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Abstract 
 
In the recent years, response surface methodology (RSM) is one of the most common optimization 
methods employed in the chemical process.  The satisfactory model for predicting the maximum yield 
in solution polymerization has been a challenge due to various conditions during the synthesis 
process. In this study, interactive impacts of three parameters which are reaction time, concentration 
of initiator, and reaction temperature on the yield in free radical polymerization of SABA copolymer 
using toluene as solvent was investigated using experimental design central composite design (CCD) 
model under response surface methodology (RSM). The result showed the optimization conditions 
were reaction time of 7 h, initiator concentration of 1 wt %, and reaction temperature of 90 oC with the 
corresponding yield of 97.31%. The analysis of the regression model (ANOVA) detected an R2 value 
of 0.9844, that the model is able to clarify 98.44% of the data variation, and just 1.23% of the whole 
differences is not clarified by the model. Three experimental validation runs were carried out using 
the optimal replicate conditions and the highest average yield value obtained is 97.15%. There is an 
error of about 0.97% as compared to the expected value.Therefore, the results indicate that this 
model is reliable and is able to predict the yield response accurately. it established that the regression 
model is extremely significant, indicating a strong agreement between the expected and the 
experimental values of SABA yield.  

 
Keywords: Free radical polymerization, response surface methodology, SABA copolymer, yield 
 

© 2021 Penerbit UTM Press. All rights reserved 
 

 
 
INTRODUCTION 
 

It is crucial to develop the model’s performance and to raise the 
yield procedures without rising the cost. The technique employed to 
attain this goal is free radical polymerization. There is a change of 
factor in the overall preparation of determining the optimum 
processing conditions while the other factors are kept at fixed levels. 
This technique is named a one-factor-at-a-time method. The main 
downside of this method is its lack of comprising interactive impacts 
between parameters. Furthermore, the complete impact of the variable 
on the process is also not  described by this method. With the aim to 
eliminate this problem, optimization studies can be conducted by 
employing response surface methodology (RSM) (Aydar, 2018; Baş 
and Boyacı, 2007; Teh et al., 2013).  

 
RSM is a set of mathematical as well as statistical method suitable 

to enhance  the experimental model building, developing, and 
optimizing processes variable. In addition, it can  be used to discover 
the interaction of many affecting variables (Agrawal et al., 2020; Es-
said et al., 2019). 

 
 
RSM is a numerical technology that uses quantitative data from 

the connected experiment to control the regression model and to 
improve response (output factor), which is affected by numerous 
independent factors (input factors) (Jiang et al., 2017; Raza et al., 
2017). The greatest feature of this technology RSM is to minimize the 
number of experimental runs, saving of energy, time, and chemicals. 
The effects of multiple factors can be considered with the aid of 
experimental statistical design (Sohrabi et al., 2016; Unal, 2016; 
Zaroual et al., 2009). The experimental statistical experimental design 
is an structured method to study factor impacts professionally and in a 
reliable manner, and it yields additionally suitable and specific data 
with fewer experiments as compared to OFAT method (Teh et al., 
2013). The experimental design and information data analysis detects 
the factors that are significant and whether there are any interaction 
influences between the factors. Experimental statistical design has 
several uses in chemistry, e.g., in synthesis, separation, optimization 
of logical approaches (Harang et al., 2001; Rautio et al., 2009; 
Singireddy et al., 2019).  
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In any experimental design, there are variables like time, amount 
of solvent, concentration of monomers, temperature, and the initiator 
concentration that will effect the purity, selectivity, and actual yield. 
The interrelationships among the factors are difficult, and therefore, 
the study of this procedure in optimizing the variables is also difficult 
and consumes a lot of time. Thus, the studies that employ traditional 
experimental methods are deemed not efficient (Singireddy et al., 
2019). To  optimize chemical reaction, different variables that rule the 
whole reaction must be considered. For the same reason, this  paper is 
focuses on studying and the optimizing the synthesis of SABA 
copolymer in order to describe effective conditions for different 
models. The influence of the experimental factors slike temperature, 
time and initiator concentration on the actual yield was investigated  
by the RSM via central composite design (CCD). Optimization during 
CCD shows rapid and effective single optimum experimental 
combinations. Furthermore, it needs fewer experimental runs as 
compared to other techniques (Mohammadi et al., 2020). 

