen yield was obtained at an S/B ratio of 1.3 at 800 �C, with a

syngas ratio of 2.5 and a CGE of 84%. Concentration of torrefaction medium showed no

effect on hydrogen concentration due to the simplicity of the model used, but work is in

progress in this direction. Therefore, steam gasification is more suitable than air gasifica-

tion in hydrogen production.

© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
and oil palm cultivation [1,2]. Among these wastes, MF and

Introduction

Malaysia, as one of the main oil palm plantation countries,

generates about 55.73 million tonnes of oil palm waste per

annum, which includes empty fruit bunch (EFB), oil palm

frond (OPF), palm kernel shell (PKS), oil palm trunk (OPT) and

mesocarp fibre (MF) from the activities of palm oil production
. Abdul Rasid).

ons LLC. Published by Els
PKS contribute to the sustainability of the oil palm mill oper-

ation by being fed into a combustor in order to produce elec-

tricity and steam. On the other hand, OPT and OPF are

returned to plantations as mulch, erosion control and long-

term nutrient recycling [3,4]. This means that only small

amount of biomass, including OPF, is utilised for bioenergy, or
evier Ltd. All rights reserved.
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fibre board, paper or fertiliser production, while the rest is

merely piled at the roadside [1]; therefore, it should be fully

utilised as a renewable energy source.

Biomass as a renewable energy source is better than other

sources in some respects, such as low sulphur content, all-year

availability and high versatility, therefore increasing its

deployment in industry [5,6]. Biomass helps to reduce green-

house gas emissions and mitigate waste management and

pollution problems while reducing dependency on fossil fuels

[7e9]. There are several methods of processing biomass: ther-

mochemical and biochemical methods. The currently available

biomass thermochemical conversion processes are liquefac-

tion, carbonisation, combustion, pyrolysis and gasification

[10,11]. Gasification aims to gasify biomass into gaseous prod-

ucts and focuses on the production ofmethane (CH4), hydrogen

(H2), carbon dioxide (CO2) and carbon monoxide (CO) [12]. Raw

syngas that comprises of H2 and CO can be used for down-

stream processes like heat and power generation or liquid fuels

and bulk chemical productions [13e15]. Gasification involves

several stages: drying (<150 �C), pyrolysis (150e700 �C), oxida-
tion (700e1500 �C) and reduction (800e1100 �C) [16]. The gasi-

fying agents often used include oxygen, air and steam,whereby

their optimum concentrations promote higher carbon conver-

sion. H2 gas has high efficiency since it achieves ‘zero-carbon’

emissions during the generation of power and is environmental

friendly, making it one of the best energy carriers [17]. Steam

gasification increases the H2 concentration in product gas and

provides higher thermal cold gas efficiency (CGE), therefore is

given higher attention [18,19]. However, raw biomass usage in

gasification has exposed some problems, as raw oil palmwaste

often has a high moisture content that reduces the heating

value of the product, increases storage and transportation

costs, causes incomplete burning that causes carbon burnout,

increases biological degradation risks and increases the O2

content of the product. The increase in storage and trans-

portation costs is due to the low bulk and energy density of raw

biomass, while poor grindability increases the energy required

for grinding. Its hygroscopic nature, on the other hand, in-

creases biological degradation risks and may cause moisture

uptake during storage. This has caused the industry to lose

interest in the use of biomass as an energy source [20e24].

As a result, in order to overcome the aforementioned cir-

cumstances, torrefaction as a pretreatment method can be a

useful option, in that moisture content can be reduced effec-

tivelywhile increasing the calorific value of the biomass [25]. It

is a mild thermal heating process at 200e300 �C using an

external fuel source in the absence of air or O2 to produce a

charred product with improved fuel performance and phys-

ical transport properties [26e29]. Torrefied biomass has higher

heating values, improved grindability, lower capacity to up-

takemoisture and lower oxygen/carbon and hydrogen/carbon

ratios [30]. These properties are similar to coal and thus are

suitable for gasification [5].

Hydrogen is a clean energy source that can substitute for

fossil fuels for direct combustion in an engine or fuel cell and

produces only water as a by-product [31]. Its high energy den-

sity characteristicsmakes itmore effective in its transportation

and use compared to other fossil fuels; it could become a pri-

mary source, leading the global energy system in the future [32].

