
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Balancing Excitation and Inhibition of Spike Neuron Using Deep Q
Network (DQN)
To cite this article: Tan Szi Hui et al 2021 J. Phys.: Conf. Ser. 1755 012004

 

View the article online for updates and enhancements.

This content was downloaded from IP address 183.171.68.4 on 02/08/2021 at 04:52

https://doi.org/10.1088/1742-6596/1755/1/012004
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvu8Z2JykOoum5FnP7JMZK5PeYSmaCC8aIpWZ2VbHU30RMhkYB8gCz5AAlfrmuwandvb8NM8Mpo4FZgX9BnGiG-xz7haAEbECxYhkTYhSUGyKcDvQGISfkaIzMcUKyIW7qwQvH_3XHFd3rpgU5dzjFpzJXl5HWEFnJAx9Z6hXOY0RojC9lsPJ-gta6eQUpQ28rJ6B_siJiukJ__ajHtM9J4b8gnTZwFK8iEt-arrIxJlgehP79xZJfsSc9njiFYiMyjCFcwy32aicEOIKN6zOSasoz0tjKVPP0&sig=Cg0ArKJSzCkNlFHV0ttU&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/240/registration-info%3Futm_source%3DIOP%26utm_medium%3DPDFBN%26utm_campaign%3D240Register


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

5th International Conference on Electronic Design (ICED) 2020
Journal of Physics: Conference Series 1755 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/1755/1/012004

1

Balancing Excitation and Inhibition of Spike Neuron Using 

Deep Q Network (DQN) 

Tan Szi Hui1, Mohamad Khairi Ishak2,, Mohamed Fauzi Packeer Mohamed3, Lokman 

Mohd Fadzil4 and Ahmad Afif Ahmarofi5 

 

1,2,3School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300  

 Nibong Tebal, Pulau Pinang, Malaysia   
4National Advanced IPv6 Center, Universiti Sains Malaysia, Penang, Malaysia 
5Faculty of Industrial Management, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300  

Gambang, Kuantan, Pahang,Malaysia 

 

Email: khairiishak@usm.my 
 

Abstract. Deep reinforcement learning which involved reinforcement learning with artificial 

neural networks allows an agent to take the best possible actions in a virtual environment to 

achieve goals. Spike neuron has a non-differentiable spike generation function that caused SNN 

training faced difficulty. In order to overcome the difficulty, Deep Q Network (DQN) is proposed 

to act as an agent to interact with a custom environment. A spike neuron is modelled by using 

NEST simulator. Rewards are given to the agent for every action taken. The model is trained and 

tested to validate the performance of the trained model in order to attain balance the firing rate 

of excitatory and inhibitory population of spike neuron. Training result showed the agent able to 

handle the environment. The trained model capable to balance the excitation and inhibition of 

the spike neuron as the actual output neuron rate is close to or same with the target neuron firing 

rate. The average percentage error of rate of difference between output and target neuron rate for 

5 episodes achieved 0.80%. 

1. Introduction 

Deep Reinforcement Learning (DRL) involves the concept of artificial intelligence and machine 

learning. DRL combines the principle of deep learning and reinforcement learning as shown in Figure 

1.1 [1]. DRL applies reinforcement learning algorithms with deep neural networks to figure out the best 

possible action to achieve a goal.  

Reinforcement learning is a subset of machine learning. It is a training of models that involved the 

concept of agents, actions, environment, states and rewards as shown in Figure 1.1. Agents play a role 

to take actions in virtual environment. Actions are all of the possible operations to be taken by agents to 

perform the tasks given. States are the observations received from the environment which contain some 

useful information to the agents. Rewards are feedback to evaluate the action taken by the agents based 

on the given state. Positive rewards are received by the agents if the action is a success whereas negative 

rewards are given when the action is a failure. Reinforcement learning provides various algorithms such 

as Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), State-action-reward-state-

action (SARSA) and so on [2]. Every algorithm has its own action space, state space, model and operator 

[3]. These algorithms are used as an agent to learn a model in a virtual environment which is a custom 

environment that represents a physical world for operation of agent. The agent explores in the custom 
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environment and decide the best possible action to be taken in order to achieve a goal which is to collect 

cumulative rewards as much as possible. 