In the recent years, RSM was found to have applied in previous 
contributions (Banerjee et al., 2012; Ghasemi et al., 2010; Heidari et 
al., 2018; Lee et al., 2011; Nasef et al., 2011; Razali et al., 2015; 
Zheng et al., 2015). According to Razali et al. (2015) (Razali et al., 
2015) used RSM in studying polydiallydimethylammonium chloride 
grafting and using potassium persulphate as an initiator of free 
radicals. Four factors were examined by the central composite design 
(CCD), which were the mole ratio of diallyl dimethylammonium 
chloride, initiator concentration, temperature, and time in determining 
their interactive and individual impacts on the percentage of grafting. 
They found acceptable outcimes since the the value expected by their 
resulting model was very close to the experimental outcome at the 
optimized conditions. 

According to Aroonsingkarat (Aroonsingkarat and Hansupalak, 
2013) have researched the influence of operating states towards 
transformation in the polystyrene and rubber graft co-polymerization 
using CCD via RSM. The temperature, amount of chain transfer 
agent,  percentage of deproteinized rubber, and reaction time were the 
four factors examined. In an associated research, Sresungsuwan and 
Hansupalak (2013) (Sresungsuwan and Hansupalak, 2013) examined 
the effect of operating states using RSM towards compatible natural 
rubber / styrene blend’s on mechanical properties. No prior studies 
investigated for free radical polymerization of styrene to the best of 
the researchers’ knowledge. 

 
In the previous study, we recognized the four parameters effecting 

the yield in the free radical polymerization of SABA copolymer using 
the OFAT method (temperature, time, concentration of initiator, and 
mass ratio of monomer concentration). Nevertheless, this method 
cannot test the interactions of the parameters considered (Elarbe et al., 
2019). In the present work, we optimize the effect of each parameter 
on the yield in the solution polymerization of SABA copolymer. 
Response surface methodology by CCD was employed in designing 
the run of experimental, generating a model, and exploring the process 
factors. 

 
EXPERIMENTAL 
 
Materials 

Stearyl Acrylate was used as a monomer (SA, Sigma-Aldrich, 
97%), and the other monomer was behenyl acrylate (BA, Aladdin 
chemicals, 95%). Benzoyl peroxide (Sigma-Aldrich, 99%) were used 
as the initiator, toluene (Sigma-Aldrich, 99%) as solvent and methanol 
(Sigma-Aldrich, 99%). 

  
Synthesis of SA-co-BA copolymer  

The free-radical solution polymerization method was used to 
synthesize stearyl acrylate-behenyl acrylate (SA-co-BA) copolymer 
by utilizing equal proportions of the functional monomers between 
SA and BA (1:1). The reaction was carried out in a 250 mL three-neck 
round-bottomed flask that was equipped with a thermometer, reflux 
condenser, magnetic stirrer, and nitrogen gas inlet. Under constant 
stirring, a monomers mixture has been dissolved in toluene solution 
deemed suitable at different reaction temperatures for different 

reaction times and added a nitrogen atmosphere for a period of 45 
min. At this point of time, benzoyl peroxide (BPO) has been dissolved 
in an amount of toluene deemed suitable, which acted as an initiator at 
different percentage based on the total monomers. For every 15 min, 
the solution of benzoyl peroxide has been injected drop by drop for 
the first one hour after the reaction had started. After the completion 
of the reaction, it was placed at the room temperature. After that, the 
copolymer solution was precipitated, filtered, and washed thrice by 
methanol. The final product that obtained was dried 24 h in a vacuum 
oven at  the temperature of 40 °C for. A white powder was obtained as 
final state of the copolymer. Each run was carried out in triplicates, 
and then the average value was taken as the final value. The optimum 
conditions of independent variables were worked out to get the 
maximum yield percentage (Y %). The percentage of the yield was 
determined as per Eq. (1). 

