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Abstract
The patients who are impaired with neurodegenerative disorders cannot command their muscles through the neural 
pathways. These patients are given an alternative from their neural path through Brain-Computer Interface (BCI) systems, 
which are the explicit use of brain impulses without any need for a computer’s vocal muscle. Nowadays, the steady-state 
visual evoked potential (SSVEP) modality offers a robust communication pathway to introduce a non-invasive BCI. There 
are some crucial constituents, including window length of SSVEP response, the number of electrodes in the acquisi-
tion device and system accuracy, which are the critical performance components in any BCI system based on SSVEP 
signal. In this study, a real-time hybrid BCI system consists of SSVEP and EMG has been proposed for the environmental 
control system. The feature in terms of the common spatial pattern (CSP) has been extracted from four classes of SSVEP 
response, and extracted feature has been classified using K-nearest neighbors (k-NN) based classification algorithm. The 
obtained classification accuracy of eight participants was 97.41%. Finally, a control mechanism that aims to apply for 
the environmental control system has also been developed. The proposed system can identify 18 commands (i.e., 16 
control commands using SSVEP and two commands using EMG). This result represents very encouraging performance 
to handle real-time SSVEP based BCI system consists of a small number of electrodes. The proposed framework can offer 
a convenient user interface and a reliable control method for realistic BCI technology.
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1  Introduction

The direct transfer of information between the human 
brain and the environment are known as brain-computer 
interfaces (BCIs) [1]. In other words, BCIs evaluate changes 
in the brain’s electrical activity in response to external 
stimuli or user intents and transform them directly into 
output commands for controlling a device or applica-
tion. [2] [3]. Motor imagery, steady-state visual evoked 

potentials (SSVEPs), P300 and event-related potentials 
(ERP) are the EEG control signals utilized in the BCI system 
[4–6]. It is clear that MI techniques often yield impressive 
results when individuals have been properly trained. For 
a targeted user to handle an MI-based BCI, the targeted 
user requires several training trails, making the calibra-
tion time unacceptable to a realistic model [7]. P300 pro-
duces larger average ITRs and does not require training, 
but it significantly affects the severity and variability of 
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disease performance.. Nonetheless, several investigations 
have also shown that even individuals with LIS are able to 
tolerate a BCI based on P300 for an extended period of 
time. However, in relation to ITR, in nearly all of the earlier 
results concerning P300-BCI, a healthy individual gener-
ates higher bit rates than disabled subjects [8]. The stimu-
lation method is so complicated that patients can not carry 
out the experimental process. In addition, a large variety 
of instructions in a BCI system based on P300 enhances 
the number of trails, which in turn lessens the overall out-
comes [7].

The SSVEP could be a significant alternative in the 
development of effective BCI [9]. It is the normal response 
from the brain with various frequencies generated due 
to visual stimulation [10]. In short, when a person looks 
at the light with a specific frequency, their visual cortex 
reacts at the same frequency with EEG activity. BCIs use 
the concept as a gaze-tracking method: several symbols 
appear on a screen for the user, with a different frequency 
blinking each symbol. The SSVEP frequency can be calcu-
lated by electrodes near the visual cortex to assess which 
symbol the user is looking at. This may be achieved either 
in a single stage (the ultimate command is chosen directly 
from all possible ones), or in multiple stages (a subset of 
commands is first selected from all possible ones, and the 
final specific command is then selected from the subset) 
depending on the number and complexity of the pos-
sible commands. SSVEPs are widely employed to send 
commands to a device in biomechatronics. The user is 
shown with multiple commands on the screen (e.g., move 
the robot forward, stop) and chooses one by looking at 
it. Additionally, the user can choose for not delivering a 
command by not focusing on the screen. The technology 
is noninvasive, and quite easy to utilize with little or no 
training, and the number of possible commands can be 
extremely large. The main drawbacks are that the sym-
bols must be kept enough apart on the display so that 
the user does not perceive two flashing lights at the same 
time and that the various symbols must be sufficiently dis-
similar in frequency to be distinguished in the EEG. Due to 
the improved SNR faster ITR, the purpose of SSVEP-based 
BCIs is increasing considerably [11]. The key drawback of 
the SSVEP approach is that the interface must be supple-
mented with a screen that cannot be configured in all cir-
cumstances (for instance, portable devices). It is also likely 
to be falsely positive because users still see the screen on 
the side of their view, even when they don’t want the 
device to be controlled [12].