Hydrogen production processes can be separated into two
major categories: conventional processes that utilise non-

renewable energy sources such as fossil fuels and renewable

technologies that utilise biomass as feedstock. For example,

coal has been used to produce H2 through the water gas shift

(WGS) reaction and purification in conventional processes

[33e35]. In the production of H2 using biomass, two major

routes are available: biological processes, such as bio-

photolysis and dark fermentation, and thermochemical pro-

cesses, such as electrolysis and thermolysis [36]. Thermo-

chemical methods have higher efficiency and are generally

more cost-effective than biochemical methods [37,38].

Gasification, one of the thermochemical technologies,

gives higher H2 production without the emission of polluting

by-products and process conditions are more easily achieved

compared to combustion and liquefaction [39]. It produces

clean hydrogen energy efficiently on a large scale from several

types of biomass, and it is the most economical process for

bio-hydrogen production [8,40,41]. Steam gasification is able

to produce H2 in yields far higher than fast pyrolysis with an

overall efficiency of up to 52% providing an effective method

of renewable H2 production [42,43]. With the aforementioned

advantages, many studies have been conducted related to

gasification using biomass. Prins et al. conducted a study on

gasification by using torrefied and raw wood and found that

the efficiency of torrefied wood in air-blown gasification is

promising and the performance and efficiency are comparable

to those of raw wood [44]. Muslim et al. simulated gasification

using raw and torrefied EFB, where an increase in gasifier

temperature increased the amount of H2 produced, while an

increase in equivalence ratio (ER) reduced the amount of H2

produced. The use of torrefied biomass contributed to higher

lower heating value (LHV) and gasification efficiency [45].

Therefore, ER is often lower than 1.0 [46]. A study has also

shown that the gas produced by gasification using torrefied

biomass has better energy and exergy efficiencies and higher

H2 and CO content compared to raw biomass [47]. Bach et al.

simulated torrefaction combined with gasification and CO2

capture for spruce wood branches, where torrefaction

increased the LHV and CGE of the product [5]. Few experi-

mental gasification works with torrefaction pretreatment

have been conducted for biomasses such as olive kernel [48]

and sewage sludge [49] while for EFB, combination experi-

mental work has been done but at a torrefaction temperature

of 300 �C and steam gasification only [50]. To the best of our

knowledge there has been no work yet done on the combi-

nation of torrefaction and gasification using EFB and the

comparison between the air gasification and steam gasifica-

tion of EFB. So, the aim of this work was to develop and

simulate both torrefaction and gasification process of EFB to

produce a high yield of H2 in the product gas.
Methodology

Description of the model

A model for torrefaction and gasification was constructed as

shown in Fig. 1. The biomass feedstock in this research was

adopted from other work. The fuel properties of the raw

biomass including moisture content (MC), fixed carbon (FC),
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Fig. 1 e Process flow diagram of the overall process of this work.
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volatile matter (VM), ash, carbon (C), hydrogen (H), nitrogen

(N) and oxygen (O) are shown in Table 1, which includes the

higher heating value (HHV). The raw EFB was dried to mini-

mise the moisture content of the oil palm waste prior to

entering the torrefaction reactor and to improve its efficiency.

The dried EFB was torrefied in the torrefaction reactor in the

presence of amedium, i.e., nitrogen (N2), oxygen (O2) or carbon

dioxide (CO2) to produce torrefied EFB and gaseous product.

The solid product of torrefaction was fed into the gasifier to

react with the gasifying agent, i.e., air and steam, to produce

syngas that contained H2, CO, CO2 and CH4. Fig. 2 shows the

Base Case of this study in the Aspen Plus model.

The biomass was pretreated using the Rstoich DRYER to

reduce the moisture content to 1%. Then the RYield YIELD

reactor was used to obtain the mass yield of the solid product

and the volatile matter composition. The temperature of the

YIELD reactor was controlled at 250 �C under atmospheric

condition with different types of torrefaction medium added

at 10 mL/min. The RYield DECOMPOS reactor was used to

convert the feed into carbon, hydrogen, oxygen, sulphur, ni-

trogen atoms and ash. The decomposed feed and different

types of gasifying agent then entered the RGibbs GASIFIER,

operated at temperature of 800 �C at atmospheric pressure.

Gasifying agents were added in various ratios in order to study

the effect of concentration of gasifying agent on the concen-

tration of H2 generated.