                                               
Yield (%) = (Obtained weight of the product (g)/Total weight of the 

material (g)) × 100          (1) 
 
Design of experiment  

Table 1 shows, the experiment design levels and the range of 
independent variables used in this work. A three-factor five-level 
central composite design (CCD) was further studied, needs 20 runs 
(calculated on the basis of Eq. (2)), including 6 replicate runs at the 
center, 6 axial runs, and 8 factorial runs. 

 
N=2n+2n+NC=23+2×3+6=20           (2) 

 
Where N is the number of experimental runs, and n is the number of 
factors. 
 

The model equation is determined, and the model equation 
coefficients are expected. The model that has been employed in RSM 
is commonly a full quadratic equation. The α-value was stable at 1 
(face-centered) for this model, and the experiment model’s response 
was obtained. The response (yield) can be employed to improve an 
experimental model that relate the response to the three parameters 
using a additional-grade polynomial as follows in Eq. (3). 

 
𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑋𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖𝑖 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗*

+,-./
*0/
-,/

*
-,/

*
-,/         (3) 

 
Where Y is the expected response, β0, βi, βii, and βij are constant 
coefficients for interrupt, linear, quadratic and interaction coefficients 
respectively and Xi and Xj are coded for independent factors of 
polymerization. Table 2 demonstrates the experimental design model, 
experimental run order, and the response (yield %) for the three 
parameters and 20 empirical runs created. 
 

Software of Design Expert 7.1.6 is one of the essential softwares 
used for regression study and assistances to design the model and 
explain experiments with multi-variable impacts in addition to 
minimizing the number of experimental runs. There is a wide range of 
designs given by this software, consisting of composite models, 
fractional factorials, and factorials. This can provide the researchers 
with a assembly of numerical and mathematical methods named 
response surface methodology (RSM). The statistical analysis of the 
experimental model, that comprises full quadratic, linear and 
interaction coefficient has been completed by ANOVA study with F-
test to find the empirical correlation among the output and input 
variables. In order to improve the model, every code of the model is 
statistically evaluated, specifically the importance of F-values with P 
≤ 0.05. The R2, adjusted R2, and expected R2 values, the adequate 
precision and lack of fit of models were found to satisfy the feature of 
the recommended polynomial. The plot of contour and response 
surface plot have been drawn to visualize the input and output 
interactions. 

  
The independent variables studied were the temperature (X1), time 

(X2), and concentration of initiator (X3), which are considered in three 
levels, as seen in Table 2. In the chosen coordinate system, the codes 
1, 2, and 3 describe the low, medium, and high levels, respectively. 
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All independent factors and their ranges were selected based on our 
previous study. 

 
Table 1  Five-level three-condition variables with their coded levels  
 
Independent 
variables 

Units 
 

Code 
Symbol 

     

 -α -1 0 +1 +α 
Reaction 
Temperature 

oC A 80 85 90 95 100 

Concentration 
of Initiator 

wt % B 0.5 0.75 1 1.25 1.5 

Reaction Time h C 6 6.5 7 7.5 8 
 
RESULTS AND DISCUSSION 
 

OFAT experiments were conducted in our previous study (Elarbe 
et al., 2019). The best condition of the most efficient variables of 
SABA PPD was obtained using mass ration of (1:1) wt % between 
two polymers, 7 h of reaction time, 90 oC of reaction temperature and 
1 wt % of the concentration of initiator, according to the highest 
amount of the yield at different conditions. CCD was employed in this 
paper to minimize the range of conditions with the maximum yield of 
SABA copolymer. The influence of variables on the yield was 
investigated. The experiments were run according to Table 2 in order 
to maximize the yield. 
 