In SSVEP-based BCI systems via PC instruments, the 
frequency-coding technique has been commonly uti-
lized. Cheng et al. [13] introduced a 12-command (0–9, 
BACKSPACE and ENTER) frequency-coding SSVEP-ori-
ented BCI telephone framework and a monitor is utilized 

as a stimulator. Wang et al. [14] also developed to boost 
information transfer rate (ITRs) for an SSVEP-based fre-
quency coding BCI method based on optimization of 
channel location. In addition, the SSVEP-based BCI key-
pad method was employed by Jia et al. [15]. This method 
consists of a visual stimulator with a light-emitting diode 
(LED), an EEG signal collection unit and a PC. A frequency 
coded SSVEP system to control the electric hand proth-
esis with two axes having four LED stimulators mounted 
to a prosthesis is another application reported by Müller-
Putz and Pfurtscheller [16]. Cecotti [17] introduced an 
SSVEP-based BCI speller with a self-paced and without 
calibration in their more recent work. On the LED screen 
of this speller, there are five flashing command boxes, 
three of which are used to choose characters, one of 
which deletes them, and another which returns to the 
previous action. In recent, SSVEP BCI was implemented 
to control hand orthosis in the work of Pfurtscheller et al. 
[18] and Ortner et al. [12]. They also applied two LEDs 
flashing with two separate frequencies (8 and 13 Hz) as 
the flickering source to make the system more realistic. 
However, they did not use a monitor. Note that LED flick-
ers are restricted in their number with a frequency cod-
ing. In addition, the EEG signal was calculated using an 
instrument. This study develops a complete design of 
a BCI control nursing system for hospital beds in order 
to make a practical BCI system. This proposed system 
involves a range of techniques, including (1) frequency 
with phase coding LED stimulation panel for enhanc-
ing the flicker number (2) analogue bio-signal amplifier 
circuits for SSVEP signal measurement; (3) digital signal 
processing Field Programmable Gate Array (FPGA); and 
(4) power electronic H-Bridge motor drives to adjust 
the attitude of the hospital bed. Therefore, the system 
contains no PC and/or commercial instruments. Please 
note that eight LED’s are required to evoke SSVEP in 
the case of the hospital bed care system and massage 
cushion. In this case, two LED flickers having frequency 
coding with two different frequencies [18, 12] do not 
meet the requirement. Consequently, the work designs 
a total of eight LEDs in combination with the phase cod-
ing technique with two different frequencies [19, 20, 21]. 
Thus, two flickering options could be extended to eight. 
SSVEP is not as big a biosignal as electrocardiography 
or electromyography. In the atmosphere of noise and 
power disturbances, it is not easy to measure SSVEP if it 
doesn’t use the commercial EEG measuring instrument. 
The SSVEP signal processor is realized by hand-coding 
with the high-speed integrated circuit-description hard-
ware (VHDL) language and is not used in commercial 
equipment. Shyu  et al. [22] developed an FPGA-based 
BCI system in which SSVEP-amplifier / filter and ADC cir-
cuits can be acquired and quantified. In addition, this 
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research is developing an FPGA to execute the SSVEP 
signal processor that simplifies the entire BCI framework.

Xing J. et al. [23] proposed a convolutional neural net-
work (CNN) based comparing network that was employed 
to attain the connection between EEG data and the SSVEP 
stimulus frequencies. Erkan E. et al. [5] developed a BCI 
robot control application based on SSVEPs where they uti-
lized minimum energy combination (MEC) and canonical 
correlation analysis (CCA) techniques are applied to EEG 
segments containing several signals window lengths for 
identifying the SSVEPs.

Spuler et al. [24] proposed an averaging method for 
c-VEP based BCI where multiple trials are described in a 
row, and the signal is averaged over multiple epochs. A 
dynamic stopping approach was used to collect epochs 
until a certain stopping criterion is achieved. The author 
utilized a technique of correlation, too, since it is more 
appropriate to stopping dynamically. Lo et al. [25] devel-
oped a wireless BCI-control system with SSVEP utilizing 
a non-contact metal plate electrode and an FFT method. 
The system’s accuracy and the best ITR were 91.1% and 
38.28 bits/min, respectively, while classifying 12 targets. 
Nguyen T. H. et al. [26] developed SSVEP based speller sys-
tem where the SSVEP responses were captured through a 
bipolar single-channel EEG. For SSVEP frequency identifi-
cation, 1-D CNN was utilized by the authors. A CNN model 
as a robust SSVEP frequency classifier has been imple-
mented by another work showed in [27]. The study takes 
a two-dimensional map of SSVEP data as an input (chan-
nels x frequencies) to identify up to five SSVEP frequencies 
with an EEG headset having multi-channel. A novel SSVEP 
BCI speller for numerical input was employed in [28] in the 
field of real-time spelling tasks using a sliding control pro-
tocol. To boost frequency recognition of SSVEP, Demir et al. 
[29] developed bio-inspired filter banks (BIFBs). The BIFBs 

were built to account for the inherent biological SSVEP 
features, namely frequency selectivity, subject specificity, 
and harmonic SSVEP responses. They have been used to 
enhance the class separability in the feature extraction 
phase.