 
Figure 1.1. Block diagram of reinforcement learning. 

DRL enables an agent to interact with a virtual environment and take actions to solve complex problem 

[4]. Deep neural network is used by agents to approximate a value or policy function in order to update 

and index the data instead of using a lookup table. With large action or state space, it is less effective to 

use reinforcement learning without deep neural network as the data obtained from functions is large and 

required longer time and larger memory to update lookup table. The data contain the information of 

state and action. The agent takes actions based on the current state and reward. Rewards or penalties are 

given to the agent based on the actions taken. The agent will gain rewards when the outcome gets close 

to the target whereas the action taken is faulty, the agent will receive negative rewards. The agent learns 

from experience to decide the best suitable action to attain a goal. 

A spiking neural network (SNN) is one of the artificial neural networks that can be used in deep 

reinforcement learning. SNN is more closely to mimic biological nervous system compared to 

conventional artificial neural networks [5]. SNN is utilized to solve wider range of problems in many 

areas such as engineering, neuroscience and so forth.  In SNN, neurons emit and process information 

through sequence of action potentials [6]. Action potentials represent as spikes and the neurons which 

generate spikes is known as spike neurons. The moment when spikes are generated by the spike neurons 

represent the spiking neurons are fired. Information is encoded in firing rate which is the average number 

of spikes generated by the spike neurons per unit time [7]. The output of the spike neuron is spike event 

which is a discrete over time. The spike generation function is non-differentiable as a discontinuity is 

created at the instance of firing time as shown in Figure 1.2. When the voltage of spike neuron crosses 

the threshold value, a spike is fired. After spike is fired, the spike neuron is reset and a discontinuity is 

created. 

 
Figure 1.2. Spike event of a spike neuron. 

 

The non-differentiable of spike event causing difficulty in training SNN by using backpropagation 

algorithm as the spike generation function is incompatible with backpropagation algorithm [8]. 

Agent Environment 

Reward 
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Backpropagation algorithm is a popular and useful algorithm to train neural network in machine learning 

as it is low in cost, fast and simple to program. Backpropagation algorithm is used to minimize the loss 

function which is a function to measure the difference between actual output result and the target output 

result. 

In SNN, the firing rate of the excitatory and inhibitory population of a spike neuron is important to 

control the spike events. Spike neuron will have different firing rate of spikes with different 

configuration of the firing rate of excitatory and inhibitory population of spike neuron. In this research, 

the aim is to balance the firing rate of excitatory and inhibitory population of spike neuron to ensure the 

firing rate of inhibitory population trigger the spike neuron fire at the same firing rate as the target of 

excitatory population. 

In spiking neural network (SNN), information is emitted and processed by spike neuron through a 

sequence of action potentials which is also known as spike. Information is encoded in firing rate of spike 

neuron. Spike neuron consists of a spike generation function for firing. The spike function is non-

differentiable which create a discontinuity at the instance of firing time. Non-differentiability of the 

function leads to the limitation to train SNN using backpropagation algorithm as the function is not 

compatible to the algorithm. This has caused training of SNN using backpropagation become difficult 

as compared to other artificial neural network (ANN). Although SNN is biologically more realistic than 

artificial neural network (ANN) but receives less attention than ANN [9] due to the difficulty to train 

SNN. In order to overcome the non-differentiability of spike function that leads to difficulty in SNN 

training, deep reinforcement learning is applied to balance the firing rate of excitatory and inhibitory 

population of spike neuron. The excitatory and inhibitory population are very important in a spike 

neuron to control the spiking of the neuron. The excitatory and inhibitory population represents the 

weight in SNN. Spike neuron has different firing rate of spikes when different configuration on the firing 

rate of excitatory and inhibitory population of the neuron is applied. The firing rate of inhibitory 

population of the spike neuron is initialized as input and adjusted in the training to achieve the firing 

rate of excitatory population of the neuron has the same rate with the target neuron firing rate. In this 

research, an algorithm of reinforcement learning is used as agent which is Deep Q Network (DQN) to 

interact with a custom environment with OpenAI Gym framework to optimize spike neuron into balance 

state. 

