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This study attempts to provide a statistical evaluation of the effect of Cu wt.% and infill 
pattern on the FDM-based 3D printed parts' impact properties. The developed model 
is based on the acquired experimental data accompanied by response surface 
methodology (RSM) analysis. The confidence level for RSM is set to 95% (α = 0.05), 
where P-value lower than 0.05 shows a significant effect by the parameter. Besides 
determining significant parameters, this analysis also provides modeling of impact 
properties and optimizes the desired mechanical performance parameter. ANOVA 
analysis includes data of standard deviation (S), coefficient of determination (R2), 
adjusted and predicted (R2). Infill pattern and Cu wt.% show a significant effect on both 
factors, including energy absorbed and impact strength. The model created for the 
energy absorbed, and impact strength has an error of 7.23 % and 6.60 %. The maximum 
energy absorbed and impact strength obtained through optimization is 2.5180 J and 
35.3657 kJ/m2, respectively, through the combination of two main factors, including a 
Concentric infill pattern with 25 wt.% Cu. The highest energy absorbed is achieved by 
the Concentric infill pattern with 2.7 J by 25 wt.% Cu and 1.39 J by 80 wt.% Cu. The Grid 
infill pattern has the lowest energy absorbed, recording 0.63 J and 0.41 J for 25 and 80 
wt.% copper composition. The mathematical models of the impact properties were also 
developed using RSM, focusing on varying copper composition and infill patterns, which 
can be used to predict desired impact properties. 
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1. Introduction 
 

The emergence of additive manufacturing (AM) has attracted manufacturers' great interest due 
to its technological advantages. The procedure of merging several layers of materials to fabricate a 
three-dimensional (3D) model that was first designed in digital software is called AM [1, 2]. Digital 
models' production through computer software simplifies the production of complex geometry 
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compared to traditional fabrication methods of removing raw material. The AM method comprised 
of various techniques such as fused deposition modeling (FDM) [3], stereo-lithography (SLA) [4], 
powder bed fusion (PBF) [5], material jetting [6], laminated object manufacturing (LOM) [7], and 
direct energy deposition (DED) [8]. FDM technique works on the basis of the material-extrusion 
process in additive manufacturing [9]. Filaments play a vital role in the efficiency of the FDM 
technique, which is deposited layer-by-layer on the adopted substrate. The developed products 
through the FDM technique are considered to have anisotropic mechanical properties. It is realized 
that mechanical anisotropy is the biggest for the FDM technique at approximately 50 % compared to 
other additive manufacturing processes [10]. The filament's mechanical strength is usually better 
than the product's mechanical strength since the product strength depends significantly on the 
adhesion strength between each layer of melted materials. The mechanical performance of final 
products through 3D printing techniques is entirely dependent on effective parameters such as 
printing pattern, melting temperature, the thickness of printed layers, and fill density. Sood et al., 
[11] investigated the dimensional accuracy of the final product through the FDM technique. They 
observed that shrinkage is dominant along the length and width direction of the built part. Another 
study conducted by Sun et al., [12] evaluated the effect of processing conditions on the bonding 
quality of the FDM technique and observed creep deformation to dominate changes in the 
mesostructure. Zhang et al., [13] concluded that the interaction between the road width and the 
layer thickness are effective factors on the part distortions in the FDM technique. Nancharaiah et al., 
[14] reported that the layer thickness and road width are effective parameters on part accuracy of 
FDM components. Abbott et al., [15] concluded that print speed has a large impact on tensile 
strength, with high speeds generally yielding lower strength.  

These parameters can cause critical drawbacks such as distortion in between layers, which might 
reduce FDM parts' mechanical strength [16].   

