

 OBJECT DETECTION SYSTEM USING HAAR-CLASSIFIER

WAN NAJWA BINTI WAN ISMAIL

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

MAY, 2009

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : WAN NAJWA BINTI WAN ISMAIL

Date : 11 MAY 2009

To

My beloved parents

and my siblings

 “ who offered me unconditional love and support

 throughout the course of this thesis”

Acknowledgement

First and foremost, I wish to express my gratitude to the project’s supervisor, Mr.

Mohd Zamri bin Ibrahim for his mentorship throughout the course of my graduate

studies. This work would not be possible without Mr Zamri’s ideas, dedications,

supports, analogies and advices over the year.

 I would like to extend my gratitude to those who gave the possibilities for me to

complete this project especially to my beloved parents for giving such a great support

and encouragement for me financially or technically through the duration of my studies.

Special thanks also to all my graduate friends, especially to those group members

under Mr Zamri’s supervision who has sharing the literature and invaluable assistance. I

would also like to convey thanks to the administrator who gave me opportunity to find

research material easily.

Abstract

The invention of new algorithms had encouraged to the reinforcement of image

processing’s application. An algorithm for the design object detection systems is

presented. Haar-classifier is utilized as the algorithms for this object detection system.

The exertion of Haar-Classifier had boosted to the upgrade system which is faster and

more accurate. In this system, Haar-Classifier is conjunct with the Adaboost machine

learning algorithms wherefore the performance of the system is upgraded. Development

of this project is categorized into two phase which are training phase and execution

phase. Training phase use OpenCV utilities such as haartraining.exe to train the object

by calculating the object’s weak constraints. This is for the purpose of finding the

different features of the object of interest. The list of these weak constraints is converted

to the xml file to be included in the coding which had been developed using Visual

Studio 2005. The execution process will result on the detection process of object of

interest. System will detect rounded image in any image which had been included in the

system itself. Object detection system using Haar-classifier algorithm can perform best

performance of high detection rate and high level of accuracy rate.

Abstrak

Penciptaan algoritma baru telah menggalakkan kepada perkembangan aplikasi

sistempemprosesan imej. Algoritma untuk mereka sistem pengesanan objek telah

diperkenalkan. Pengklasifikasi Haar telah digunakan sebagai algoritma untuk sistem

pengesanan objek ini. Penggunaan pengklasifikasi Haar telah meningkatkan prestasi

sistem supaya lebih cepat dan tepat. Untuk tujuan meningkatkan kadar pengesanan,

pengklasifikasi Haar telah digabungkan dengan kaedah Adaboost yang menjadi punca

kepada peningkatan kadar pengesanan objek. Pembentukan sistem ini terbahagi kepada

dua bahagian iaitu fasa latihan dan fasa perlaksanaan. Fasa latihan menggunakan utiliti

OpenCV seperti “haartraining.exe” untuk melatih objek yang hendak dikesan dengan

cara mengira ciri kelemahan sesuatu objek itu. Hal ini bertujuan untuk mencari ciri-ciri

berlainan yang ada pada sesuatu objek itu. Senarai cirri-ciri kelemahan ini ditukar

kepada fail xml untuk dimasukkan ke dalam kod yang telah dibuat menggunakan

perisian Visual Studio 2005. Fasa perlaksaan akan menghasilkan proses pengesanan

objeck yang dikehendaki. System akan mengesan image berbentuk bulat dalam sebarang

gambar yang telah dimasukkan ke dalam system. Sistem Pengesanan Objek

menggunakan pengklasifikasi Haar algoritma mampu melaksanakan hasil yang bagus

dengan kadar pengesanan dan kadar ketepatan yang tinggi.