 

1.1.   Background of Q-Learning 

Q-learning is one algorithm used in reinforcement learning to find the best possible action based on the 

current state given. Q-learning is an off-policy as the function learns optimal policy which is independent 

of actions. In addition, Q-learning is a value-based algorithm. Q-learning updates the value function 

based on Bellman equation. In Q-learning, the action-value function Q(s,a) is learnt by using Bellman 

equation as shown in Equation (1) [10]. 

     𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′)                 (1) 

where Q(s,a) represents Q-value of current state, R(s,a) represents reward to be received for taking the 

action, γ represents the discount factor that controls further contribution of rewards in future and max 

Q(s’,a) represents optimal future Q-value for the next state-action pair. The equation indicates the sum 

of the current reward and the expected future discounted reward. 

Q-value for the action taken from the previous state is updated by using Equation (2).  

     𝑄∗(𝑠, 𝑎) = ∑[𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥 𝑄∗(𝑠′, 𝑎′)]                             (2) 
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Q-value of the given state-action pair, 𝑄∗(𝑠, 𝑎) is required to obtain as close as right hand side of the 

equation. When the value of 𝑄(𝑠, 𝑎)  is close to right hand side of the equation, this indicate that the 

𝑄∗(𝑠, 𝑎)  converges to the optimal Q-value. 

Learning rate is applied in Q-learning. Learning rate refers to a parameter for tuning in an optimization 

algorithm to control the adjustment of weight of neural network in order to minimize loss function. The 

range of learning rate is between 0 and 1. Learning rate is used to determine the step size of each episode. 

The new Q-value for given state-action pair, 𝑄(𝑠, 𝑎)  can be calculated by using Equation (3). 

    𝑄∗(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) +  𝛼(𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′))               (3) 

where 𝑄∗(𝑠, 𝑎) denotes new Q-value for given state-action pair, 𝑄(𝑠, 𝑎) represents old Q-value, 𝛼 is 

learning rate and (𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′)) denotes learned value. Learned value is calculated from the 

sum of reward for the action taken and optimal future Q-value of the next state-action pair. The equation 

indicates that the new Q-value is obtained from the sum of old Q-value and learned value.        

1.2.   Background of Deep Q Network 

Deep Q Network (DQN) combines deep neural network and Q learning to approximate Q function. 

DQN approximates Q-values by using neural network instead of using Q table as shown in Figure 1.3. 

 

Figure 1.3. Illustration of DQN. 

Experience replay is implemented in DQN. The DQN agent’s experience is stored in memory to perform 

experience replay. The data stored consists is state, action, reward and next state. The tuple of the agent’s 

experience is expressed In Equation (4). 

𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1)                        (4) 

where 𝑒𝑡 denotes agent’s experience, 𝑠𝑡 denotes the state of the virtual environment, 𝑎𝑡 represents the 

action taken in state 𝑠𝑡, 𝑟𝑡+1represents the reward given to the agent at time, t+1 based on the previous 

state-action pair and 𝑠𝑡+1 represents the next state of the virtual environment. 

Experience replay utilized the previous agent’s experience to perform Q function in order to update deep 

neural networks. 

Based on the Bellman equation of Q-learning as shown in Equation (2), 𝑄∗(𝑠, 𝑎) has to be as close as 

right-hand side of the equation for convergence of Q-value. The goal of the DQN is to meet the 

State 

Q-value Action 1 

Q-value Action 2 

Q-value Action N 

Q-value Action 3 

Deep Neural Network 
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convergence of Q-value. Thus, the equation can be further expressed as the cost function of DQN by 

using Bellman Equation as shown in Equation (5) [11]. 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = [𝑄(𝑠, 𝑎; 𝜃) − (𝑅(𝑠, 𝑎) +  𝛾 max 𝑄(𝑠′, 𝑎′; 𝜃)]2                (5) 

where 𝑄(𝑠, 𝑎; 𝜃) represents approximatiing function which is the prediction of the function, 𝑅(𝑠, 𝑎) 

represents previous rewards, γ represents discount factor that controls further contribution of rewards 

in future, (𝑅(𝑠, 𝑎) +  𝛾 max 𝑄(𝑠′, 𝑎′; 𝜃)) denotes the immediate and future rewards and θ represents 

the weights of the network for training [12].  