Among the studies published in the field of BCI-based 
environment control systems, the maximum accuracy of 
96.92% was achieved by Yang et al. [30]. Another study 
in [31] authors achieved an accuracy of 94.17% with a 
response time of 5.2 s when two commands were gener-
ated utilizing four channels. Most of the above studies can 
not be referred to as the optimum methods in terms of 
classification accuracy, the number of commands, ITR and 
user-friendliness. Hence, a more friendly system is essential 
with a high performance and various control commands. 
This study proposed a hybrid BCI-based environment con-
trol system that provides 18 control commands through 
SSVEP and EMG signals. SSVEP signals operate as selection 
signals, whereas single eye blinks serve as confirmation 
signals. This study utilizes the common spatial pattern 
(CSP) to extract the frequency domain feature from the 
raw signals. Then, the extracted feature has been classified 
using the k-nearest neighbour (k-NN). The experimental 
coutcomes indicate that the proposed system could be 
utilize in daily life for home automation control with a 
robust performance. The proposed approach provides a 
novel strategy for a BCI controlled system. Additionally, 
the proposed approach could provide the utilization of the 
home facility conveniently for the disable people.

This paper is organized as follows: the paper is initiated 
by the introduction. The second section discusses the 
details of experimental design and methods. The results 
have been achieved in this study are presented in the third 
section, followed by the discussion and conclusion in the 
final two sections (Fig. 1).

Fig. 1   General architecture of 
SSVEP based BCI environment 
control system
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2 � Experimental design and methods

Nowadays, the researchers have carried a wide range of 
BCI studies (off-line and online manner), and the principle 
architecture of these studies is almost identical. Besides 
the variation of EEG control signals, all BCI systems are 
fundamentally made up of signal acquisition, signal pre-
processing, feature extraction, classification and device 
commands. The present study was initiated by the data 
collection phase, where subject selection, equipment set-
up and protocol design have been carried out. The data 
collection process was approved by Universiti Malaysia 
Pahang Research Ethics Committee, Malaysia. In the sec-
ond phase, the artefact from the collected SSVEP response 
was removed and then the time window was selected. The 
feature in the form of CSP was extracted from the artefact 
free SSVEP data. The extracted feature was classified using 
the k-NN classifier. The classifier performance was assessed 
using a wide range of performance evaluation metrics. 
Finally, a control mechanism that aims to apply for the 
environmental control system has also been developed. 
The proposed system can identify 18 commands (i.e., 16 
control commands using SSVEP and two commands using 
EMG. Figure 2 illustrates the complete procedure of the 
proposed study.

2.1 � Experimental set‑up and data acquisition

In this experiment, the data acquisition device 
was a biosignal amplifier (Bioradio, Great Lakes 

NeuroTechnologies, USA). The complete set-up of Bio-
Radio has been illustrated in Fig. 3. The BioRadio system 
utilizes electrodes on the scalp and forehead to monitor 
the average behaviour of millions of brain cells or neurons. 
This device is capable of capturing ECG, EEG, EOG, EMG 
and respiration. The device consists of 10 electrodes, and 
among these electrodes, one electrode is used for ground 
electrode, and another electrode is utilized for reference. 
The remaining eight electrodes are employed to capture 
the physiological signal. In this study, the time series of the 
electrical brain activity is picked up utilizing eight gold cup 
EEG electrodes. The electrodes are placed at predefined 
locations PZ; PO3; PO4; O1; O2; OZ; O9 and FP2 illustrated 
in Fig. 2. Between electrodes and the scalp, the EEG con-
ductive paste is applied. Electrodes are positioned near 
the occipital region according to the international 10–20 
system. The sampling frequency is fixed at 250 Hz. To cap-
ture the data smoothly, software, namely BioCapture™ has 
been utilized. This software combines the innovative bioin-
strumentation hardware, and transducers are combined 
with a flexible software platform for data visualization, 
review, annotation, collection and analysis. During data 
collection, the BioRadio and BioCapture have been paired 
through Bluetooth illustrated in Fig. 3. Then the EEG data 
has been collected as a CSV file.