VII

TABLE OF CONTENTS

CHAP TITLE PAGE

 ORGANIZATION OF THE THESIS

 TITLE PAGE I

 DECLARATION II

 DEDICATION` III

 ACKNOWLEDGEMENT IV

 ABSTRACT V

 ABSTRAK VI

 TABLE OF CONTENT VII

LIST OF FIGURES VIII

 LIST OF TABLE X1

 LIST OF ABBREVIATIONS X11

 LIST OF APPENDICES XIII

1. INTRODUCTION

 1.1 Problem Statements 1

 1.2 Objectives 2

 1.3 Work Scopes 2

 1.4 Project Overview 3

1.5 Thesis Outline 3

VIII

2. LITERATURE REVIEW

2.1 Digital Image Processing 5

 2.1.1 Image Processing 6

 2.1.2 Algorithm 6

2.2 Edge Detection 7

2.3 Color Conversion 8

2.4 Haar-Classifier 9

2.5 Adaboost 11

2.6 OpenCV 12

2.7 Visual Studio 2005 13

 3. METHODOLOGY DEVELOPMENT

3.1 System Framework 14

3.2 Flowchart of the system 16

3.3 Block Diagram of training phase 17

 3.3.1 OpenCV installation 18

 3.3.2 Folder creation 19

 3.3.3 Image collecting 19

3.3.4 Image conversion 21

3.3.5 Creating info files 23

3.3.6 Object marking 24

3.3.7 Sample creating method using createsample.exe. 29

3.3.8 Create training sample using haartraining.exe. 31

3.3.9 Convert the datasets to xml file 33

3.3.10 Performance test 34

IX

3.4 Execution phase 36

 3.4.1 Create user interface. 36

 3.4.2 Coding development 37

 3.4.3 Coding Implementation 38

 4. RESULTS AND DISCUSSIONS

4.1 Training phase results 39

 4.1.1 Result of folder creation 40

 4.1.2 Result of Image Collecting 41

 4.1.3 Result on Image Conversion 42

 4.1.4 Result on creating info files 43

 4.1.5 Result of marking object 44

 4.1.6 Result of samples creation 45

4.1.7 Result of haartraining process 47

4.1.8 Results of xml file creation. 49

 4.2 Execution phase results 50

 4.3 Costing 52

 5. CONCLUSION AND FUTURE RECOMMENDATIONS

 5.1 Conclusion 53

 5.2 Future recommendations 54

 5.2.1 Commercialization 54

X

 REFERENCES 55

 APPENDICES 56

List of Figures

FIGURE TITLE PAGE

2.1 Application of Digital Image Processing 5.

2.2 Monochrome black/white image. 6

2.3 Algorithms can be represented in flowchart. 7

2.4 Example of Numerical Algorithms. 7

2.5 Edge Detection Process. 8

2.6 Result image of grayscale to binary color conversion process. 9

2.7 A set of basic Haar-like features. 10

2.8 A set of basic Haar-like features. 10

2.9 Adaboost figure simplification. 11

2.10 The application of OpenCV (Face Detection). 12

3.1 Block Diagram of Object Detection. 15

3.2 The flowchart of the system. 16

3.3 The block diagram of the Haar-training process. 17

3.4 Sample training (positive samples) 20

3.5 Sample training (negative samples) 20

3.6 Browse file from folder. 21

3.7 Image browsed display in “Paint” workspace. 21

3.8 Click Save as in menu bar. 22

3.9 Save file as bitmap @png file format. 22

3.10 Paxillion workspace. 22

3.11 Browse image’s folder. 22

3.12 Change the “output folder” and “output format”. 23

3.13 Converting file format to bitmap. 23

3.14 Image file listing format 24

3.15 Format of marked object list file. 25

3.16 Microsoft Office Picture Manager workspace. 26

3.17 Crop Image By Changing Pixels in Crop Handles. 27

3.18 Windows appear after open object marker.exe. 28

3.19 Windows appear after drawing rectangular boundary on object. 28

3.20 Implementing the coding on command prompt. 30

3.21 Creating the samples of collecting images. 30

3.22 Creating samples done. 30

3.23 Implementing the coding on command prompt. 32

3.24 Training all samples process of 7 stages. 32

3.25 Implementing the coding on command prompt. 33

3.26 Performance test process. 35

3.27 User Interface 36

3.28 Coding Flowchart 37

3.29 Add coding to the button 38

4.1 Initial “haarcascade” folder’s contents. 40

4.2 1022 of Positive Image Collection. 41

4.3 1028 of Negative Image Collection 41

4.4 Positive image folder “rawdata” and Negative Image Folder “NS” is

 placed in the folder “haarcascade” 42

4.5 Positive Images in bitmap format 42

4.6 Negative Images in bmp format. 42

4.7 Info file of negative image’s collection. 42

4.8 Contents of “haarcascade” folder after placing the info file

 text file. 44

4.9 List of Positive Image’s info file contains its coordinate, file

 name and directory. 44

4.10 Info file of Positive Image named as “positives” is being placed

 in the folder “haarcascade”. 45

4.10 The Contents of Vector File. 46

4.11 Vector file created in “haarcascade” folder after create samples

 process. 46

4.12 The Stages of Weak Constraints Calculation. 47

4.13 The files contains of Weak Constraints Calculation according to

 stages. 48

4.14 Xml file contains of calculation of weak constraints created

 during Haartraining process. 49

4.15 “Result” windows will generate automatically when the button

 “Detect Ball” is clicked 50

4.16 Detection Results of accurate detection 51

4.17 Detection Results of not accurate detection. 51

XI

List of Table

TABLE TITLE PAGE

3.1 OpenCV utilities 18

XII

List of Abbreviations

OpenCV – Open Source Computer Vision

Adaboost – Adaptive Boost

HCI -- Human-Computer Interaction

SFM -- Structure From Motion

IDE -- Integrated Development Environment

GUI – Graphical User Interface

VB.NET – Visual Basic. Net

Png -- Portable Network Graphic format

Xml – Extensible Markup Language

XIII

List of Appendices

APPENDIX TITLE PAGE

 A DETECTION PROCESS SOURCE CODE 57

1

 CHAPTER 1

INTRODUCTION

Development of computer system and technology has encouraged on the

development of intelligence on new technologies. Object detection system is developed

as a contribution due to help humans in daily life. This system approach can be applied

to robotic system and surveillance system. Designing object detection’s system is a

process to determine the location and the region of the object in a digital image. This

system will only detect object of interest and ignore any others objects. The algorithm

use in this project is Haar-Training which is used to calculate the threshold of the object

of interest in order to obtain a new classifier. This process will be done using OpenCV

utilities. Visual Studio 2005 software has been used to test the ability of the new

classifier.

1.1 Problem Statement

This project uses the better performance of algorithms such as Haar-Training. for

the purpose to get reasonable accuracy rate. Haar-Training could be the better solution

as it has a combination with the Adaboost method. The cascade of Adaboosted

(Adaptive boost) classifiers can achieve both accuracy and speed. The algorithm can

2

achieve high detection accuracy and approximately 15 times faster than any previous

approaches.

1.2 Objective

The purpose of doing this project is not basically just to detect objects in an

image but also for some other purpose which are:

i) To utilize the object’s region in a digital images.

ii) To leverage positive object’s classifier using Haar-Training.

iii) To develop an object detection system using OpenCV and Visual Studio 2005

software.

1.2.1 Work Scope

 There are few work scopes that related to this project which are first to develop a

system that can be used to localized object features in a digital colored image. This is

for the purpose to identify the location of desired object in an image which also had

consisted of other images. Second is to develop a system by using Visual Studio 2005

software for the better performance. Visual Studio is the best software of interfacing

OpenCV with GUI interface. Last but not least is to classify the weak and strong

features from the desired object using Haar-Classifier to compare with the image’s

threshold in the xml file (database) for the detection process.

3

1.4. Project Overview

In general, object detection system’s purpose is to detect desired object in any

still image. In this project, the desired object input is circle image such as ball, circle and

etc. The overall flow of this system can be described as following. A scanned image will

be compared to the object models in the system’s dataset and the system will detect

whether the object exist is or not in an image. This system needs to go through certain

important method which are first the collection of image, second is the training process

using Haar-Training method, next is coding implementation and last is to match the

object with the dataset which in this case was the cascaded image threshold which is

contained in the xml file or the purpose to determine whether the desired object is exist

or not.