The lower the cost function, the lower the difference between predicted Q value and target Q-value. 

The cost function also referred as a Mean Square Error function as shown in Equation (6). 

2

1

1
( ' )

n

i i

i

MSE y y
n 

                                                                  (6) 

where y represents the predicted value whereas y’ represent targeted value. 

 

1.3.   Related Works 

Spiking neural network (SNN) is artificial neural network where the communication of neuron models 

is through sequences of spikes [13]. The spikes are generated by spike neurons for information 

processing. Various types of machine learning such as supervised learning, unsupervised learning and 

reinforcement learning are used to train SNN for spike-timing exploration. The trained SNN models 

are widely used for various applications such as image recognition, data classification, path planing, 

decision making with various application and so forth. 

SNN can be trained using different learning models. An unsupervised training algorithm is proposed 

to train SNN [14]. Spike neuron model is trained using Synaptic Weight Association Training (SWAT). 

The combination of Spike Timing Dependent Plasticity (STDP) and Bienenstock-Cooper-Munro 

(BCM) training rule is applied in the algorithm. An output spike train is generated from input neurons. 

The training and testing results showed the algorithm able to exhibit classification and convergence 

accuracy. 

Furthermore, a supervised learning algorithm of spiking neural networks with limited precision 

(SNN/LP) is proposed to train SNN [15]. Synaptic weights and synaptic delays are applied with limited 

precision for supervised learning. 33 neurons in input layer, 8 neurons in each hidden layers and one 

neuron in output layer are applied in the proposed network as shown in Figure 2.6. The algorithm 

achieved low mean squared error in non-linear XOR classification problem. The algorithm is also used 

to solve Fisher iris classification problem. The algorithm capable to achieve up to 97% of classification 

accuracy. 

 

A supervised multi-spike learning algorithm is proposed to train neurons in SNN [16]. A single neuron 

is trained to learn spike patterns in order to generate spike trains. The expression of membrane potential 

is simplified by the algorithm and enables the optimization of synaptic weights through the application 

of gradient descent. The algorithm is demonstrated in sound recognition and temporal encoding pattern 

classification. The results showed the algorithm able to achieve classification accuracy. 

In addition, a high dimensional sensory input and perceptual ambiguity of model-free reinforcement 

learning is proposed to train SNN in order to solve partially observable reinforcement learning (PORL) 

problem [17]. The SNN that used in this algorithm consists of hidden neurons, action neurons, memory 

neurons and state neurons. The free-energy-based reinforcement learning (FERL) framework is 
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implemented with the trained model to solve PORL issues. The algorithm is capable to be a solution 

for PORL tasks. 

Deep reinforcement learning (DRL) utilized deep neural network and reinforcement learning. It enables 

the agent to explore in a virtual environment to learn the best possible actions in order to achieve goals. 

Various DRL agents are introduced such as Deep Q Network (DQN), Q-learning with normalized 

advantage function (NAF), Deep Deterministic Policy Gradient, Asynchronous Advantage Actor Critic 

(A3C) and many more. The implementation of DRL depends on the action space in the environment. 

Some DRL algorithms can be applied in discrete action space only whereas some work only on 

continuous action space. Certain DRL algorithms can be implemented for discrete and continuous action 

spaces. DRL solves tasks end to end and reduces the training episodes to learn simple tasks. Larger 

action and observation spaces able to implement in DRL.    

DRL is utilized for many fields of applications. DRL combined deep neural network and reinforcement 

learning in video games. The algorithm is used to train machine learning model to achieve human-level 

performance for intelligence game playing. Deep Q-Learning and Asynchronous Advantage Actor-

Critic algorithms (A3C) are proposed to learn to play Atari Breakout game [18]. Both algorithms able 

to learn well to play the game. 

