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Abstract. The main concern regarding on the spark plug usage is their ignition efficiency and 

lifetime capabilities. This article reviews on the spark plug engine profile in a spark ignition. An 

intelligent practical approach needs to be developed to be the indicator to know when the spark plug 

should be changed. Due to its promising effect on the spark ignition engine, the study of spark plugs 

profile is increasing day by day. For safety, mechanical vibration of a vehicle is a very important 

phenomenon. Moreover, it specifically affects passenger comfort in some applications. Due to the 

effects on vehicle structure components and passenger comfort as well as safety, the mechanical 

vibration through the spark ignition engine has acquired great significance. However, there are many 

problems in researching existing running engines with a spark ignition system, such as slower 

ignition, increased cyclic variance and possible misfire. The higher spark energy will improve the 

ignitibility, but due to electrode corrosion, the life of the spark plug will decrease, and electrodes 

serve as a sink of thermal energy that will affect the spark plug’s health. For instance, the conditions 

such as the spark plug gap, the plug thickness and the carbon dissipated on the spark plug that 

influences the output of a spark ignition, are highlighted in this article. 

1. Introduction 
In automotive industry, vibration is one of the major issues that has always been highlighted as a concern 

of engine developers. This is because vibration has a huge influence on the driving comfort of the 

passengers. Passenger comfort will be significantly increased when the undesired vibrations is attenuated. 

The vibration of a vehicle can be generated from various factors such as broken motor mount, faulty adjusted 

fuel intake system, faulty timing belt, lose or disconnected hoses and etc. When a vibration problem is not 



iCITES 2020
IOP Conf. Series: Materials Science and Engineering 1092  (2021) 012030

IOP Publishing
doi:10.1088/1757-899X/1092/1/012030

2

solved, it will lead to more serious issues that will result in a breakdown of a vehicle. Engine vibration of 

vehicles commonly caused by worn out or faulty sparkplugs. Dirty sparkplugs (or worn out) will cause the 

engine vehicle to misfire or else not properly fire which causes the excitation of forces originated from the 

engine. This can be revised by replacing new sparkplugs or other spark correction or compression 

improvement. 

 

Engine is considered as the core part in of vehicle, involves many complex mechanisms that provide 

power to the drive. The importance of spark ignition engine and their useful life has proved that its 

maintenance and fault diagnosis are vital [1]. Monitoring of engine condition is an effective method of 

preventing a vehicle from breaking down. Among the many parts of spark ignition engine such as engine 

block, pistons, crankshaft and etc., ignition system plays a significant role in an engine. An ignition system 

requires spark plug to deliver the current to the combustion chamber of a spark ignition from an ignition 

system to ignite the mixture of compressed air-fuel. 
 

2. Literature review 

2.1. Effects of spark plug on spark ignition engine 
The spark plug effects on spark ignition engine has been extensively studied. For an optimal engine 

efficiency and performance, the spark plugs of your engine should be in a clean condition without destroying 

the electrodes [2]. In a comprehensive literature review of spark plug effects on spark ignition engine, Patane 

et. al found that when spark plugs get fouled, it will change how the engine runs. A foul or bad spark plug 

is coated with a material like tar, gasoline or carbon, or one that is blistered from running too hot [3]. D. 

Jung et. al reported that driving with foul or poor spark plugs will cause problems for the car which may 

lead to engine breakdown [4]. Symptoms with poor spark plugs can include: 
a) Engine misfires 
b) Knocking 
c) Hard starts 
d) Reduced gas mileage 

 

Besides fouled spark plugs, the increasement of the spark plug gap contributes to common faults of spark 

ignition (SI) engines that causes the deterioration in engine performance. For example, the phenomenon 

such as misfire and knock causes by pre-ignition from the spark plug gap fault that lead to postponed 

between two electrodes. The spark plug gap increment growth result in requires higher ignition voltages. 

Unfortunately, the high ignition voltage may harm the electrical system of the engine. Generally speaking, 

this fault in SI engines can be considered as a major electrical device flaw [5], [6]. 
 