1.5. Thesis Outline

This thesis is organized as follows:

Chapter 1 will describes the introduction of this system, the purpose of doing

this project, the problem statement, the work scope and brief explanation of project’s

system flow.

In Chapter 2, the review about the information find on all the material or data

used in the development of the system will be shown.

4

Explanation of all the methods use in development of this system and the step by

step solution on developing training part and execution part will be described in

Chapter 3.

Chapter 4 includes all the results followed with the explanation about the results

after all the development process has done.

Chapter 5 is the last chapter and it will show the summary after all and come up

with some recommendations for some improvements.

5

CHAPTER 2

LITERATURE REVIEW

 This chapter will review on the information gathered in developing the object

detection system. The information accumulated is all the basic notification used in order

to develop the system including the basic definition of system approach, the algorithms

and the basic process of the system.

2.1 Digital Image Processing

Digital image processing is the use of computer algorithms to perform image

processing on digital images [6].

Fig 2.1: Application of Digital Image Processing

6

2.1.1 Image processing

Image processing is a physical process used to convert an image signal into a

physical image. The image signal can be either digital or analog. The actual output itself

can be an actual physical image or the characteristics of an image. The most common

type of image processing is photography.

 Fig 2.2: Monochrome black/white image

2.1.2 Algorithms

Algorithm is a finite sequence of instructions, an explicit, step-by-step procedure

for solving a problem, often used for calculation and data processing. It is formally a

type of effective method in which a list of well-defined instructions for completing a

task.

In its most general sense, an algorithm is any set of detailed instructions which

results in a predictable end-state from a known beginning. Algorithms are only as good

7

as the instructions given, however, and the result will be incorrect if the algorithm is not

properly defined [7].

Fig 2.3: Algorithms can be represented in flowchart

 Fig 2.4: Example of Numerical Algorithms

2.2 Edge Detection

An improved algorithm based on frame difference and edge detection is

presented for moving object detection. First of all, it detects the edges of each two

continuous frames by Canny detector and gets the difference between the two edge

8

images. And then, it divides the edge difference image into several small blocks and

decides if they are moving areas by comparing the number of non-zero pixels to a

threshold. At last, it does the block-connected component labeling to get the smallest

rectangle that contains the moving object [8]

 Fig 2.5: Edge Detection Process

2.3 Color conversion

Threshold is an image segmentation to convert grayscale to binary image. During

the threshold process, individual pixels in an image are marked as “object” pixels if their

value is greater than some threshold value (assuming an object to be brighter than the

background) and as “background” pixels otherwise. This convention is known as

threshold above. Variants include threshold below, which is opposite of threshold above;

threshold inside, where a pixel is labeled "object" if its value is between two thresholds;

and threshold outside, which is the opposite of threshold inside. Typically, an object

pixel is given a value of “1” while a background pixel is given a value of “0.” Finally, a

binary image is created by coloring each pixel white or black, depending on a pixel's

label.

9

 Fig 2.6: Result image of grayscale to binary color conversion process.

2.4 Haar-Classifier

Object detection system is given an image patch of known size or a feature and is

to decide whether this features stemmed from an object, or a non object. For the purpose

to get a reasonable accuracy of object detection performance, the Haar- classifier is

applied to this system

Haar-Classifier encodes the existence of oriented contrasts between regions in

the image. A set of these features can be used to encode the contrasts exhibited by an

object. The detection technique is based on the idea of the wavelet template that defines

the shape of an object in terms of a subset of the wavelet coefficients of the image.

Haar-like features are so called because they share an intuitive similarity with the

Haar wavelets. Historically, for the task of object recognition, working with only image

intensities (i.e. the RGB pixel values at each and every pixel of image) made the task

computationally expensive. This feature set considers rectangular regions of the image

and sums up the pixels in this region. The value this obtained is used to categorize

images. For example, let us say we have an image database with human faces and

buildings. It is possible that if the eye and the hair region of the faces are considered, the

sum of the pixels in this region would be quite high for the human faces and arbitrarily

high or low for the buildings [1]

10

The value for the latter would depend on the structure of the building, its

environment while the values for the former will be more less roughly the same. We

could thus categorize all images whose Haar-like feature in this rectangular region to be

in a certain range of values as one category and those falling out of this range in another.

This might roughly divide the set of images into ones having a lot of faces and a few

buildings and the other having a lot of buildings and a few faces. This procedure could

be iteratively carried out to further divide the image clusters [2].

The Algorithm use in this project is Haar-like features to find the weak

constraints. There is little information that should be understood about Haar-like which

are:

• Each Haar-like feature consists of two or three jointed “black” and “white

rectangles:

 Fig 2.7 : A set of basic Haar-like features.

 Fig 2.8: A set of extended Haar-like features.

• The value of a Haar-like feature is the difference between the sum of the

pixel gray level values within the black and white rectangular regions:

11

 f(x)= Sumblack rectangle (pixel gray level) – Sumwhite rectangle (pixel

 gray level)

 Equ 2.1: Calculation on Haar-like feature’s value.

2.5 AdaBoost

AdaBoost, short for Adaptive boosting, is a machine learning algorithm,

formulated by Yoav Freund and Robert Schapire. It is a meta-algorithm, and can be used

in conjunction with many other learning algorithms to improve their performance.

AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in favor

of those instances misclassified by previous classifiers. AdaBoost is sensitive to noisy

data and outliers. Otherwise, it is less susceptible to the over fitting problem than most

learning algorithms. AdaBoost calls a weak classifier repeatedly in a series of rounds

t = 1….T. [3]

Fig 2.9: Adaboost figure simplification

12

2.6 OpenCV

 The OpenCV library gives us a greatly interesting demo for object detection.