DRL is applied with deep neural network to learn exploration strategy from the input partial map [19]. 

DRL-based automatic exploration for navigation is used as the decision algorithm. The algorithm 

achieved better learning efficiency and adaptability to explore in unknown environment in simulation.  

The algorithm is also able to transfer from simulation to physical world and achieved better explored 

efficiency. 

Furthermore, DRL is proposed as a marking decision via per-port in Data Center Networks (DCNs) to 

solve marking problems in multiple queue scenarios [20]. The algorithm is simulated for different flow 

size independently. The algorithm has the capability to avoid faulty Explicit Congestion Notification 

(ECN) mark and leads to near optimal achievement on flow completion time across different flow sizes. 

Deep Q Network is one of the most popular algorithms in DRL. DQN worked as an agent with the 

combination of supervised learning framework to learn to play game [21]. DQN has the capability to 

interact with gaming environment faster than humans. The proposed algorithm capable to obtain better 

performance with higher scores in performance test and Turing test than human. 

 An agent-aware dropout DQN is proposed for enhancement of online dialogue policy learning in terms 

of efficiency and safety to control consult rules of student policy and learn from experiences of teachers 

[22]. The dropout DQN is worked with a companion learning framework to integrate learning of online 

dialogue policy. Simulation results showed that the improvement on efficiency and safety of online 

policy optimization by using the proposed algorithm.  

 DQN can be used to solve the constraint of efficient exploration in deep reinforcement learning. A 

bootstrapped DQN is developed with the combination of deep exploration and deep neural networks. 

Experiment is conducted to test the exploration of the algorithm in Atari games. The algorithm achieved 

improvement on learning speed and better efficient exploration [23]. 

The application of DQN involved in various field of technology. An improved DQN-based learning 

policy is presented to achieve some enhancement in path planning technology [24]. The algorithm is 

proposed based on different experience’s depth and different learning stages’ breadth. The developed 

model had better performance in terms convergence speed, path accuracy and planning success rate. 

 

2. Methodology 

A spike neuron is modelled and a custom environment is built for training in order to balance the firing 

rate of excitatory and inhibitory population of the spike neuron by using DQN. 
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2.1.   Related Works 

A spike neuron is created by using Neural Simulation Tool (NEST) simulator. NEST simulator can be 

used for any size of spiking neural network model. Single spike neuron is used in training for 

optimization. A spike neuron is modeled using PyNEST command in Python programming language 

after a custom environment is built. Simulation parameters are required to be initialized for NEST 

simulator to model a spike neuron as shown in Table 2.1. 

 

Table 2.1 Simulation Parameters of Spike Neuron 

Simulation Parameters Value 

Simulation Time, t_sim 25000 

Size of Excitatory Population, n_ex 16000 

Size of Inhibitory Population, n_in 4000 

Mean Rate of Excitatory Population 5.0Hz 

Initial Rate of Inhibitory Population with a random number range, r_in 17.5 – 19.5Hz 

Peak Amplitude of Excitatory Population, epsc 50 

Peak Amplitude of Inhibitory Population, ipsc -50 

Synaptic Delay,d  0.01 

Lower bound of search interval, self.lower 0 

Upper bound of search interval, self.upper 50 

 

In the spike neuron model, 4 nodes are created using NEST simulator which are leaky integrate-and-fire 

neuron, Poisson generator, voltmeter and spike detector. Leaky integrate-and-fire model is created with 

alpha-function shaped synaptic currents. The synaptic currents and post-synaptic potentials have finite 

rise time. The leaky integrate-and-fire neuron is simple and popular neuron model as it is easier to be 

simulated and analyzed. Two Poisson generator is used to simulates the spike neuron that firing with 

Poisson statistics for excitatory and inhibitory population. The function of voltmeter is to records the 

membrane potential of the connected nodes to memory and spike detector is created to detect spike event 

from the spike neuron and store into memory. After the 4 nodes are created, the configuration of leaky 

integrate-and-fire neuron and spike detector remain default as the default configuration is satisfied in 

the project. Poisson generator and voltmeter are configured by using SetStatus function. The leaky 

integrate-and-fire neuron is connected to Poisson generators, voltmeter and spike detector after 

configuration.  