2.2. Vibration signal monitoring 
In the past years, many researchers have studies and investigated on the fault recognition of spark plug in 

SI engine.  In the research on spark plug fault recognition, many methods have been implemented. The 

research by Antoni et al. has suggested an approach using vibration analysis of internal combustion engine 

[7]. Vibration analysis is commonly used for monitoring the condition of spark ignition engine [8]. 

Interpreting a complex vibration signal is a dynamic procedure involving advanced preparation and practise. 

To further investigate the role of vibration signal in engine condition monitoring, S. B. Devasenapati et. al 

converted the acquired analog vibration signals to digital signals using an analogue-to-digital converter [9] 

and discrete data files are then processed on the device for further processing [10].   

By drawing on an extensive range of sources, M. Khazaee et. al make use of vibration signal data for 

engine condition monitoring. The vibration signal is first received by sensor then transmitted from time 
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domain to time-frequency domain.  The author achieved 98% classifier accuracy which can be identified as 

a high potential method for industrial application [11]. Other authors [12]–[14] question the usefulness of 

such an approach.  

A novel method to vibration monitoring of internal combustion engine by cyclo method has been 

presented in their study. They assessed the combustion process from vibration measurements and 

demonstrates how the exploitation of cyclostationarity obviates several related difficulties. Considering all 

of the evidence they obtained, they found out that the solution to spark plug fault diagnosis lies in by passing 

the classical hypothesis of stationarity or quasi-stationarity by explicitly modelling the type of non-

stationarity involved achieved through the paradigm of cyclostationarity. Similarly, using this method, they 

established a fault diagnosis for a four-stroke compression ignition engine [15].  
Meantime, Wang et al. found a method to diagnose a diesel engine fault using an adaptive wavelet packet 

which involved vibration signals [16]. Fuel injection faults have been determined in this study by ensemble 
empirical mode decomposition (EEMD) and correlation dimension (CD) approaches. The lead of the 
combination of EEMD and CD is that classifiers are not needed to identify the types of diesel engine fault. 
This method has overcome the challenges of detecting fault states when more fractal dimensions occurred 
too close to each other.  

 
2.3. Ignition signal monitoring 
On the other hand, Vong et al. used introduced a method called Fuzzy and Probabilistic Simultaneous-Fault 

Diagnosis (FPSD) to identify some failures automotive engine [17]. This new FPSD integrates fuzzification, 

decision-by-threshold and pairwise probabilistic multi-label sorting. This method is particularly useful that 

the important and hard task of engine simultaneous-fault-diagnosis are effectively resolved based on 

qualitative symptom identification. Another advantage of FPSD is feasible and inexpensive.  

 

2.4. Feature extraction and feature selection 
The signals recorded from the spark plug contain a large amount of number of data points and could not be 

used as classifier inputs, as high-dimensional data increases computational complexity, making it very 

difficult for the classifier to train [18], [19]. Any statistical features should be added to reduce dimensionality 

of the data. In the present analysis, the de-noised acoustic and vibration signals were implemented with 

seventeen features. It should be noted that after testing different signal processing methods such as discrete 

wave-let transformation (DWT), it was found that highest accuracy of recognition was achieved by applying 

these features to the time-domain de-noised signals, as also stated in [20]. It is known that these features 

can be used to diagnose all mechanical components for fault, and do not belong to a particular system. 

Sakthivel et al. [8], for example, used some of the features for mono-block centrifugal pump fault 

diagnostics. In another study, Widodo et al. used a variety of features for fault diagnosis of low-speed 

bearing [21]. Some of these features were used by Ebrahimi and Mollazade [10], Khazaee et al. [22] and 

[23] to diagnose tractor starter motor and planetary gearbox failures, respectively. In a petrol engine, 

Devasenapati et al. [9] used a variety of features to define misfire. A strong and effective classifier should 

have the following characteristics:  

a) It should have good ‘predictive accuracy’; it is the ability of the model to correctly predict the data. 

b) It should have good speed.  

c) The computational cost involved in generating and using the model should be as  low as possible. 