Polymer filaments have been extensively used in the 3D printing industry as efficient filaments 
due to their lightweight, cost-effective, and flexible processing abilities. However, the disadvantages 
of these polymers are low mechanical properties and shortening their use for the production of 
functional parts. In recent years, various materials have been integrated into polymers to form 
polymer-matrix composites (PMC) to achieve the desired mechanical properties and functionality of 
polymers in the AM process. Promising results have been achieved in new composite materials 
reinforced with small particles, fibers, or nanomaterials [17-20]. Polylactic acid (PLA) filament is one 
of the most commonly used polymer materials besides ABS [21, 22]. PLA has exhibited very promising 
performance as a highly versatile material for the additive manufacturing process with the advantage 
of being biomaterial and decomposable [23]. Similar to ABS, PLA has a low thermal expansion 
coefficient, which reduces the risk of the solidified layer not adhering to the previous surface, causing 
warping and large components that crack while printing [24]. PLA possesses some unique 
specifications, such as a relatively low melting point (15-160 ℃), which reduces the energy demand 
for printing processes and provides an advantage for off-grid applications [25, 26]. The tensile 
strength of PLA can vary from 15.5 to 72 MPa [27]. PLA printed with open-source FDM printer 
conducted in standard conditions for normal users found to be around 56.6 MPa [28]. Research also 
found that 3D printed PLA has better mechanical properties in comparison with the injected molded 
PLA [29].    

Particle reinforcements are most commonly used to form PMC due to their low cost. Iron and 
copper powders have been added to ABS, which resulted in improved modulus, thermal conductivity, 
and reduced thermal expansion [30, 31]. Moreover, the inclusion of iron and copper particles into 
polymers has exhibited promising performance to overcome the thermal expansion challenges, 
which is one of the major issues related to polymers' use in the FDM technique. In the preservation 
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of parent material, mechanical properties were discovered in PLA reinforced with iron that showed 
a negligible reduction in strength and improved conductivity properties. The addition of metallic 
particles into the polymer matrix generally showed a decrease in mechanical properties. However, it 
is still possible for certain metal fillers and polymer matrix combinations with suitable composition 
to retain the parent material's mechanical properties. Ko et al., [32] investigated the mechanical 
properties of PLA-containing Poly (Glycolic acid) fibers and reposted better performance in terms of 
tensile and flexural strength for the developed composites due to the presence of induced fibers. Hu 
et al., [33] developed PLA based composite incorporated with carbon fiber and revealed better 
results in terms of tensile modulus, strength, and energy absorption. In a research work conducted 
by Siakeng et al., [34], authors investigated the effect of pineapple leaf fibers as reinforcement within 
PLA on the mechanical properties of the developed composites. They concluded that the use of leaf 
fibers has an impressive impact on the strength resulted from the developed composites.  

The present study investigates the impacts of copper concentration and infill pattern on the 
printed parts' impact properties through the 3D printing technique. A statistical model is developed 
based on the acquired experimental results accompanied by response surface methodology analysis. 
This is the first study to investigate the effects of copper composition and infill patterns on the FDM 
3D printing technique's impact properties using response surface methodology to the best of the 
authors' knowledge. A developed polymer-matrix composite (Cu-PLA) with a variation of copper 
inclusion and infill patterns is considered for this analysis. The highest energy absorbed is achieved 
by the Concentric infill pattern with 2.7 J by 25 wt.% Cu and 1.39 J by 80 wt.% Cu. The Grid infill 
pattern has the lowest energy absorbed, recording 0.63 J and 0.41 J for 25 and 80 wt.% copper 
composition. The confidence level is set to 95% (α = 0.05), where P-value lower than 0.05 shows a 
significant effect by the parameter. Besides determining significant parameters, this analysis also 
provides modeling of impact properties and optimizes the desired mechanical performance 
parameter. The mathematical models of the impact properties were also developed using response 
surface methodology, focusing on varying copper composition and infill patterns, which can be used 
to predict desired mechanical properties. According to the findings of this research study, the 
maximum energy absorbed and impact strength can be obtained through the combination of 
effective parameters, including a Concentric infill pattern with 25 wt.% copper composition. 
 