Regression model equation  

Table 2. shows the observed percentage yields of SABA 
copolymer for the 20 experimental runs. These data are employed to 
estimate the quadratic polynomial equation’s coefficient, as 
previously demonstrated in the design experiment Eq. (3). These 
determined  coefficients for the actual and coded values are illustrated 
in Table 3, together with the coefficients of estimation R2, adjusted 
R2, and predicted R2. The quadratic models are depicted below in Eq. 
(4) in terms of actual value of factors. The positive signs in the models 
signify synergistic impacts of factor. Whereas, the negative sign 
shows the antagonistic impact.  
 
Table 2  The experimental design matrix for SABA copolymer 
polymerization synthesization 
 
Std Factor A 

Reaction 
Temperature 

oC 

Factor B 
Concentration 

of Initiator 
wt% 

Factor C 
Reaction 

Time 
 h 

Observed 
Yield 

 % 

Predicated 
Yield  

% 

1 85.00 0.75 6.50 85.87 86.90 
2 95.00 0.75 6.50 88.97 89.05 
3 85.00 1.25 6.50 90.15 90.61 
4 95.00 1.25 6.50 91.57 91.08 
5 85.00 0.75 7.50 85.18 85.79 
6 95.00 0.75 7.50 90.81 90.47 
7 85.00 1.25 7.50 91.96 92.00 
8 95.00 1.25 7.50 95.91 95.00 
9 80.00 1.00 7.00 84.44 83.43 

10 100.00 1.00 7.00 87.69 88.58 
11 90.00 0.5 7.00 81.22 80.59 
12 90.00 1.5 7.00 88.33 88.84 
13 90.00 1.00 6.00 92.00 91.52 
14 90.00 1.00 8.00 93.96 94.32 
15 90.00 1.00 7.00 95.80 96.82 
16 90.00 1.00 7.00 96.91 96.82 
17 90.00 1.00 7.00 96.80 96.82 
18 90.00 1.00 7.00 96.95 96.82 
19 90.00 1.00 7.00 97.25 96.82 
20 90.00 1.00 7.00 97.31 96.82 
 
Final equation in terms of actual factors: 
 
Y= -893.44068 +18.28459 A+100.30318 B+28.19432 C-0.10812 A2-
48.40909 B2-3.89727 C2-0.33600 AB+0.2530 AC+5.000 BC         (4) 

 

Table 3  The coefficient of the model. 
 
Variable 
 

Coefficient  
Coded  Uncoded  

Constant  96.82 -893.16114 
A 1.29 +18.28459 
B 2.06 +100.30318 
C 0.70 +28.19432 
A2 -2.70 -0.10812 
B2 -3.03 -48.40909 
C2 -0.97 -3.89727 
AB -0.42 -0.33600 
AC 0.63 +0.25300 
BC 0.63 +5.00000 
R-square 0.9844 %  
Adjusted R-square 0.9704 %  
Expected R-square 0.8918 %  
 

The positive marks in the models indicate the synergetic impacts 
of the parameter, whereas the negative mark indicates a hostile 
impact. The study of the regression model’s variance (ANOVA) in 
Table 3 detected an R2 value of 0.9844, showing that the model can 
clarify 98.44% of the data variation whereas only 1.23% of the overall 
differences are not clarified by the model. For a model to be suitable, 
the R2 value must not be fewer than 0.75, especially in chemical field 
(Le Man et al., 2010). Nevertheless, (Koocheki et al., 2009) posited 
that a substantial value of R2 does not always indicate that the 
regression model is a perfect one, and such suggestion could only be 
made depending on a similarly great value of adj R2. The value of the 
adjusted estimation coefficient is Adj R2 = 0.9704. Thus, this indicates 
that the model is greatly significant, confirming a good agreement 
among the experimental and expected values of SABA yield.   