Furthermore, it provides us programs (or functions) which they used to train classifiers

for their face detection system (called Haartraining) so that we can create our own object

classifiers using these functions. Example applications of the OpenCV library are

Human-Computer Interaction (HCI); Object Identification, Segmentation and

Recognition; Face Recognition; Gesture Recognition; Motion Tracking, Ego Motion,

Motion Understanding; Structure From Motion (SFM), Stereo and Multi-Camera

Calibration and Depth Computation and Mobile Robotic. Object Detection System is

also the application of OpenCV. [4]

Fig 2.10: The application of OpenCV (Face Detection)

13

 2.7 Microsoft Visual Studio 2005

Microsoft Visual Studio is an Integrated Development Environment (IDE) from

Microsoft. It can be used to develop console and graphical user interface applications

along with Windows Forms applications, web sites, web applications, and web services

in both native code together with managed code for all platforms supported by Microsoft

Windows, Windows Mobile, Windows CE, .NET Framework, .NET Compact

Framework and Microsoft Silverlight.

Visual Studio includes a code editor supporting IntelliSense as well as code

refactoring. The integrated debugger works both as a source-level debugger and a

machine-level debugger. Other built-in tools include a forms designer for building GUI

applications, web designer, class designer, and database schema designer. It allows plug-

ins to be added that enhance the functionality at almost every level - including adding

support for source control systems (like Subversion and Visual SourceSafe) to adding

new toolsets like editors and visual designers for domain-specific languages or toolsets

for other aspects of the software development lifecycle (like the Team Foundation

Server client: Team Explorer).

Visual Studio supports languages by means of language services, which allow

any programming language to be supported (to varying degrees) by the code editor and

debugger, provided a language-specific service has been authored. Built-in languages

include C/C++ (via Visual C++), VB.NET (via Visual Basic .NET), and C# (via Visual

C#).

CHAPTER 3

METHODOLOGY

There are few methods contribute in developing this system. This chapter will

review all the method use and how the Haar – Classifier is implemented to detect the

object of interest. The trained object used in this project is rounded image.

3.1 System Framework

Object detection system required two different phase to complete the system

development. First is the training phase which is work with OpenCV software. Training

phase is to create a datasets from the collected images. Image must be collected and

categorized in two categories which are positive image samples and negative image

samples before image training process take part. Negative samples correspond to non-

object images. Positive samples correspond to object of interest. There are few other

steps contribute to the image training phase which are object marking , sample creating ,

haartraining, performance test and creating xml file. After training process is done, the

execution phase is proceeded. Execution phase is to test the training using simple coding

created using Visual Studio 2005.

15

 Fig 3.1: System’s Block Diagram

16

3.2 Flowchart of the system

 Fig 3.2 : The flowchart of the system

No

Yes

17

3.3 Block diagram of training phase

Training phase is separated to eight different processes to produce a classif

ierwhich contains a list of weak constraints that can be used to differentiate the object of

interest with other objects.

 Fig 3.3 : The block diagram of the Haar-training proces

 Chp 3.3.3

 Chp 3.3.4

 Chp 3.3.5

 Chp 3.3.7

 Chp 3.3.8

 Chp 3.3.9

 Chp 3.3.10

18

3.3.1 OpenCV installation

Training phase will mostly depend on OpenCV functional library which are

createsamples.exe, haartraining.exe, convert_cascade.exe and performance.exe. These

entire executable (available from the OpenCV installation directory) file had their own

functions and all these functions is used during the training phase. The function of these

executable files can be described as bellow:

Tab 3.1: OpenCV utilities

No. Library Function Directory

1. Createsamples.exe To create sample

from positives

image collected

(C:\Program

Files\OpenCV\bin\createsamples.exe)

2. Haartraining.exe To train sample to

calculate the

threshold of all

samples

(C:\ Program

Files\OpenCV\bin\haartraining.exe)

3. Convert_cascade.exe To convert file to

xml file.

(C:\Program Files\OpenCV\samples\c)

4. Performance.exe To test the

performance of

trained samples.

(C:\Program

Files\OpenCV\bin\performance.exe)

19

OpenCV must be installed first to perform all these functions. Installation of

OpenCV is a very straight forward. After installation process is done, all the utilities

files is ready to use and training process could be start.

3.3.2 Folder creation

For training phase, all the works must be done in one folder. To create the folder

all the following steps must be considered and need to be done.

i) Create a folder in local disk C of any desirable name such as

“haarcascade” which had been used in this project.

ii) Go to “C:\Program Files\OpenCV\bin____”.

iii) Copy the executable files below and place in the folder “haarcascade”

(folder

1. “createsamples.exe”

2. “haartraining.exe”

3. “convert_cascade.exe”

4. “performance.exe”

3.3.3 Image collecting

Collect positive images that contain only objects of interest for example, circle

image. The total of positive image collected must be up to 1000 of different images in

same shape. These images can be collected by searching at Google or Yahoo image

search or any other websites. Examples of positive images are shown in figure below.

20

 Figure 3.4: Sample training (positive samples)

Same goes to negative image where total image collected must be up to 1000 of

any image which not contains any positive images. Negative image is also known as

background image. Figure 5 show the example of negative images.

Fig 3.5 : Sample training (negative samples)

 All positives image that has been collected must be placed in one folder. Rename

the folder to any names and do same steps to negative image. The two folders of positive

and negative images collected must be placed in the folder “haarcascade”.

21

3.3.4 Image Conversion

All images in jpeg or gif must be converted to bitmap (bmp) or Portable Network

Graphic format (png). This is because “object marker.exe” which is the execution file

needed to crop desired object to detect in an image could not support the file format of

jpeg or gif. If marking object is done manually which means without using object

marker.exe, just skip this step. Image should not convert to bitmap or png. To convert

image we can either use the basic program from our computer such as “Paint” or by

using image converter software such as “Pixillion”.

These are the steps that can be done to convert image file format

1) Step to convert image file format using basic computer program such as “

Paint”.

i) Go to “Start” menu on the taskbar. Click “All Programs”

“Accessories”  “Paint”.

ii) Go to “Open” on menu taskbar and browse any file that need to

convert.

Fig 3.6: Browse file from folder. Fig 3.7: Image browsed display in

 Paint workspace

22

iii) Go to “File”  “Save as”.

iv) Change the file type to bmp or png. Then click Save. Image now had

been converted to bitmap. Continue these steps with other 1000 images.