2. Materials and Methods 
 

The material selected for this study is copper reinforced PLA polymer. Copper is well known for 
its high corrosion resistance, good thermal and electrical conductivity [35]. Copper's reflectivity has 
caused porosities using the laser-based process [36, 37]. Hence, FDM could be a good alternative for 
printing copper powders in the polymer matrix as its reflectivity does not affect the printing process. 
The selected copper particles reinforced by PLA filaments are Copper Fill from ColorFabb and Copper 
Metal Filled from Gizmo Dorks. The details of the filaments can be seen in Table 1. The selected 3D 
printer is WANHAO Duplicator i3 Desktop 3D Printer. The adopted 3D printer can achieve a 
temperature up to 240 ℃ and uses an MK10 nozzle that is widely available in the market. The 
specimens have been printed with different infill patterns (Rectilinear, Grid, Concentric, Octagram-
spiral, and Honeycomb) in order to study their mechanical properties. The infill patterns were set 
constant at 50 % infill density for all test specimens. The geometry of test specimens was fabricated 
according to ASTM standard using a low-cost FDM printer.  
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Table 1  
Specifications of Copper reinforced PLA filament from Manufacturer 

 Copper Fill Copper Metal Filled 

Manufacturer ColorFabb Gizmo Dorks 
Copper particle composition wt.% Approx. 80% Approx. 25% 
Diameter 1.75mm 1.75mm 
Extrusion Temperature 190 – 225℃ 195 - 220℃ 
Bed Temperature 50-60℃ 60℃ 

 
2.1 Printing Process of The Specimen 
 

The test specimen is designed using SOLIDWORKS 2017 edition software. The test specimen's 
dimension is based on the ASTM standards with respect to the specific mechanical performance test. 
The generated CAD model through SOLIDWORKS software is converted into an STL file. In this 
research work, the Repetier-Host is adopted as the slicing software due to its simple 
interface/accuracy in the generation of required g-code. The major factors such as the visual g-code 
interface and a DTL composer play a vital role in allowing the STL file's visualization on a plate. 
 
2.2 Machine Constant Parameter 
 

Several parameters of the machine need to be defined and set constant to avoid extensive 
variation during the printing process as it may affect the consistency of the printing process. Aside 
from the infill pattern and raster angle, all other parameters were kept constant. The machine 
parameters that have been kept constant in this study are shown in Table 2. 
 

Table 2  
Constant parameters during the printing process 
Parameters Constants 

Layer height 0.3mm 
Initial layer height 0.3mm 
Horizontal Shell: solid layer Top: 1 layer, Bottom: 1 layer 
Outer Perimeter 2 
Nozzle diameter 0.4mm 
Filament diameter 1.75mm (± 0.05mm) 
Extruder temperature 210°C (± 2°C) 
Printing speed 30mm/s 
Print bed temperature 60°C (± 2°C) 

 
2.3 Impact Test  
 

Impact test indicates the resistance property of a material to failure due to a suddenly applied 
force. Therefore, impact energy or energy absorbed due to fracture can be measured by conducting 
an impact test. Two types of impact tests are existent for testing the impact properties of a material. 
The tests are known as the Charpy impact test and Izod impact test. The difference between both 
tests is in the way the test material is placed. For the Izod impact test, the specimen will be placed in 
a vertical position, whereas, for the Charpy impact test, the specimen is placed horizontally. Besides 
that, in the Izod impact test, the specimen's notch will be facing the hammer. Whereas, in the Charpy 
impact test, the specimen's notch will be positioned away from the hammer. Since the Izod impact 
test is the standard testing procedure for comparing the impact resistance of plastic, it was chosen 
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for this research. The standard that has been adopted to conduct the impact test on that 3D printed 
specimen is ASTM D256. The standard geometry for the impact test specimen is shown in Figure 1. 
 

 

Label Dimension (mm) 

A 10.16±0.05 

B 31.8±1.0 

C 63.5±2.0 

D 0.25R±0.05 

E 12.70±0.20 

Width 7mm 

Fig. 1. Specimen Geometry according to ASTM D256. Source: (ASTM D256,2014) 

 
3. Results and Discussion  
 

Impact test results indicate the toughness and sensitivity of a structure towards the notched area. 
The amount of energy absorbed by the fabricated specimen is the key point for determining 
toughness and notch sensitivity. The absorbed energy is the amount of energy that the specimen 
absorbed during the entire impact test. As of ASTM D256-10 standard reporting, the impact strength 
is also included. Impact strength is derived from a division of energy absorbed with the area under 
notch and represented in kJ/m2. Table 3, tabulates the average energy absorbed (J) and impact 
strength (kJ/m2) for both Cu composition specimens with respective infill patterns.  
 