Table 4  ANOVA for response surface quadratic model. 
 
Source Sum of 

squares 
DF Mean 

square 
F-
value 

P-
value 

 

Regression 
model 

451.56 9 50.17 70.12 0.0001 Significant 

Linear 102.37 3 34.12 1.53 0.2446  
A 26.52 1 26.52 37.06 0.0001  
B 67.98 1 67.98 95.00 0.0001  
C 7.87 1 7.87 11.00 0.0040  
Square  341.46 3 113.82 159.06 0.0001  
A2 183.71 1 183.71 256.73 0.0001  
B2 230.16 1 230.16 321.64 0.0001  
C2 23.87 1 23.87 33.35 0.0002  
Interaction 7.74 3 2.58 0.092 0.9608  
AB 1.41 1 1.41 1.97 0.1905  
AC 3.20 1 3.20 4.47 0.0605  
BC 3.13 1 3.13 4.37 0.0632  
Residual 
error 

5.71 10 0.57    

Lack of fit 5.67 5 1.13 3.81 0.0844 Not 
significant 

Pure error 1.49 5 0.30    
Total 458.72 19     
       
 

According to Rai (Rai et al., 2016) , to be in good agreement, the 
adjusted R2 and expected R2 must be within 20%. This condition is 
satisfied in this analysis with an expected R2 value of 0.8918. Thus, 
beyond the experimental range of process conditions, this model 
offers 89.18% variability in the prediction yield. The ANOVA of any 
quadratic model term is shown in Table 4. If the F-value is big and P 
<0.05, the term is significant. Based on Table 4, the linear terms A, B, 
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and C are significant, and only one quadratic term AB is not 
significant interaction. The other terms AC and BC have a positive 
significant interaction on the yield. In addition, the Lack of Fit is not 
important in comparison to the pure error which is good. Furthermore, 
a high F value (70.12) with a low probability (p=0.0001) indicates the 
high ability of the model in predicting the results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  SABA copolymer yield that was observed by the model in the 
experiment with expected values. 
 
Fig. 1. appears the plot of expected yield by the improved model 
beside experimental values. The model was effective in capturing the 
correlation of process conditions due to the predicted values being 
very similar to the actual values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2(a) Contour chart of % Yield vs. (A) reaction temperature, (B) 
initiator concentration. 

Fig. 2(a) explains that rise in reaction temperature from 85 to 95 oC 
raised the initiator concentration from 0.75 to 1.25 wt %. There is a 
negative interaction between the concentration of initiator and 
reaction time. This indicates that the yield drops as the concentration 
of initiator and reaction temperature increase. Probably, there is an 
indication of a solvent reduction influence under this time at a specific 
reaction temperature, allowing the radicals generated to escape into 
the bulk medium and grow. While, Fig. 2(b) explains the combined 
influence of time and temperature on the yield, considering that the 
other parameters were constant throughout the reaction. Besides, Fig. 
2(c) explains how the rise in the percentage of initiator concentration 
from 0.75 to 1.25 wt % affected the yield rate. Similarly, the time 

showed a clear influence on the yield; consequently, a rise in the time 
from 6.5 to 7.5 h, caused a significant raise in the yield percentage. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2(b) Contour chart of % Yield vs. (A) reaction temperature, (C) 
reaction time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 (c) Contour chart of % Yield vs. (B) concentration of initiator, (C) 
reaction time. 
 
Analysis of the response surface 

Three-dimensional response surfaces have been designed to study 
the interaction between the factors and to estimate the optimum 
condition of each variable for maximum SABA copolymer yield. The 
influence of initiator concentration and temperature on yield at a 
stable reaction time of 7 h is shown below in Fig. 3(a). As the 
temperature and initiator concentration rise, the yield decrease. The 
optimum yield was 96.91% and which was obtained at about 90 oC 
and at an initiator concentration 1 wt %. In general, there is a negative 
interactive influence among the two process parameters. This is a 
weak confirmation of the dependence of yield on both of the reaction 
temperature and concentration of initiator.  