 Fig 3.8: Click Save as in menu bar Fig 3.9: Save file as bitmap @png

 file format

2) Steps to convert image file format using Pixillion software.

i) Open Pixillion image converter software.

ii) Click “Add Folder” icon in menu taskbar. Browse image folder to

 convert. Click “OK”.

 Fig 3.10: Paxillion workspace. Fig 3.11: Browse image’s folder

23

iii) Change the “Output Folder” and “Output Format” to desired output. For

advanced output effects, click “Output Effects”. Remember to change the

file format to bitmap or png.

iv) Preaa “Ctrl+A” to select all files to convert. Click “Convert” button for

completing conversion process. Now all files is in bitmap format.

 Fig 3.12: Change the “output folder”, Fig 3.13: Converting file format to

 “output format”. bitmap.

3.3.5 Create info files

Info files are lists of all image files that have been collected to be trained. This

list file must be in “.txt” file which means it is a text file which can be created using

“Notepad” or “Word pad”. This method will be useful in createsamples session. These

are the process for creating the info file of positive and negative image files:

i) List the entire negatives images file name in “Notepad”..

ii) Rename the file as “negatives” for instance use.

iii) For positives images, the info file will be created under section 3.4.5

which is object marking section. Don’t forget to place both file listing in

the “haarcascade” folder.

24

The format of listing info file is;

 Fig 3. 14: Image file listing format

3.3.6 Object Mark (crop image)

Object marking method is important to know the location of object in an image

whereas the location of object could be either at the bottom, top, center or in other –x

and –y grid. So for the purpose of determining the coordinate of the object, the method

of object marking should be done. This method is important to crop or extract the

desired object to differentiate it from other object.

There are two solutions that can be used as the way to accomplish these steps.

First is by crop it manually by using basic program such as Microsoft Office Picture

Manager. Second way is by using object marker.exe which can be downloaded at

OpenCV. Using object marker.exe should be much easier than by crop it manually.

The result by doing this method should be in the format of below condition and

must be in .txt/.dat file.

Folder name of
image collected

Image file name

Image file format

25

Directory Folder name

File name

Number of object in an image

Coordinate of object from right (in pixels)

Coordinate of object from top (in pixels)

Coordinate of object from left (in pixels)

Coordinate of object from bottom (in pixels)

The format of listing object marking info file is;

Fig 3.15 : Format of marked object list file

26

1) Step to mark object manually

This step should be more difficult because the entire file must be marked one by

one but it was useful if “object marker.exe” couldn’t be find. These are the steps of

converting file using “Paint”

Step 1:

i) Open “Microsoft Office Picture Manager”.

ii) Click “Picture" on the Menu bar and Click “Crop”.

 Fig 3.16: Microsoft Office Picture Manager workspace.

Step 2:

iii) Change the number of pixels under the crop handles to select

desired object.

iv) Change the pixels on right, left, top and bottom part to select obje

27

Fig 3.17: Crop Image By Changing Pixels in Crop Handles.

 Step 3:

i) Continue the step for other 1000 of positive images collected.

ii) Create new file of text file and place the readings from crop

handles of 1000 image to the text file that had been created.

iii) List the reading of marked object as the format show in figure

2) Step to mark object using object marker.exe.

This method should be easier and faster. The info file could be created

automatically as long as the object of interest had been cropped from an image.

Step 1:

i) Download haarkit tools at ………..

ii) Save all positives image in “rawdata” folder. “rawdata” folder can

be found under directory haarkit\tools\temp\positive\rawdata.

Folder “rawdata” can be renamed to any other desirable name.

iii) Remember all positive image files to be mark must be in bitmap

format.

Step 2:

i) Clicks object marker.exe. Figure below will appear.

28

Fig 3.18: Windows appear after open object marker.exe.

Step 3:

i) Draw rectangular boundary to crop the desired object. If done,

press space bar to enter the marking reading in command window

and press enter to work with other image.

Fig 3.19: Windows appear after drawing rectangular boundary on object.

Step 4:

i) All the result of marking will be saved in the file named info.txt

which can be finding in the path” haarkit\tools\temp\positive”.

ii) Rename the file info.txt to any desirable name. In this project, the

file name has been renamed as “positives.txt” and places it in the

“haarcascade” folder (worked folder).

29

3.3.7 Sample creating method using createsample.exe.

OpenCV has built in training system to construct a classifier, for training purpose

the system works quite well. OpenCV generates the samples images that will be used for

training purpose. The program used for creating samples using OpenCV is

createsamples.exe and the command used is “–createsamples”.

This is the step correspond to the process of creating the samples.

Step :

i) Open Command Prompt and type the following coding.

createsamples –info positives.txt -num 1022 -bg negatives.txt -vec
samples.vec - maxxangle 0.6 -maxyangle 1.5 -maxzangle 1.5 -maxidev 100 -
bgcolor 0 -bgthresh 80 -w 50 -h 50

 All the values can be changed according to limitation and range.

 Usage: ./createsamples
 [-info <description_file_name @ info file of marked positive object>]
 [-img <image_file_name>]
 [-vec <vec_file_name>]

 [-bg <background_file_name>]
 [-num <number_of_samples = 1000>]
 [-bgcolor <background_color = 0>]
 [-inv] [-randinv] [-bgthresh <background_color_threshold = 80>]
 [-maxidev <max_intensity_deviation = 40>]
 [-maxxangle <max_x_rotation_angle = 1.100000>]
 [-maxyangle <max_y_rotation_angle = 1.100000>]
 [-maxzangle <max_z_rotation_angle = 0.500000>]
 [-show [<scale = 4.000000>]]
 [-w <sample_width = 24>]
 [-h <sample_height = 24>]

30

Fig 3.20: Implementing the coding on command prompt.

Fig 3.21: Creating the samples of collecting images.

ii) Creating sample method is done after the command prompt display

below result:

 Fig 3.22: Creating samples done.