The spike neuron model is simulated according to the simulation parameters. The firing rate of inhibitory 

population is initialized as input of the simulation. The firing rate of inhibitory population is scaled and 

the Poisson generator of inhibitory population is configured. The simulation is started after the spike 

detector is reset 0. The firing rate of the actual output neuron rate is measured with given input firing 

rate of inhibitory population. The spiking activity of the spike neuron is recorded by the spike detector 

and the firing rate of output neuron is returned. 

 

2.2.   A Custom Environment with OpenAI Gym Framework 

A custom environment using OpenAI gym toolkit is built. The spike neuron is converted into OpenAI 

Gym framework after the custom environment is built. The environment set the initial state for the 

problems to be solved. Action space and observation space are configured for both DRL algorithms. 

Action space represents how many possible actions for the DRL agents to interact with the environment 

and observation space represents all the data that generated by the environment and to be observed by 

the agents as shown in Figure 2.1. 
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Figure 2.1. Interaction of DRL agents and a custom environment with  

    OpenAI Gym framework. 

2.2.1. Custom Environment in DQN. The simulation parameters to model a spike neuron is initialized 

and 4 nodes for spike neuron model are created in the custom environment. DQN agent is constructed 

with 4 hidden layers with 40 hidden neurons in each layer. There are 3 neurons in input layer and 4 

neurons in output layer as the algorithm has 3 observation space and 4 action spaces in the network. A 

visualization of neural network in DQN is showed in Figure 2.2. Rectified Linear Unit (ReLU) is used 

as activation function in hidden layers of the network. The formula of ReLU is expressed in Equation 

(7) and its graph is showed in Figure 2.3. 

      𝑅𝑒𝐿𝑈 = {
𝑧, 𝑧 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                   (7) 

 

 
Figure 2.2. Visualization of neural network in DQN. 
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Figure 2.3. Graph of rectified linear unit (ReLU) activation function. 

A linear activation function is applied in output layer of the network as the use of neural network in 

DQN agents is for approximation. 

Model parameters are set for the DQN agent as shown in Table 2.2. Adam optimization algorithm is 

applied in the DQN agent as the algorithm is effective and capable to achieve good performance faster. 

The network weight is updated iteratively based on training data by using Adam optimization algorithm. 

The learning rate of the algorithm is set to 0.001 as this is the good default setting for the algorithm [25]. 

Epsilon-greedy policy is used in DQN for discrete action spaces for exploration. 

 

Table 2.2 Setting of Model Parameter 

Model Parameter Setting 

Memory Sequential Memory 

Policy Linear Annealed Policy 

Warm Up Step 50 

Number of Actions 4 

Model Update Target 1e-3 

Optimization Algorithm Adam with learning rate of 1e-3 

 

Action space for DQN in the custom environment is discrete type with 4 possible actions. Discrete action 

space works better compared to continuous action space in DQN. In observation space, three information 

to be observed which are output neuron spike rate, different between the excitatory population spike rate 

and the actual output neuron rate and different between the excitatory population spike rate and the 

actual output neuron rate with normalization with respect to the excitatory population mean rate. 

DQN agent makes a decision on the action to be taken in step function of the algorithm. During learning, 

the agent obtains the current state and reward and followed by update policy. The agent plays a role to 

take actions based on the learnt policy. The agent takes actions based on the 4 possible actions defined 

as shown in Table 2.3. The actions are divided into two groups which consists of addition and subtraction 

of the firing rate of inhibitory population rate. Two actions are fixed for the addition and subtraction 

value which is 0.01 on the firing rate of inhibitory population whereas another two actions are addition 

and subtraction of a random number from a range of 0.02 to 0.05. The firing rate of inhibitory population 

is applied into NEST simulator and the output spike neuron rate is collected and stored into a variable 

by the spike detector. 
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Table 2.3 Action list of DQN 

Action Details of action 

0 Current inhibitory rate + 0.01 

1 Current inhibitory rate - 0.01 

2 Current inhibitory rate + random number from range of 0.02 to 0.05 

3 Current inhibitory rate - random number from range of 0.02 to 0.05 

 

The difference between actual output neuron rate and target neuron firing rate and the percentage of the 

error of the difference between actual output neuron rate and target neuron firing rate are computed. The 

current state of the environment is updated according to the action taken.  