Model assumptions

The assumptions made for the simulation were:

� The model used MIXNC stream class, since both conven-

tional and nonconventional solids are present,

� The properties method selected is Redlich-Kwong-Soa-

veeBoston-Mathias (RKS-BM) cubic equation,

� All pressure drops are neglected with operation under at-

mospheric pressure,

� A steady state is assumed in all calculations,

� The ambient temperature is 25 �C, and
� Air is assumed to be a combination of 79%N2 and 21%O2 on

a molar basis.

In order to determine the accuracy of the developedmodel,

the sum-squared deviation method was used, as shown in

Equations (1)e(3) [52]:
RSS¼
XN
i¼1

�
yie � yip

yie

�2

(1)

MRSS¼RSS
N

(2)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MRSS

p
(3)

where RSS is the residual sum of squares, MRSS is the

mean residual sum of squares, N is the number of data, yie

is the estimated value, yip is projected value, and RMSE is

the root mean square error. The amount of heat released by

the dry gas after gasification for combustible species,

known as the higher heating value was calculated using

Equation (4) [53]:

HHV
�
MJ

�
Nm3

�¼12:76ðvol%H2Þþ12:63ðvol%COÞþ39:76ðvol%CH4Þ
100

(4)

For the solid fuel, the HHV was estimated using Equation

(5) [54]:

HHVðMJ = kgÞ¼ 0:3491Cþ1:1783Hþ 0:1005S� 0:1034O� 0:0015N

(5)

where C, H, S, O and N are the carbon, hydrogen, sulphur,

oxygen and nitrogen contents (%) in the biomass.

Another important aspect that shows the performance of

the syngas produced is the CGE, as shown in Equation (6)

[55]:

CGEð%Þ¼ vgHHVg

_mfHHVf
� 100 (6)

where vg is the gas flow rate (m3/hr), _mf is the fuel mass flow

rate (kg/s), and HHVg and HHVf are the values of gas (MJ/Nm3)

and fuel (MJ/kg) respectively. Syngas ratio was calculated by

Equation (7):

Syngas ratio¼ H2 flow rate
CO flow rate

(7)

Case study description

In this work, several studies were conducted for the optimi-

sation of the production of H2 from EFB using pretreatment of

torrefaction.

https://doi.org/10.1016/j.ijhydene.2021.07.010
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Table 1 e Ultimate and proximate analysis of raw EFB [1,51].

Proximate analysis (wt % dry) Ultimate analysis (wt % dry ash free) HHV (MJ/kg)

MC FC VM Ash C H N O

Raw EFB 6.55 10.23 80.11 3.11 42.26 6.25 0.73 50.76 16.94

Fig. 2 e Base Case.
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Base Case
The H2 production in terms of molar composition was

observed using torrefaction under inert atmosphere, where

the product gas was purged and the torrefied biomass reacted

with O2 during gasification. Sensitivity analysis was con-

ducted to detect the effects of gasifier temperature and ER on

the production of H2.

Case 2: Effect of torrefaction medium
Oxidative torrefaction was conducted where O2 and CO2 were

introduced into the torrefaction reactor to test the effect on H2

production, as oxidative torrefaction can produce biomass

with higher HHV and higher carbon content.

Case 3: Effect of gasification medium
Steam was fed into the gasifier, as steam gasification can

produce a higher H2 concentration in syngas. Therefore,

sensitivity analysis of the steam-to-biomass (S/B) ratio was

conducted to attain the optimum S/B ratio for highest H2

concentration produced.

Case 4: Effect of torrgas recycling
Torrgas was recycled into the gasifier instead of being purged

to determine whether this could improve the production of H2

in the syngas. Fig. 3 shows the configuration of Case 4.

The case studies summary is shown in Table 2.
Results and discussion

Validation of model

The simulated results from this work were compared with

those of previous experimental works from the literature

[44,51] in order to validate the model's accuracy, as shown in

Tables 3 and 4. The final simulation results were very similar

to the literature results. The RMSE is low, which shows that

the model is reliable and validated.

Effects of gasifier temperature and ER

The effect of ER and temperature were investigated to identify

the optimum ER and temperature to produce highest H2 con-

centration, HHV and CGE. Fig. 4 shows the effects of ER on

syngas production in the Base Case. When ER increased from

0.2 to 0.4, the amount of H2 gas produced decreased slightly.