d) The level of understanding and insight that is provided by classification model should be high 

enough. 

e) It should be ‘robust’; robustness is the ability of the model to make correct predictions given the 

noisy data or data with missing values. (Insensitive to noise in the data.) 
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2.5. Classification method 
 

2.6.1. Dempster-Shafer (D-S) evidence theory  
D–S evidence theory is one of the most powerful tools for fusing classifiers. This theory was inspiration of 

many studies in fusion of noisy and uncertain data to reach the best results. D–S theory was developed by 

Shafer in 1976 for completing the Dempster’s theories in possibilities [24]. Let define X = {h1, h2, . . ., hk} 

which X is a finite set of possible hypotheses. This set is referred to the frame of discernment or the power 

set. The Basic Probability Assignment function is the most important function in the evidence theory which 

is known by m or BPA. This function assigns a value in [0, 1] to set A where the BPA of null set is 0. BPA 

function is defined as follows [25]. In 2001, C. Parikh et. al conducted a case study based on D-S evidence 

theory on condition monitoring application of diesel engine cooling system [26].  The studies by Basir and 

Yuan applied data fusion technique to diagnose an internal combustion (IC) engine for fault [27]. Using 

D—S theory, they collected data from four different sensors and attached the data obtained. They noted that 

the simultaneous use of multiple sources of information and also the D—S theory as a device for modelling 

and fusing multi-sensory pieces of validation that will significantly improve the accuracy of fault detection 

increasing the engine quality.  

 

2.6.2. Least square support vector machine (LS-SVM)  
Support vector machine (SVM) is a well-known and popular method in classification and regression 

applications. In the past decade, SVM has successfully been applied in pattern recognition problems such 

as machine fault diagnosis, speech verification, text detection, and prediction. SVM is based on structural 

risk minimization (SRM) which minimizes the upper bound of the generalization error. Hence, SVM is 

claimed to have good generalization capability for classification purposes [31]. 

 

2.6.3. Artificial Neural Network (ANN) 
ANN is one of the most frequently used methods of artificial intelligence in pattern recognition, fault 

detection, data classification, etc. In decision making and recognition they are designed to imitate humans. 

ANNs may identify the associated patterns between the collection of input data and the respective target 

values. ANNs are useful for knowing the rotary machines' certain status or state of service. In her study of 

investigating an intelligent filter for bearing fault diagnosis, Zarei et. al [32] spotted bearing defects of 

induction motors by using ANN. He found that the vibration signal with filtered component gave better fault 

classification result. 
There are several different ANN types at the moment. There may be variations in topology, functions, 

hybrid models, agreed values, learning algorithms, etc. However, the back-spread algorithm is one of the 
most common ANN models in which the network receives inputs from neurons in the input layer, and the 
output of the network is supplied by the neurons on the output layer. The difference between real and 
predicted outcomes is then calculated (error). Finally, the back-propagation algorithm eliminates this error 
so that the ANN knows the training data set [33]. The most important layer in ANN design is hidden layer 
that should be defined by trial and error [34]. The number of hidden layer neurons can be determined by 
iterative or random selection. 

 
The maintenance of IC engines is vital to ensure it life cycle sustainability. Hence, they are crucial for 

monitoring its condition from time to time and for identifying its fault diagnosis. Vibration and acoustics, 
among various methods of condition monitoring. Both methods are common and necessary in practical 
applications analyses techniques. These techniques are usable effectively and reliable in engine control. As 
most failures may affect and alter engine sound and vibration behaviours. A considerable amount of 
literature has been published on fault diagnosis and engine condition monitoring by employment of the 
acoustics and vibrations analyses [6], [32], [35]. The defect of bearing type could be determined by vibration 
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measurement analyses as well as engine fault diagnosis. Table 1. shows the objectives, method used and 
results obtained by literature that studied fault diagnosis in engine. 
 

 Table 1. Engine technical review on fault diagnosis. 

Objective Method Findings Reference 

Develop methods for spark 

plug fault recognition  

-Implement of acoustic and vibration 

signal using combination of classifier and 
sensor fusion. 