31

3.3.8 Create training sample using haartraining.exe.

Training samples using OpenCV is based on AdaBoost approach. The main

goals of the AdaBoost learning algorithm are to select a few set of features which

represents features as well as possible round image and train the strong classifier which

the linear combination of these best features. Eventually, training process should take at

least three days and can also take to a week to complete training process. It’s all depends

on the total samples used and the memory usage for training process. As for

recommendation, memory usage should not totally used. Just use half from the memory

storage of your hard drive. Total memory usage could harm the computer’s operational

system. The following steps can describe briefly about haartraining process.

Step 1:

i) Open Command Prompt and type this coding.

haartraining -data haarcascadeimage -vec samples.vec -bg negatives.txt -nstages 30 -
nsplits 2 -minhitrate 0.999 -maxfalsealarm 0.5 -npos 1022 -nneg 1028 -w 60 -h 60 -
nonsym -mem 512 -mode ALL

Usage: ./haartraining
-data <dir_name>
-vec <vec_file_name>
-bg <background_file_name>
[-npos <number_of_positive_samples = 2000>]
[-nneg <number_of_negative_samples = 2000>]
[-nstages <number_of_stages = 14>]
[-nsplits <number_of_splits = 1>]
[-mem <memory_in_MB = 200>]
[-sym (default)] [-nonsym]
[-minhitrate <min_hit_rate = 0.995000>]
[-maxfalsealarm <max_false_alarm_rate = 0.500000>]
[-weighttrimming <weight_trimming = 0.950000>]
[-eqw]
[-mode <BASIC (default) | CORE | ALL>]
[-w <sample_width = 24>]
[-h <sample_height = 24>]
[-bt <DAB | RAB | LB | GAB (default)>]
[-err <misclass (default) | gini | entropy>]

32

 Fig 3.23: Implementing the coding on command prompt

 Fig 3.24: Training all samples process of 7 stages

33

3.3.9 Convert the datasets to xml file

For detection this cascade of classifier should be converted in xml format. The

haartraing generates a xml file when the process is completely finished.

The input format as following coding is implemented in command prompt.

convert_cascade --size="<sample_width>x<sampe_height>"
<haartraining_ouput_dir> <ouput_file>

Example:

convert_cascade --size="20x20" haarcascadeimage haarcascade.xml

 Fig 3.25: Implementing the coding on command prompt.

Note that the result of converting datasets to xml file is the result of all process of

training phase. The xml file created is a new classifier of desired object in this project

which is round image. To detect round object in any image, just implement this .xml file

in object detection coding represent in execution phase.

34

3.3.10 Performance Test

Before the training phase is done completely, the performance test is needed to

examine the ability of classifier created on detecting desired object. This process is

important because if the percentage of performance is low, the training phase should be

repeating again with increment in total image collected for training. If high, the classifier

performance is good and effective, so detection process will going accurately.

The performance of the classifier can be tested using this method.

 performance -data haarcascade -w 20 -h 20 -info tests.dat -ni
 or
 performance -data haarcascade.xml -info tests.dat –ni

 Usage: ./performance
 -data <classifier_directory_name>
 -info <collection_file_name>
 [-maxSizeDiff <max_size_difference = 1.500000>]
 [-maxPosDiff <max_position_difference = 0.300000>]
 [-sf <scale_factor = 1.200000>]
 [-ni]
 [-nos <number_of_stages = -1>]
 [-rs <roc_size = 40>]
 [-w <sample_width = 24>]
 [-h <sample_height = 24>]

35

Fig 3.26: Performance test process.

36

3.4 Execution phase.

 Execution phase is a phase to test the classifier created during training phase.

Simple coding using OpenCV library and Visual Studio software including the user

interface should be created to test the classifier. There are also some few steps in order

to completing the coding development process.

3.4.1 Create user interface.

 Use MFC application to generate a form that will become a user interface that

will connect the user with the system, the example of window form that can be created is

as below:

Fig 3.27 : User Interface

37

3.4.2 Coding development

 Coding is developed step by step according to flowchart. Flowchart of the

execution phase is as follows:

Fig 3.28: Coding Flowchart

const char* filename =
input_name ? input_name :
(char*)"lena.jpg";

IplImage* image =
cvLoadImage(filename, 1)

CvCapture *capture;
 IplImage *frame;
 int key;
 char *filename
="haarcascade_frontalface
_alt.xml";
cascade = (
CvHaarClassifierCascade*
)cvLoad(filename, 0, 0,
0);

CvSeq* faces =
cvHaarDetectObjects(img,
cascade, storage,

1.1, 2,
CV_HAAR_DO_CANNY_PRUNING,

cvSize(40, 40));

cvClearMemStorage(
storage);
cvSaveImage("Result.jpg",
image);

38

3.4.3 Coding implementation

 System overview figure that detection process start after a button of detect ball is

clicked. Therefore, adding some coding for detection to the button of “detect ball” is

necessary. The steps of applying the coding to the button can be referred to the OpenCV

using MFC website.

 Figure 3.29: Add coding to the button

 After implementing the coding to the button, the system can be executed and the

result of the detection process can be observed.

Double Click and
Insert object
detection coding

CHAPTER 4

RESULTS AND DISCUSSIONS

The methodology had come out with some result in order to complete the object

detection systems development. These are the results of step by step methods done in the

methodology development during the training and execution phase within its problems.

i) Training phase

Training phase will produce a classifier of object of interest which is in the

format of xml file. For the purpose of reproduce the xml file, all images must be

converted to bitmap format, the list of positive and negative image and the vector

file must be created. The most important part is the weak constraint of object

must be calculated before file is converted to the xml file.

ii) Execution phase

Execution phase is the process to test the ability of the classifier. In the

execution phase, the coding for object detection is developed using Visual Studio

2005 and OpenCV library.

40

4.1 Training phase results

In training phase, there are eight methods taking part and the result of all

methods can be explained as below results. The problem of some steps during the

training phase is described.

4.1.1 Result of folder creation

 As all the work must be in one folder during the training phase, the OpenCV

utilities that is needed during the training process must also placed in the folder. Figure

below will show the “haarcascade” folder which contains all the OpenCV utilities for

training process.