During the data acquisition experiment, a subject was 
asked to focus on the flickering on four different square 
boxes (100 × 100 pixel), which are stimulated by 6.66 Hz’ 
up’, 7.50 Hz’ right’, 8.57 Hz’down’ and 10 Hz’left’ on the 
ultra HD screen (1920 × 1080 resolution). The most influ-
ential SSVEP stimulation frequencies lie in between 6.5 

Fig. 2   Complete procedure of 
the proposed study

Fig. 3   Equipment set-up for data collection
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and 17.14 Hz [32], 33. The subject is informed by a voice 
command about the target which has to look (left, right, 
up, down). Subjects are seated in front of the graphical 
user interfaces (GUI) screen at a distance of about 50 cm. 
The GUIs are designed in the MATLAB 2019a by using Psy-
chtoolbox. Figure 4 shows the complete scenery of the 
data acquisition process where a subject was worn all elec-
trodes and focused on the GUI.

A total of 50 sessions have been conducted during the 
whole data collection process. Each session lasts 480 s, and 
in this period, five runs have been conducted. The dura-
tion for each run is 55 s when four different SSVEP stimuli 
have been visualized with a certain time gap illustrated in 
Fig. 5. Thus, from one session, 20 trials of SSVEP responses 
have been captured, and the duration of each trial is five 
seconds.

Four SSVEP responses have been evoked from 6.66, 
7.50, 8.57 and 10 Hz stimuli. The dataset consists of 1000 
trials where each type of SSVEP response has an equal 
number of trials tabulated in Table 1. In this study, eight 
healthy subjects with normal or corrected-to-normal 
vision have been performed. Table 1 listed details about 
all subjects in terms of age, sex, session and trials. Among 
all subjects, three of them had previous experience about 
how to stimulate SSVEP responses. The other five subjects 
were totally new to the SSVEP-based BCI. Before the exper-
iment, each participant had to read and sign an informed 
consent document. This study was approved by Universiti 
Malaysia Pahang Research Ethics Committee, Malaysia.

2.2 � Common spatial pattern

Among the widespread feature extraction methods 
of EEG, this study utilized the CSP approach, which is 
widely used for feature extraction. Due to the fact that 
the CSP approach gives the spatial filters, it increases the 
variation of one class while minimising the variance of 
the other [34], 35. The distinctions between two classes 

Fig. 4   Photograph of the complete data collection system

Fig. 5   Demonstration of the time window for the data acquisition system

Table 1   Details about subjects and data collection

Subject Age Sex Session Trial

Subject-1 (S1) 26 Male 5 100
Subject-2 (S2) 24 Male 7 140
Subject-3 (S3) 25 Female 6 120
Subject-4 (S4) 23 Female 5 100
Subject-5 (S5) 23 Male 7 140
Subject-6 (S6) 24 Female 6 120
Subject-7 (S7) 25 Male 7 140
Subject-8 (S8) 26 Male 7 140
Total sessions and trials 50 1000
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may be computed using conventional CSP, a multi-class 
paradigm addition to the original approach in [36].

The CSP algorithm and the two-class problem fea-
ture set derivative has been described in this section. 
For Class 1 and Class 2, K1 and K2 are the estimates of 
the covariance matrices, respectively. The CSP algorithm 
uses the two covariance matrices K1 and K2 simultane-
ously to diagonalize. This can be done mathematically 
by solving the problem of the eigenvalue decomposition 
(see Eq. 1).

where P ∈ SL×L is the CSP projection matrix, which yields 
the features whose variances are optimal for distinguish-
ing two classes of EEG measurements. The rows of W are 
stationary spatial filters, and the common spatial patterns 
can be achieved from the rows of P−1D that is a diagonal 
matrix consisting of the eigenvalues of K1 . For each ith trial 
of the multichannel EEG signal, Fi = SL×N are translated to 
a low-dimensional subspace with a projection matrix, P.L 
presents the number of EEG channels and the number of 
samples per channel is denoted by N. The linear transfor-
mation of the ith trial is as following Eq. (2),

where Zi ∈ SL×N represents the spatially filtered signals, 
which maximize the difference in the variance of two 
classes of EEG signals. A small subset of L spatially filtered 
signals is basically utilized for the feature vector informa-
tion [23], 25. The subset selection is based on m pairs of 
the first and last rows of Zi . Let Zf ∈ R2m×N be the first and 
last rows of Zi, the variance of Zf  forms the feature vector 
for the ith trial (see Eq. 3),

where Vi ∈ S2m In the present study, we use m = 2 for all 
experimental data sets.