-Wavelet de-nosing to remove noise signal 

-ANN/LS-SVM to classify 
-D-S evidence to improve accuracy 

-The performance of spark plug fault 

detection method has improved 
-The usage of vibration and sound 

signals has improved the engine 

condition monitoring diagnosis system 
 

 

[1] 

Study effect of energy supply 
procedure, electrode size, spack 

channel radius and gap on 

minimum ignition engine 
(MIE) 

 

-kinetics of chemical 
-electrode heat loss 

 

-The hydrogen-air mixture content 
influenced by energy supply procedure 

 

[5] 

Examine combine load and 
vibration-based fault diagnosis 

to obtain monitoring system of 

a bearing 

Fusion accelerometer and a load cell  
 

-Load cell is useful for ball bearing 
health detection 

-Accelerometer is useful for location of 

fault detection 
 

[6] 

Analysing vibration signal for 

engine condition monitoring 

-Assessing from vibration measurements  

-Demonstrates the exploitation of 
cyclostationarity  

The solution by passing the standard 

guess of stationarity or quasi-stationarity 
by modelling the type of non-

stationarity involved 

 

[7]  

Using decision tree for fault 

recognition of centrifugal pump 
 

 

-Extraction and classification of features 

with decision tree algorithm 
-fault affects the performance of the 

pump adversely  

[8] 

Identifying misfire in a four-
stroke engine 

 

-Piezoelectric accelerometer  -Accuracy decreased at elevated 

speeds.  

[9] 

Classifying fault and vibration 
monitoring  

-Adaptive Neuro-Fuzzy Inference System  -Adaptive neuro-fuzzy inference 

systems found in various industrial 

and commercial applications  

 

[10] 

Combined classification of 

acoustic and vibration signals 
for fault diagnosis using 

Dempster–Shafer evidence 

theory 
 

- Dempster–Shafer evidence theory 

 
 

-High accuracy (98%) and the safety 

range  

 

[11] 

Diagnosis vibration using 

Neural Network and Wavelet 
Analysis 

-Reduce background noise with The 

Wavelet Noise Reduction 
- Obtain useful characteristic vectors using 

Wavelet Decomposition 

 

-Methods applied into the inlet and 

exhaust system of diesel engine  

[12] 

Induction motor fault 

recognition using current and 

vibration signals 

-Dempster–Shafer theory -Achieving reliable classifiers requires 

good feature extraction and selection 

techniques  

 

[14] 

Investigate the combustion 
process (cylinder pressure 

trace) as indicator to engine 

condition monitoring 

-Reconstruction of the pressure trace 
-Deconvolution by make the inverse filter 

robust by cyclostationary process 

 

Optimal inverse filter is periodically 
varying for the pressure trace under 3 

conditions: (i) cyclostationary noise, (ii) 

variability of random structure, and (iii) 
variation of periodic input-output 

[15] 
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between pressure trace and vibration 
signature 

 
Application of several 
techniques for reciprocating 

diesel engine 

-Using vibration signals 
-Fault detection and feature extraction by 

adaption of  

(a) WPT de-noising  
(b) CD 

(c) EEMD 

 

-The techniques can extract impact signal 
from vibration 

-The type of fault can be identified even 

in high impact of unrelated vibration 

[16] 

Improvement of engine fault 

detection by simultaneous-fault 

diagnosis 
 

-FPSD 

 

Framework of FPSD resolves engine 

simultaneous-fault diagnostics  

 

[17] 

Fault diagnosis model of gear 

using EMD and multi-class 
TSVM 

- EMD 

-TSVM 
-Testing accuracy in multi-class TSVM 

is higher than multi-class SVM  

 

[18] 

Fault diagnosis of bearing  -Adaptive neuro-fuzzy inference 

-Multi-scale entropy 
-High accuracy of fault categories 

classification and identification of 

fault severities 

 

[19] 

Multi-fault classification of 
bearing rolling element 

- SVM) 
-discrete Meyer wavelet 

- 100% accuracy 

 

[20] 