Table 3  
Experimental results of average energy absorbed and impact strength 

Infill Pattern 
Energy Absorbed (J) Impact Strength (kJ/m2) 

25 wt.% 80 wt.% 25 wt.% 80 wt.% 

Grid 0.6320 0.4113 8.8864 5.7837 
Octagram-spiral 0.9750 0.4733 13.7092 6.6554 
Rectilinear 1.3037 0.5847 18.3305 8.2208 
Honeycomb 1.3753 0.6615 19.3382 9.2942 
Concentric 2.6960 1.3850 37.9078 19.4507 

 
According to Table 3 and Figure 2, the highest energy absorbed is acquired by the Concentric infill 

pattern with 2.7 J by 25 wt.% Cu and 1.39 J by 80 wt.% Cu. The Grid infill pattern has the lowest 
energy absorbed, recording 0.63 J and 0.41 J for 25 and 80 wt.% copper composition. Rectilinear infill 
pattern exhibited the energy absorption value of 1.3 J by 25 wt.% Cu. The acquired results are in 
accordance with the achieved data by Kain et al., [38], since they have proved that there is a direct 
interaction between the infill pattern and the resulting mechanical performance of the test 
specimen. From Fig. 2, it was realized that the amount of energy absorption increases in accordance 
with the following pattern sequence; Grid, Octagram-spiral, Rectilinear, Honeycomb, and Concentric 
for both 25 and 80 wt.% copper composition. The energy absorbed by 25 wt.% copper composition 
is generally higher than 80 wt.% Cu, regardless of infill pattern. The significant difference in energy 
absorption between 25 wt.% and 80 wt.% Cu was observed. The increase in Cu particles 
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concentration in the polymer is anticipated to reduce the molecular bond's strength in the polymer 
matrix resulting in lower properties.  
 

 
Fig. 2. Experimental results of energy absorbed with respect to various infill patterns 

 
Referring to Table 3 and Figure 3, the highest impact strength is acquired by the Concentric infill 

pattern with 37.91 kJ/m2 by 25 wt.% Cu and 19.45 kJ/m2 by 80 wt.% Cu. The Grid infill pattern has 
the lowest impact strength recording 8.89 kJ/m2 and 5.78 kJ/m2 for 25 and 80 wt.% copper 
composition. Rectilinear infill pattern exhibited the impact strength of 18.33 kJ/m2 by 25 wt.% Cu. 
From Figure 3, it was observed that the amount of impact strength enhances in accordance with the 
following pattern sequence; Grid, Octagram-spiral, Rectilinear, Honeycomb, and Concentric for both 
25 and 80 wt.% copper compositions. The impact strength of 25 wt.% copper composition is generally 
higher than 80 wt.% Cu, regardless of infill pattern. The significant difference in impact strength 
between 25 wt.% and 80 wt.% Cu was observed. Enhancement in the inclusion of copper particles 
are believed to reduce the strength of the molecular bond in the polymer matrix [39].  

 

 
Fig. 3. Experimental results of impact energy with respect to various infill patterns 
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Figure 4 shows the Pareto effects of energy absorbed with respective experiment parameters. 
The illustration shows that the infill pattern has the most significant impact on energy absorbed, 
followed by Cu composition. The significance of infill pattern and Cu composition towards energy 
absorption is confirmed through statistical evaluation shown in Table 4. The confidence level is set 
to 95 % (α = 0.05), the infill pattern and Cu composition have P-values of 0.001 and 0.005, 
respectively, which are lower and equal to 0.05, confirming these two parameters have a significant 
effect on energy absorption. Meanwhile, the second-order infill pattern and interaction between 
studied infill patterns with copper composition have a P-value higher than 0.05, showing no 
significant effect towards energy absorbed.  