After the current state of the environment is updated, the rewards and done status of the environment 

are computed. Reward is feedback from environment and is given to the agent. Reward is categorized 

into reward after the action taken by the agent and reward for complete condition of environment. The 

agent receives rewards from both categories for every action taken as shown in Table 2.4. 

 
Table 2.4 Reward System of DQN 

 
A reset function is used in the algorithm. The state of the environment is reset to initial state which is 

also can be referred as problem to be solved. The observation space is reset to initial state and the 

variables that used to store information from observation in the custom environment is reset. Once an 

episode is terminated or completed, the reset function is triggered to initialize all the state and 

observation in order to start a new episode of learning.  

The training steps is set to 4000 steps to balance the firing rate of excitatory and inhibitory population 

of the spike neuron. After trained the model, the model is used to test the performance for 5 episodes.  

Five episodes are tested to get comparable results and reducing testing time as longer training time 

required for more episodes in testing. Steps taken for actual output neuron rate to meet with excitatory 

population rate are recorded when testing the model. A sequence of actions, states and rewards are 

performed in an episode and the episode is ended with terminal state if meet the goal. The done status 

which indicate to end one episode of training is trigger if the algorithm meets the goal or meet the 

maximum steps taken for actual output neuron rate to meet with target excitatory population rate. The 

Reward Category of reward Type of Reward Condition to Meet  

Temporary 

reward + 10 

Reward after action 

taken by the agent 

Positive reward Current rate of difference between actual 

output neuron rate and the excitatory 

population rate less than previous rate of 

difference between actual output neuron 

rate and the excitatory population rate 

Temporary 

reward - 10 

Reward after action 

taken by the agent 

Negative reward Current rate of difference between actual 

output neuron rate and the excitatory 

population rate more than previous rate of 

difference between actual output neuron 

rate and the excitatory population rate 

Temporary 

reward - 100 

Reward after action 

taken by the agent 

Negative reward Actual output neuron rate is 0Hz or higher 

than 100Hz.  

Temporary 

reward + 2000 

Reward for complete 

condition of 

environment 

Positive reward Rate of difference between actual output 

neuron rate and the excitatory population 

rate less than or equal to 0.02 

Temporary  

reward - 500 

Reward for complete 

condition of 

environment 

Negative reward Step taken for actual output neuron rate to 

meet the excitatory population rate more 

than 100 
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maximum steps taken for actual output neuron rate to meet with target excitatory population rate is set 

as 100 steps. If the actual output neuron rate does not meet the target neuron firing rate within 100 

steps, the episode will be terminated and penalty is given to the agent. The simulation is continued 

with another new episode of training with initialization parameters after one episode is terminated or 

completed. The flowchart of the DQN algorithm is shown in Figure 2.4. 

 

 

Figure 2.4. Flowchart of DQN algorithm. 

 

3. Results and Discussion 

The spike neuron model which is created is trained in the environment with OpenAI Gym framework. 

The model is trained for 4000 steps. Due to the constraint of memory overflow, we trained and save 

the model for first 2000 steps and followed by two iterations of 1000 steps training by using the saved 

model. The DQN agent is trained to interact with the environment and decide the actions to be taken. 

A learning curve of episode reward versus episodes is plotted as shown in Figure 3.1. The learning 

curve showed the DQN agent able explore in the environment and the model is trained to react towards 

the environment to achieve balance state of spike neuron. The goal of the agent is to obtain the actual 

Test the model for 5 episodes 

Start 

Create DQN Agent 

Construct a neuron model by using 

NEST simulator 

Build a custom environment to convert 

spike neuron to openAI gym 

Framework 

Integrate DQN agent with environment 

Train the model to balance the 

excitatory and inhibitory of neuron 

End 
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output neuron rate meet with the excitatory population rate which is 4.0Hz. With this capability, the 

model became usable for testing. 