The interactive influence of temperature and time on yield at a 
stable initiator concentration of 1 wt % is shown below in Fig. 3(b). 
The yield was appeared to rise with a rise in temperature as compared 
to that of reaction time. Thus, the highest yield has reached 96.95% at 
an optimal condition 7 h reaction time and 90 oC reaction temperature. 
Thus, there is a significant positive interaction among temperature and 
time. This displays that the yield increases with increasing reaction 
time as well as reaction temperature beyond the optimum value of 1 
wt % concentration of initiator. 

The interactive influence of initiator concentration and time on 
yield at a stable temperature of 90 oC is depicted in Fig. 3 (c). The 
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yield has been detected to rise with the rise in concentration of 
initiator as compared to that of the temperature. There is a positive 
interaction between the reaction time and concentration of initiator. 
However, the highest yield obtained was 97.31%. This shows that the 
yield rises with a rise in reaction time and concentration of initiator. In 
summary, the best result obtained for the yield from Figs. 3(a)(b)(c) 
was 97.31% and the important factors that have a further impact on 
polymerization synthesis are reaction time and temperature when 
compared with other factors.. 

 
 
Fig. 3(a)  Response surface plot of the interaction between reaction 
temperature and initiator concentration on percentage yield holding 
reaction time constant 
 

 
 
Fig. 3(b)  Response surface plot of the interaction between temperature 
and time on percentage yield holding initiator concentration stable. 
 

 
Fig. 3(c) Response surface plot of the interaction between initiator 
concentration and time on percentage yield holding temperature stable. 
 
 
 

Optimization and validation 
Optimization was performed using the RSM to achieve the optimal 

yield that satisfies all process conditions. The optimal operating 
conditions observed in this analysis were as follows: time of 7 h, 
temperature of 90 oC and initiator concentration of 1 wt %. The 
corresponding optimized yield is 97.31%.  

Model validation was carried out using optimal replicate 
conditions by conducting three sets of experiments created from DOE 
software by comparing the experimental and expected values. The 
process of optimization was performed by inserting the desirable 
standards as shown in Table 5. The maximum average yield response 
obtained was set as the main goal, based on the performed 
experiments. The results indicate that all the experiments produce a 
yield response of less than 3% residual standard error (RSE). Hence, 
the model is validated; this model is expected to be accurate up to 
97%. Therefore, the expected value and experimental value based on 
the model are firmly agreed upon, and the highest validated yield 
obtained in this analysis was 97.15%. 

 
Table 5. Model validation experiments and expected data 

 
No 

 
 Factors  Yield   

A B C Experimental 
Value 

Expected 
Value 

RSE 
% 

1 95 1 7.5 97.02 95.64 1.42 
2 90 1.25 8 96.76 94.46 2.37 
3 90 1.25 7.5 97.15 96.20 0.97 

 
 
CONCLUSION 
 
RSM is a set of statistics and mathematical methods which enhance 
the empirical model building, developing, and optimizing processes 
factor. In addition, it can be used to discover the interaction of many 
affecting variables. The optimal conditions observed as follows from 
this analysis were: 90 oC of temperature, 7 h of time and 1 wt % 
concentration of initiator. The corresponding optimized yield is 
97.31%. The analysis of variance (ANOVA) of the regression model 
detected an R2 value of 0.9844, showing model could clarify 98.44% 
of the data variation, and just 1.23% of the overall variation were not 
clarified by the model. Validation was conducted using three replicate 
conditions and the highest average yield value obtained is 97.15%. 
There is an error of about 0.97 % as compared to the expected value. 
Therefore, it indicated that the model is extremely significant, that 
confirmed a stronge agreement among the experimental and the 
expected values of SABA yield. 
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