 

 
Fig. 4. Pareto effects of energy absorbed with respective experiment 
parameters 

 
 Table 4 
 ANOVA analysis for the energy absorbed 
Source DF Contribution Adj SS Adj MS F-Value P-Value 

Model 4 93.85% 4.1452 1.03629 19.08 0.003 

  Linear 2 82.13% 3.6274 1.81368 33.40 0.001 

    Infill Pattern 1 53.33% 2.3556 2.35561 43.38 0.001 

    Cu wt.% 1 28.79% 1.2718 1.27175 23.42 0.005 

  Square 1 6.28% 0.2774 0.27737 5.11 0.073 

    Infill Pattern*Infill Pattern 1 6.28% 0.2774 0.27737 5.11 0.073 

  2-Way Interaction 1 5.44% 0.2404 0.24043 4.43 0.089 

    Infill Pattern*Cu wt.% 1 5.44% 0.2404 0.24043 4.43 0.089 

Error 5 6.15% 0.2715 0.05430   

Total 9 100.00%     

       

Standard deviation (S) = 0.23303      

R2 = 93.85 %       

R2 - adjusted = 88.93 %       

R2 - predicted = 70.51 %       
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According to Table 4, the P-value of the model is 0.003, showing that the model created for the 
energy absorption is statistically significant. The model is shown in Eq. (1).  
 
Energy absorbed (J)  

= 0.76 − 0.045 ∗ Infill Pattern −  0.0101 ∗ Cu wt. % +  0.0995 ∗ Infill Pattern
∗ Infill Pattern − 0.00399 ∗ Infill Pattern ∗ Cu wt. %                                                   (1) 

 
Comparison between experimental results of energy absorbed with predicted values from the 

model in Eq. (1) is shown in Table 5. The average percentage error of the model as compared to 
experimental values is 14.76 %. The developed model exhibits satisfactory accuracy in order to 
predict energy absorption.  
 

Table 5  
Comparison of experimental and predicted energy absorbed 
Pattern Cu wt.% Actual (J) Predicted (J) Error (%) 

1.Grid 25 0.6320 0.7042 11.4241 

2.Octagram-spiral 25 0.9750 0.8376 14.0974 

3.Rectilinear 25 1.3037 1.1843 9.1562 

4.Honeycomb 25 1.3753 1.7445 26.8383 

5.Concentric 25 2.6960 2.5180 6.6024 

1.Grid 80 0.4113 0.4897 19.0519 

2.Octagram-spiral 80 0.4733 0.3838 18.9155 

3.Rectilinear 80 0.5847 0.4913 15.9692 

4.Honeycomb 80 0.6615 0.8122 22.7816 

5.Concentric 80 1.3850 1.3465 2.7798 

Average 14.7616 

 
The final analysis performed to determine maximum energy absorbed by response optimization. 

From the analysis, the maximum response of energy absorbed is determined to be achievable of 
2.5180 J with the set of parameters with 25 wt.% Cu and Concentric infill pattern. Since the suggested 
parameters have been included in the experiment, the optimized energy absorbed of 2.5180 J will be 
compared to the experimental value of 2.6960 J, having an error of 6.60 %. 

Figure 5 shows the Pareto effects of impact strength with respective experimental parameters. 
The illustration shows that infill pattern and Cu composition have a significant effect on impact 
strength. The significance of infill pattern and Cu composition towards impact strength is confirmed 
through statistical evaluation shown in Table 6. The confidence level is set to 95 % (α = 0.05), the infill 
pattern and Cu composition have P- values of 0.001 and 0.005, respectively, which are lower and 
equal to 0.05, confirming these two parameters have a significant effect on impact strength. 
Meanwhile, the second-order infill pattern effect and interaction between studied infill pattern with 
copper composition have a P-value higher than 0.05, showing no significant effect on impact 
strength.  
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Fig. 5. Pareto effects of impact strength with respective experiment parameters 

 
Table 6  
ANOVA analysis of impact strength 
Source DF Contribution Adj SS Adj MS F-Value P-Value 

Model 4 94.08% 795.94 198.99 19.86 0.003 

  Linear 2 79.94% 676.29 338.15 33.76 0.001 

    Infill Pattern 1 51.83% 438.47 438.47 43.77 0.001 

    Cu wt.% 1 28.11% 237.83 237.83 23.74 0.005 

  Square 1 7.43% 62.87 62.87 6.28 0.054 

    Infill Pattern*Infill Pattern 1 7.43% 62.87 62.87 6.28 0.054 

  2-Way Interaction 1 6.71% 56.78 56.78 5.67 0.063 

    Infill Pattern*Cu wt.% 1 6.71% 56.78 56.78 5.67 0.063 

Error 5 5.92% 50.09 10.02   

Total 9 100.00%     

       