Fig 4.1: Initial “haarcascade” folder’s contents.

 If these utilities are not been placed in this folder, the OpenCV process could not

being completed and some error of unrecognized command will appear. Placing all this

utilities in the folder will solve this problem.

41

4.1.2 Result of Image Collecting

 From the figure below, total positive image collected is 1022 and negative image

collected is 1028. Most of positive image that had been collected is a single image which

contains only the object of interest and does not contain any other image. This is for the

purpose to make the object marking method easier. Note that the positive image folder

which contains all positive images is named “rawdata” is placed in the folder

“haarcascade”. Negative images folder is named as “NS” and also has been located in

the folder “haarcascade”.

Fig 4.2: 1022 of Positive Image Collection.

 Fig 4.3 : 1028 of Negative Image Collection

42

Fig 4.4: Positive image folder “rawdata” and Negative Image Folder “NS” is

 placed in the folder “haarcascade”

4.1.3 Result on Image Conversion

 After the image converting process, all image file format now is in the format of
bitmap.

Fig 4.5: Positive Images in bmp format Fig 4.6: Negative Images in bmp

 format.

43

4.1.4 Result on creating info files

 Info file is a list of negative image’s name and its directory. Info file also must be

placed in the “haarcascade” folder to continue with next stages. The list file name of the

collections file of negatives image is described as follows:

 Fig 4.7: Info file of negative image’s collection.

The contents of the “haarcascade” folder are now increase and can be seen as following

figure:

44

Figure 4.8: Contents of “haarcascade” folder after placing the info file text file.

4.1.5 Result of marking object

 Purpose of object marking process is to crop object of interest from an image to

create a list of data file which contains the cropped object’s coordinates. This method is

done only to the positives images. Figure below will explain the output produce from

object marking session.

Fig 4.9: List of Positive Image’s info file contains its coordinate, file name and
directory.

45

This info file of positive image also needs to be placed in the “haarcascade” folder.

Fig 4.10: Info file of Positive Image named as “positives” is being placed in the
“haarcascade” folder.

4.1.6 Result of samples creation

After create samples process is done, a .vec file which means a vector file is

created automatically by OpenCV utilities –createsamples. This vector file is a sample

file which contains the collection of sample that had been converted to undefined

structure. The contents of vector file should not be opened as it shows the unknown

structures which can’t be understand easily. The vector file will be used during training

the classifier. As reference, the vector file can be opened and compare the result with

following figure.

46

The contents of vector file will be something that is similar to following figure:

Fig 4.11: The Contents of Vector File

Vector file is an output file generated from sample creating process. In the folder

“haarcascade” now there is a vector file created such in a figure below:

Fig 4.12: Vector file created in “haarcascade” folder after create samples process

47

4.1.7 Result of haartraining process

 Haartraining process is a method for calculating the weak constraints of the

object using it’s formula. All the calculation will be done automatically by haartraining

utilities. During the hartraining process, a folder of weak constraints calculation will be

created in the “haarcascade” folder which had been named as “haarcascadeimage”. In

the folder of “haarcascadeimage”, the folder of stages will be created automatically

during the haartraining process. The number of stages created is determined during the

coding implementation and its number must be larger than fourteen stages. Haartraining

process will be calculating the thresholds according to the total of stages choose but

sometimes, the process will be terminated. Even if increasing the number of stages, the

training may finish in an intermediate stage when it exceeded desired minimum hit rate

or false alarm because more cascading will decrease these rate for sure (0.99 until

current * 0.99 next = 0.9801 until next). Or, the training may finish because all samples

were rejected. In the case, increasing number of training samples is a must.

The result after threshold calculation is described by following figure:

Fig 4.13: The Stages of Weak Constraints Calculation

48

a) Stage 0 b) Stage 1 c) Stage 2

d) Stage 3 e) Stage 4 f) Stage 5

 g) Stage 6 h) Stage 7

Fig 4.14: The files contains of Weak Constraints Calculation according to stages.

49

4.1.8 Results of xml file creation.

 Xml file is generated when the process is completely finished. Xml file is a final

result of training process. Implementations of the xml file to the coding start the coding

process. Xml file contains a list of threshold created during the haartraining process. The

example of xml file is shown in figure below.

Fig 4.15: Xml file contains of calculation of weak constraints created during
Haartraining process.

50

4.2 Execution phase results

 Execution phase cause the xml file to be implemented in the coding

development. The detection process is done in execution phase. The simple user’s

interface had been created for detection process. When the button “Detect ball” is

clicked, the pop up window of result after detection process is generated automatically.

The figure below shows the simple user’s interface of object detection system.

Figure 4.16: “Result” window will generate automatically when the button “Detect

 Ball” is clicked.

51

Another example of tested result is shown in figure below:

No. Image Before Detection Image After Detection

1.

2.

3.

 Fig 4.18: Detection Results of accurate detection

In object detection system, the problem occurs is the matter of accuracy. In some

images, the circle line can also been drawn at the empty space in the images. Figure

below will show the example of this matter.

Before Detection After Detection

Fig 4.18: Detection Results of not accurate detection

52

The matter of accuracy can be solved by increasing the numbers of sample

collected and must make sure that each negative image never has any image of object of

interest. The suggested number of samples is 7000 of both positive and negative

images.

4.3 Costing

 The overall cost during the project development is about RM 5000. This is the

price value of the software used which is Visual Studio 2005. The price is valuable as

the desired result can be achieved. Apart from that, there are no other cost contribute in

the development of this system.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

The final chapter summarizes the whole system’s overview. All the

method used in this system satisfied the system development. Haar-Classifier is a

very effective algorithm that can contribute to high detection rate.

5.1 Conclusion

In the process of developing this system, few process and features are

needed as an attribution to complete the system. For object detection process, the

image should be scaled and stored to the computer before the detection process

can be done. The Haar-like features is used as a algorithm or classifier to find

weak classifier to differentiate the desired object from others objects.