 

Figure 3.1. Learning curve of the spike neuron model using DQN. 

After training, the model is tested for 5 episodes to validate the performance of the model. The model 

able to obtain positive reward for every episode during testing as shown in Figure 3.2. 

 

Figure 3.2 Testing curve of the trained model using DQN. 

The testing result is tabulated in Table 3.1. For the first four episodes, the actual output neuron rate is 

very close to goal whereas the actual output neuron rate is attained the goal in the fifth episode. The 

inhibitory population rate is fine-tuned by the agent in order to attain the goal.  The percentage of error 

between the rate of different of actual output neuron rate and goal is calculated in Table 3.2. The average 

percentage of error between rate of difference of output and target neuron firing rate achieved 0.8%. 

The lowest steps taken for actual output neuron rate to meet with target excitatory population rate is 54 

steps. The result proved that the trained model able to interact with custom environment with OpenAI 

gym framework to balance the firing rate of excitatory and inhibitory population of the spike neuron. 
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Table 3.1 Testing result of the trained model using DQN 

Episode Simulation Parameter 
Optimal Value given 

by DQN Agent (Hz) 

Total 

Reward 

Steps taken to 

attain goal 

1 

Mean Rate of Inhibitory 

Population 

16.69 

6410 54 Initial Rate of Inhibitory 

Population  

17.80 

Output Neuron rate 4.04 

2 

Mean Rate of Inhibitory 

Population 

16.87 

5250 62 Initial Rate of Inhibitory 

Population  

17.80 

Output Neuron rate 4.04 

3 

Mean Rate of Inhibitory 

Population 

16.68 

5930 57 Initial Rate of Inhibitory 

Population  

17.80 

Output Neuron rate 4.04 

4 

Mean Rate of Inhibitory 

Population 

16.77 

5500 64 Initial Rate of Inhibitory 

Population  

17.80 

Output Neuron rate 3.96 

5 

Mean Rate of Inhibitory 

Population 

16.71 

5390 61 Initial Rate of Inhibitory 

Population  

17.80 

Output Neuron rate 4.00 

 

Table 3.2 Testing result for output and target neuron firing rate in DQN 

Episode  Actual output 

neuron rate 

(Hz) 

Target 

neuron 

firing 

rate(Hz) 

difference of output 

and target neuron 

firing rate(Hz) 

Percentage of 

Error (%) 

Average 

Percentage of 

Error (%) 

1 4.04 4.00 0.04 1 

0.80% 

2 4.04 4.00 0.04 1 

3 4.04 4.00 0.04 1 

4 3.96 4.00 0.04 1 

5 4.00 4.00 0.00 0 

 

4. Conclusion 

Due to non-differentiability of spike generation activity of spike neuron, the training of spiking neural 

network (SNN) using backpropagation learning faced difficulty. In order to overcome this issue, Deep 

Reinforcement Learning (DRL) is proposed as a solution to train a spike neuron. Deep Q Network is 

proposed to balance the firing rate of excitatory and inhibitory population of a spike neuron. The training 

involved a spike neuron only as the research focus to optimize the spike neuron into balance stated 

before further develop into a network. The excitatory and inhibitory population is referred as weight of 

a spike neuron to control the spiking of the neuron. A spike neuron is trained in the custom environment 

with OpenAI Gym framework. The algorithm able to interact with the custom environment to attain the 

goal. The average percentage of error of rate of difference between output and target neuron firing rate 

for the algorithms obtained 0.80%. The results proved that the algorithm able to explore in the custom 
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environment to train the spike neuron. The results also showed that the spike neuron is optimized into 

balance state as the actual output neuron rate is close to or same to target neuron firing rate. In future 

work, the spike neuron model can be further developed to create a network in order to train a spiking 

neural network (SNN). 
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