Fault diagnosis of low speed 

bearing  

-RVM 

-SVM 
- RVM is a reliable technique in low 

speed bearings fault diagnosis 

 

[21] 

Selecting features and fault 

diagnostics of roller bearing 
 

-PSVM 

 

 

-PSVM learn faster  [23] 

Condition monitoring -D–S theory -predictive rates prevented mass 

assignment problem 

 

[26] 

Implementing multi-sensors 
data fusion to explore the 

engine fault diagnosis system 

 

-2 methods of mass function calculation 
-Modified mass function 

Data fusing from multi-sensors 
significantly improved fault diagnosis 

accuracy 

 

[27] 

Tuning least squares support 

vector machines on chaotic 

differential evolution 

-LS-SVMs simulations on NARX 

(Nonlinear Auto Regressive with 

exogenous inputs) 
 

-Optimal parameters are selected  to 

establish efficient LS-SVM  

 

[28] 

Machine condition monitoring 

and fault diagnosis 

- SVM -Until 2006, used method develops 

towards problem-oriented domain 

and expertise orientation 

 

[31] 

Investigate filter for bearing 

fault diagnosis 

-Artificial neural networks (ANNs).  

-RNFC filter 

-Better classification of vibration signal 

with filtered component obtained  

 

 

[32] 

Comparing classification 

method for fault diagnosis 

-PSD  

-KNN 

-ANN 

-Used methods are effective in main 

engine fault diagnostics and an on-

line condition monitoring  

 

[33] 
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Develop a robust filtering 
algorithm in the natural 

environment of an auto 

workshop 

 - SVM 
 

-Morlet wavelet is best wavelet to 
describe burst of acoustic signal 

 

 

[35] 

Investigate the normal 

combustion and knocking 

concepts in a SI engine 

-2D digital imaging 

-Chemiluminescence visual techniques  

-UV to visible spectroscopy 
-Natural flame emission imaging 

 

During knocking, ignition surface, end-

gas temperature and pressure has 

increased  

[36] 

Fault diagnosis of induction 
machine 

-W-SVM -Used methods are effective only 

when being diagnosed running at 

constant speed and almost fully 

loaded (Douglas & Pillay, 2005). 

 

[37] 

Fault diagnosis rotating 

machinery using SVMs 

ensemble and improved 
wavelet package transform  

- IWPT 

- SVM 
-signal of 4096 samples, around three 

times faster computational time of 

IWPT (0.2500s) than traditional WPT 

(0.7420s) 

[38] 

 

 
 

 

 
 

Reviewing methods for binary 

classifiers 

-binarization ensemble techniques -great potential for industrial 

applications 

 

[39] 

Predicting coal terrain  

 

-D-S theory  

-ANN  
-coal seam terrain is predicted highly 

precise 

[40] 

 
3. Conclusion 

This article was undertaken to review researches made on the spark plug engine profile in spark ignition 

engine. The spark plugs in this study had been tested at different chamber pressure, electrode gap, and filling 

size. From the data observation results between the theoretical part and experimental part, the experimental 

part indicates a relevant data that coincide with the theoretical part.  
For the study of spark plug engine profile against the pressure, showed that increase of the pressure inside 

the chamber that will lead to decrease of the breakdown voltage, however as the breakdown voltage 
increased in pressure, it was recorded that the breakdown voltage started to increase. In comparison with 
the theoretical results, it can be said that the experimental results obeyed the theoretical graph despite the 
poles of the measuring device being switched causing the negation of the results. The standard deviation all 
of the tested condition varied at different pressure yield lower than 1 standard deviation from the mean.   

For the case of spark plug engine profile against the spark plug electrode width it can be concluded that 
as the electrode gap reduces, the breakdown voltage increases linearly. The relevance of the findings can be 
supported by the previous finding that indicated the similar phenomenon. In the same time, it was also noted 
that with the decreasing of the electrode gap, here is an increase in the standard deviation of breakdown 
voltage. This results maybe owe to uneven filing on the sides of the electrode causing slight differences in 
the distance a spark must travel to reach the electrode during consecutive firing.  
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