The multi-class extension to the binary CSP technique 
initially presented [37] divides the multi-class problem 
into many multi-class problems.

The multi-class extension incorporates the divide-and-
conquer (DC) strategy, the one-versus-all (OVR) strategy, 
CSP inside the classifier, and pair-wise schemes. [38], 39. 
We apply the OVR technique to multi-class issues by divid-
ing the k-class problem into a collection of k binary classes 
and distinguishing each class from the remaining classes. 
The binary CSP algorithm is used to determine the charac-
teristics that distinguish one class from the others.

Then, the features are concatenated in Eq. (4) to make 
the feature vector for the ith trial:

(1)K1P = (K1 + K2)PD

(2)Zi = PFi

(3)Vi = log

�

var
�

Zf
�

∑2m

i=1
var

�

Zf
�

�

where Fi ∈ S1×(2m×Lc), Vk
i
∈ S2m represents the binary class 

features for the kth class versus the rest for the ith trial, Lc 
is presented as the number of classes in the multi-class 
problem, and the transpose matrix is represented by 
superscript N.

2.3 � K‑Nearest Neighbour

The k-NN technique is built on the concept that the fea-
tures corresponding to the various classes form distinct 
clusters in feature space. The characteristics that are in 
close proximity to one another are referred to as neigh-
bours and are therefore grouped together. [40]. KNN algo-
rithms are not widely used in categorising EEG data, most 
likely because they are considered extremely susceptible 
to the curse of dimensionality [41]. However, when used 
in EEG classification with low-dimensional feature vectors, 
k-NN may prove to be efficient [41]. However, the effective-
ness of the KNN classifier depends on some hypermeters 
of kNN, including the number of neighbors (k), distance 
functions and weight. To find the most favourable value 
of K for any particular task classification is still very chal-
lenging. However, some characteristics of excellent k-value 
are- (1) The value of K must be an odd value, (2) Initialize a 
random K value and start computing, (3) Choosing a small 
value of K. The distance between points in a feature space 
has been measured using different distance functions. 
There are certain other distance functions available for 
KNN classification, such as Minkowski distance, Euclidean 
distance, Manhattan distance. The weight may be uniform 
or distant.

Among these hypermeters, selecting the optimum 
parameter is a crucial task, and the performance is highly 
depending on the hyperparameter setting. To select 
the optimum hyperparameters, we have used the Grid-
SearchCV function, which is built-in scikit-learn. For the 
given values, GridSearchCV exhaustively evaluates all 
the possible combinations of parameter values and sug-
gests the best combination. Using this method, we have 
selected the optimum hyperparameters of k-NN as: the 
value of k is 9; the distance function is Euclidean; the 
weight is distance. The Euclidean distance function is cal-
culated using Eq. (5)

where, Distance (A, B) is the distance between points A and 
B in a feature space and m denotes the dimensionality of 
the feature space.

(4)Fi =
[

V1
i
V2
i
…… VLc

i

]N

(5)Distance(A, B) =

�

∑m

i=1

�

xi − yi
�2

m
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2.4 � Control mechanism of proposed system

The proposed hybrid system consists of SSVEP and EMG 
data. The SSVEP data is used to select the target, whereas 
the EMG data is used to confirm or ignore the selected 
target. Figure 6 shows the complete control mechanism 
of the proposed hybrid system. The SSVEP data in terms 
of every two seconds of the time window (i.e. 500 sam-
ples) is considered for the selection of each target. After 
feature extraction, the extracted feature is classified using 
k-NN. After classification, a pop-up window is appeared to 
confirm the selected target. Here, the pop-up window will 
ask the user whether the classifier identifies the correct 
target or not. To confirm the target selection, the EMG sig-
nal in terms of eye blinking has been utilized. To confirm, 
the user blinks once more or twice to return to the previ-
ous menu. When the system detects a single-eye blink, 
it indicates that the individual has verified their choices. 
If the system detected a double-eye-blink signal, it con-
sidered that the recognised instruction was inconsistent 
with the subject’s purpose. After that, the system would 
revert to its previous interface and continue gaze control 
over the stimulus targets. After selecting the appropriate 

command, participants might then exercise more control 
over the home automation system.