Standard deviation (S) = 3.16498      

R2 = 94.08 %       

R2 - adjusted = 89.34 %       

R2 - predicted = 72.84 %       

 
According to Table 6, the P-value of the model is 0.003, showing that the model created for 

impact strength is statistically significant. The model is shown in Eq. (2). 
 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (
𝑘𝐽

𝑚2
)

= 10.86 − 1.09 ∗ 𝐼𝑛𝑓𝑖𝑙𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 +  0.0065 ∗ 𝐶𝑢 𝑤𝑡. % +  1.498 ∗ 𝐼𝑛𝑓𝑖𝑙𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
∗ 𝐼𝑛𝑓𝑖𝑙𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 − 0.613 ∗ 𝐼𝑛𝑓𝑖𝑙𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∗ 𝐶𝑢 𝑤𝑡. %                                                (2) 

         
Comparison between experimental results of impact strength with predicted values from the 

model in Eq. (2) is shown in Table 7. The average percentage error of the model as compared to 
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experimental values is 14.80 %. The model can be deduced that it is able to predict impact strength 
with satisfactory accuracy. 
 

Table 7  
Comparison of experimental and predicted impact strength 
Pattern Cu wt.% Actual (kJ/m2) Predicted (kJ/m2) Error (%) 

1.Grid 25 8.8864 9.898 11.3838 

2.Octagram-spiral 25 13.7092 11.7695 14.1490 

3.Rectilinear 25 18.3305 16.637 9.2388 

4.Honeycomb 25 19.3382 24.5005 26.6948 

5.Concentric 25 37.9078 35.3657 6.7210 

1.Grid 80 5.7837 6.8840 19.0251 

2.Octagram-spiral 80 6.6554 5.3840 19.1035 

3.Rectilinear 80 8.2208 6.8800 16.3103 

4.Honeycomb 80 9.2942 11.3720 22.3565 

5.Concentric 80 19.4507 18.8600 3.0369 

Average 14.8020 

 
The final analysis was performed to determine maximum impact strength by response 

optimization. From the analysis, the maximum response of impact strengths was determined to be 
achievable as 35.3657 kJ/m2 with the set of parameters with 25 wt.% Cu and Concentric infill pattern. 
Since the suggested parameters have been included in the experiment, the optimized impact 
strength of 35.3657 kJ/m2 will be compared to the experimental value of 37.9078 kJ/m2, having an 
error of 6.72 %. 
 
4. Conclusions 
 

In conclusion, the test specimen is fabricated through a low-cost fused deposition modeling 3D 
printer with the incorporation of varying infill patterns and copper compositions based on ASTM 
standards. The impact test is conducted on the printed specimen with respect to the variation of 
copper composition and various infill patterns. The impact performance results were evaluated using 
response surface methodology, and reliable modeling for all impact properties was developed. 
Impact test showed that significant factors such as variation of infill pattern and copper composition 
show a substantial effect for both factors, including energy absorbed and impact strength. The 
highest energy absorbed is achieved by the Concentric infill pattern with 2.7 J by 25 wt.% Cu and 1.39 
J by 80 wt.% Cu. The Grid infill pattern has the lowest energy absorbed, recording 0.63 J and 0.41 J 
for 25 and 80 wt.% copper composition. A Concentric infill pattern achieves the highest impact 
strength with 37.91 kJ/m2 by 25 wt.% Cu and 19.45 kJ/m2 by 80 wt.% Cu. The Grid infill pattern has 
the lowest impact strength recording 8.89 kJ/m2 and 5.78 kJ/m2 for 25 and 80 wt.% copper 
composition. The model created for the energy absorbed, and impact strength has an error of 7.23 
% and 6.71 %. The maximum energy absorbed and impact strength can be obtained through the 
combination of effective parameters, including a Concentric infill pattern with 25 wt.% copper 
composition.  
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