Compared with raw pixel values, Haar-like features can reduce/increase

the in-class/out-of-class variability, and thus making classification easier.

OpenCV has a Haar features based face detection module. Use local features

54

such as edges and line patterns. It scans a given image at different scales as in

template matching. Scale, translation and light invariant.

5.2 Future Recommendation

As to improve other system with higher detection rate and more

interactive system, there are some recommendations listed which are:

i) The accuracy rate of Haar-Classifier will perform better if the sample

collected is increased. The suggested numbers of sample collected is

7000 for both positive and negative images. Therefore this system needs

the algorithm and classifier that can detect object faster with just a small

numbers of image collections.

ii) This system application is not enough exposed with the user friendly

concept because user need to change the image file before detection

process could be done. Real-time system is a solution attribute to the user

friendly concept.

5.2.1 Commercialization

Application of the system can be widely used as the way to improve the

used of technologies in the country. Systems approach can be applied to the

robotic system for robot to verify object and help in kids learning process by

applying this system to kids play tools

55

REFERENCES

I) Paul Viola, Michael J.Jones, Robust Real- time Object Detection, Cambridge

Research Laboratory Technology Reports Series, CRL 2001/01, Feb, 2001

II) Rainer Lienhart, Alexander Kuranov, Vadim Pisarevsky, Empirical Analysis of

Detection Cascades of Boosted Classifiers for Rapid Object Detection, Intel Labs

MRL Technology Report, May 2002

III) Paul Viola, Michael J.Jones, Robust Real- time Object Detection, ICCV 2001

IV) Paul Viola and Michael Jones, Fast and Robust Classification using Asymmetric

AdaBoost and a Detector Cascade, Neural Information Processing Systems 14,

December 2001

V) Rainer Lienhart, Luhong Liang, and Alexander Kuranov, A Detector Tree of

Boosted Classifiers for Real-time Object detection and Tracking, ICME 2003

VI) Azriel Rosenfeld, Picture Processing by Computer, New York: Academic Press,

1969

VII) Axt, P. (1959) On a Subrecursive Hierarchy and Primitive Recursive Degrees,

Transactions of the American Mathematical Society 92, pp. 85–105

VIII) Canny, J., A Computational Approach To Edge Detection, IEEE Trans. Pattern

Analysis and Machine Intelligence, 8:679-714

56

57

APPENDIX A - DETECTION PROCESS SOURCE CODE

// OpenCV Sample Application: objectdetect.c

// Include header files
#include "cv.h"
#include "highgui.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>

static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
void detect_and_draw(IplImage* image);
const char* cascade_name =
 "haarcascade.xml";
/* "haarcascade.xml";*/
int main(int argc, char** argv)
{
 IplImage *frame, *frame_copy = 0;
 const char* input_name;
 if(argc > 1 && strncmp(argv[1], "--cascade=", optlen) == 0)
 {
 cascade_name = argv[1] + optlen;
 input_name = argc > 2 ? argv[2] : 0;
 }
 else
 {
 fprintf(stderr,
 "Usage: objectdetect --cascade=\"<cascade_path>\"
 return -1;
 cascade = (CvHaarClassifierCascade*)cvLoad(cascade_name, 0, 0, 0
);
 if(!cascade)
 {
 fprintf(stderr, "ERROR: Could not load classifier cascade\n"
);
 return -1;
 }

 storage = cvCreateMemStorage(0);
 if(!input_name || (isdigit(input_name[0]) && input_name[1] ==
 capture = cvCaptureFromAVI(input_name);

 cvNamedWindow("result", 1);
 if(capture)
 {
 for(;;)
 {
 if(!cvGrabFrame(capture))

58

 break;
 frame = cvRetrieveFrame(
 if(!frame)
 break;
 if(!frame_copy)

frame_copy = cvCreateImage(cvSize(frame->width,frame-
>height),

 IPL_DEPTH_8U, frame->nChannels);
 frame to frame_copy.
 if(frame->origin == IPL_ORIGIN_TL)
 cvCopy(frame, frame_copy, 0);
 else
 cvFlip(frame, frame_copy, 0);

 detect_and_draw(frame_copy);
 if(cvWaitKey(10) >= 0)
 break;
 }
 cvReleaseImage(&frame_copy);
 }
 else
 {
 const char* filename = input_name ? input_name : (char
 IplImage* image = cvLoadImage(filename, 1);
 if(image)
 {
 detect_and_draw(image);

 cvWaitKey(0);

 cvReleaseImage(&image);
 }
 else
 {

 FILE* f = fopen(filename, "rt");
 if(f)
 {
 char buf[1000+1];

 while(fgets(buf, 1000, f))
 {

 int len = (int)strlen(buf);
 while(len > 0 && isspace(buf[len-1]))
 len--;
 buf[len] = '\0';

 image = cvLoadImage(buf, 1);

 if(image)
 {

 detect_and_draw(image);

59

 cvWaitKey(0);
 cvReleaseImage(&image);
 }
 }
 fclose(f);
 }
 }

 }

 cvDestroyWindow("result");

 return 0;
}

void detect_and_draw(IplImage* img)
{
 int scale = 1;

 IplImage* temp = cvCreateImage(cvSize(img->width/scale,img-
>height/scale), 8, 3);
 CvPoint pt1, pt2;
 int i;
 cvClearMemStorage(storage);

 if(cascade)
 {

CvSeq* balls = cvHaarDetectObjects(img, cascade, storage,
1.1, 2, CV_HAAR_DO_CANNY_PRUNING, cvSize(40, 40));

 for(i = 0; i < (balls ? balls->total : 0); i++)
 {
 CvRect* r = (CvRect*)cvGetSeqElem(balls, i);

 pt1.x = r->x*scale;
 pt2.x = (r->x+r->width)*scale;
 pt1.y = r->y*scale;
 pt2.y = (r->y+r->height)*scale;

 // Draw the rectangle in the input image
 cvCircle(img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0);
 }
 }

 // Show the image in the window named "result"
 cvShowImage("result", img);

 // Release the temp image created.
 cvReleaseImage(&temp);
}