This is because oxidation is faster than cracking reactions in

the presence of air, therefore enhancing the formation of

more CO2 while reducing the concentrations of H2 [56]. Fig. 5

shows the effect of ER on HHV, syngas ratio and CGE. HHV

decreased with ER due to the reduction in amount of H2 pro-

duced. A maximum syngas ratio of 1.03 was obtained at an ER

of 0.2. Syngas ratio is important, as further utilisation of the

https://doi.org/10.1016/j.ijhydene.2021.07.010
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Fig. 3 e Configuration of Case 4.

Table 2 e Case studies summary.

Case study Torrefaction
medium

Gasifying agent Torrgas

1 (Base Case) N2 O2 Purged

2 O2, CO2 O2 Purged

3 N2 Steam Purged

4 N2 O2 Recycled

Table 4 e Syngas product yield comparison between
literature [50] and this work.

Components Actual
yield
(vol %)

Simulated yield
(vol %; this work)

Difference
in yield

H2 63.52 57.39 6.13

CO 27.22 28.00 0.78

CO2 9.07 14.54 5.47

CH4 0.18 0.07 0.11

RMSE, % 4.13
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syngas in the production of many chemicals, such as Fischer-

Tropsch liquids andmethanol, depends on the composition of

the syngas [57]. CGE on the other hand increased when ER

increased, similar to the trend obtained by Liu et al. [58].

Fig. 6 shows the effect of gasifier temperature on syngas

composition. As shown, H2 content showed a slight decrease

of 0.3mol % as temperature increased from 800 to 1000 �C. CO
on the other hand increased significantly with temperature

This is due to the occurrence of secondary reactions such as
Table 3 e Product yield comparison between literature data [44
this work.

Components Actual yield (wt. %) S

Torrefied biomass mass yield 86.4514

Water 1.5814

Acetic acid 7.3800

Formic acid 0.5271

Methanol 0.4744

Lactic acid 0.1054

Furfural 0.0011

Carbon dioxide 3.0574

Carbon monoxide 0.4217

RMSE, %
the shifting reaction [59e61]. The CO2 decrease with tem-

perature might be due to steam reforming and water gas

reactions where CO2 is decomposed into CO [62]. The CH4

decrease in the composition is due to the cracking reaction

into H2 and CO2 at higher temperatures [63]. Fig. 7 shows the

effect of temperature on HHV, CGE and syngas ratio. The

increase in temperature resulted in a significant increase in
,51] for themass yield and volatile product respectively and

imulated yield (wt. %; this work) Difference in yield

86.4515 0.0001

1.5814 0

7.3800 0

0.5271 0

0.4744 0

0.1054 0

0.0011 0

3.0574 0

0.4217 0

0
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Fig. 4 e Effects of ER on molar composition of (a) H2 and CO and (b) CO2 and CH4.

Fig. 5 e Effects of ER on (a) HHV of syngas and (b) syngas ratio and CGE.

Fig. 6 e Effect of gasifier temperature on molar composition of (a) H2 and CO and (b) CO2 and CH4.
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HHV due to the reduction of CO2 and increases in CO and CH4

in the product gas [5]. The syngas ratio reduced with

increasing temperature, with a maximum of 0.99 at 800 �C.
CGE increased with increased gasifier temperature. This

shows that high temperature favours the gasification process

but needs to be controlled due to the technical limitations of

the gasifier [64].
Effects of torrefaction medium concentration

The effect of torrefaction medium concentration on HHV and

syngas composition was investigated, as oxidation during

torrefaction would increase the HHV of the solid product,

therefore increasing the HHV of the syngas. However, there

was no effect of torrefaction medium compared to the yield

https://doi.org/10.1016/j.ijhydene.2021.07.010
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Fig. 7 e Effect of gasifier temperature on (a) HHV and (b) syngas ratio and CGE.

Fig. 8 e Effects of S/B ratio on molar composition of (a) H2 and CO and (b) CO2 and CH4.

Fig. 9 e Effects of S/B ratio on (a) HHV and (b) CGE and syngas ratio.
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distribution in the Base Case. This contradicted the results of

Sellappah et al., where torrefied EFB in CO2 resulted in lower

H2 content than in N2 due to devolatilisation and dehydration

during torrefaction [65]. A similar decreasing trend in H2

content was observed by Adnan et al., who conducted torre-

faction in O2 [66]. This may due to the simplicity of the model
meaning that it was unable to predict the changes in the yield

when O2 and CO2 were introduced into the system, as oxida-

tion was not considered in the model. Therefore, the kinetics

of oxidative torrefaction should be introduced into the system

to identify further the effect of torrefaction medium on HHV

and H2 concentration in syngas.

https://doi.org/10.1016/j.ijhydene.2021.07.010
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Fig. 10 e Effects of configurations on (a) H2 concentration and (b) HHV.

Table 5 e Comparison of findings of the current study
with the literature.

Aspects Current work [70] [50] [63] [71]

Feedstock EFB

Temperature (�C) 800 770 ± 20 780 800 800

HHV (MJ/kg) 12.55 7.2 N/A N/A N/A

CGE (%) 77.4 40 N/A N/A N/A

H2 concentration (vol %) 59.25 N/A N/A 53 17.23

H2/CO ratio 2.05 N/A 8.4 2.52 0.52

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 7 ( 2 0 2 2 ) 4 2 0 4 0e4 2 0 5 0 42047
Effects of steam as gasifying agent

In order to determine the influence of steam in producing the

highest H2 concentration and HHV, it was used to replace air

as gasifying agent in the gasifier, as steam gasification in-

creases H2 production [67]. Fig. 8 shows the effect of the S/B

ratio on syngas composition. It can be observed that there is a

range where the concentration of the gases was almost con-

stant up to an S/B ratio of 0.3. H2 and CO2 concentrations

increased with increasing S/B ratio, while CO and CH4 con-

centrations decreased. Similar trends were reported by Pala

et al. [68]. The addition of water enhances water gas and

methane reforming reactions, which increase the H2 con-

centration. Reduced CO concentration is due to the WGS re-

action where CO reacts with steam to form H2 and CO2 [69].

Fig. 9 shows the effects of S/B ratio on HHV, CGE and syngas

ratio. It is worth noting that syngas ratio increased with S/B

ratio, reaching a maximum of 2.5 at an S/B ratio of 1.3. How-

ever, CGE increased up to an S/B ratio of 0.4 then decreased

with increasing S/B ratio because the increase in the amount

of steam introduced into the system lowered the concentra-

tion of reactants but increased the concentration of products,

thereby decreasing the reaction rates and the efficiency of the

process [40].
Fig. 11 e Effects of configuration on H2 flow rate.
Effects of configuration

The gas product stream after torrefaction was recycled to the

gasifier to study the effect on H2 concentration in the syngas, as

mentioned in section Case 4: Effect of torrgas recycling. Fig. 10

shows the comparison of the H2 concentration produced be-

tween the Base Case and Case 4, while Fig. 11 shows the effect

of recycled torrgas on H2 flow rate. It can be seen that the

recycled gaseous product of torrefaction (Case 4) had lower H2

concentration than the purged gas product. However, from

Fig. 11, Case 4 showed a higher H2 flow rate than the Base Case.

This is due to the increased concentration of other gases in

Case 4, which lowered the concentration of H2. Therefore,

recycling the torrefaction gas product produced higher

amounts of H2 but in lower concentration. In terms of HHV, the

Base Case had higher HHV than Case 4, which might be due to

the lower concentration of H2 in Case 4, so the Base Case was

better, as it resulted in higher HHV and H2 concentration in the

syngas compared to Case 4. Table 5 shows the comparison of

the findings of this work with those of other studies, where this

workmanaged to achieve highHHV, H2 concentration and CGE.
Conclusions

In conclusion, a model of combined torrefaction and gasifi-

cation using Aspen Plus for EFB was simulated. H2 concen-

tration increased with a decrease in ER and an increase in
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gasifier temperature in the Base Case, an increase in S/B ratio

in Case 3 andwithout recycling of torrgas in Case 4. Of the four

cases, the best was Case 3, which applied steam into the

gasification reactor. It achieved the highest concentration of

H2 gas, of 59.25 mol % at 800 �C, the highest syngas ratio of 2.5

at the same temperature, and a maximum CGE of 84%. How-

ever, the highest HHV of 12.60 MJ/Nm3 was achieved at an S/B

ratio of 0.1. Further optimisation is required to obtain a bal-

ance between HHV, H2 concentration, syngas ratio and CGE.

Furthermore, for Case 2, a kineticmodel of torrefaction should

be introduced in order to investigate the effect of torrefaction

medium concentration on H2 concentration and the HHV of

syngas. Work is in progress in this direction. The use of tor-

refaction in gasification for hydrogen production increases the

efficiency of the system.
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