The proposed BCI-based environment control system’s 
interface was designed using a 4 × 4 categorical system. To 
begin, the user selects one of four primary categories. The 
categories were designed based on the most frequent eve-
ryday tasks to simplify and improve the user experience. 
Figure 7 illustrates the major categories, including robotic 
arm control, wheelchair control, family contact, and home 
appliance control. Each category is further split into four 
subcategories, each of which contains the common tasks 
associated with it. For example, to control the robotic arm, 
four control commands, including forwarding, backward, 
right and left, are generated using four SSVEP responses. 
Users may choose an option by staring at a flicker and con-
firm their choice with a single eye blink. To revert to the 
previous menu after making a selection, a double blink is 
used. Users are provided with pop-up windows for each 
chosen result. Throughout the trial, all four stimulus but-
tons were concurrently presented. Users were instructed 
to choose menu items by directing their attention to the 
appropriate button.

2.5 � Performance evaluation

The classification accuracy, precision, sensitivity, specific-
ity, recall, F1-score and MCC are utilized to evaluate the 
performance of this study. The equations of these metrics 
are mentioned in Eq. (6)–(12).

Fig. 6   Complete architecture of control mechanism of proposed 
hybrid system Fig. 7   Interface for the target selection menu
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where TP = true positive, FN = false negative, TN = true 
negative and FP = false positive.

In order to estimate the performance of BCI systems, bit 
rate or information transfer rate (ITR) are most frequently 
used. Equation (13) presented an equation that is utilized 
to estimate ITR (in bits/min) [2],

(6)CA =
TP + TN

TP + FN + TN + FP
× 100%

(7)Sensitivity =
TP

TP + FN
× 100%

(8)Specificity =
TN

TN + FP
× 100%

(9)Precision =
TP

TP + FP
× 100%

(10)Recall =
TP

TP + FN

(11)F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

(12)MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where N denotes the number of classes, P presents the 
target identification accuracy, and t (seconds/selection) is 
the average time for a selection.

3 � Experimental results

The experimental results of this study have been pre-
sented in terms of the performance of the signal process-
ing methods and device command hardware prototype. 
To obtain the best signal window length, the classifica-
tion accuracy and ITR of the proposed signal processing 
approach has been assessed in different signal window 
lengths. The variation of classification accuracy and system 
ITR values with respect to the signal window length for 
each subject are tabulated in Table 2. Moreover, this vari-
ation is also graphically illustrated in Fig. 8. Although the 
signal window lengths for each trial was five seconds, only 
three seconds of signal window length has been consid-
ered during data analysis to achieve higher ITR. The ITR of 
the proposed approach has been supposed to be superior 
at 1.5 s of signal window lengths for all subjects. At 1.5 s 
signal window lengths, the highest ITR (83.12 bit/min) has 
been obtained by subject-7, whereas the lowest ITR (76.09 
bit/min) has been achieved by subject-6. For classification 

(13)

ITR = (log2 N + P log2 P + (1 − P) log2

{

(1 − P)

(N − 1)

}

×

(

60

t

)

Table 2   Accuracy and ITR of all subjects in different time window lengths

Subject Metrics Time window length (second)

0.5 1.0 1.5 2.0 2.5 3.0

S1 Accuracy (%) 70 86.67 96.67 100 100 100
ITR (bit/min) 67.52 75.46 79.37 76.62 69.26 52.65

S2 Accuracy (%) 73.8 85.71 97.61 100 100 100
ITR (bit/min) 75.22 78.35 81.75 76.25 68.43 53.34

S3 Accuracy (%) 67.64 85.28 88.23 94.44 94.44 97.05
ITR (bit/min) 70.23 72.75 75.56 71.33 65.34 51.12

S4 Accuracy (%) 64.51 80 90 96.67 96.67 100
ITR (bit/min) 64.63 76.50 72.64 70.28 67.34 56.36

S5 Accuracy (%) 69.04 83.33 90.47 95.23 95.23 97.61
ITR (bit/min) 74.36 77.86 81.69 78.89 67.45 52.49

S6 Accuracy (%) 70 86.67 96.66 100 100 100
ITR (bit/min) 71.36 73.27 76.09 71.36 61.75 50.49

S7 Accuracy (%) 70 84.37 93.75 96.87 100 100
ITR (bit/min) 73.68 78.89 83.12 79.36 64.45 53.78

S8 Accuracy (%) 69.04 83.33 90.47 92.85 92.85 95.23
ITR (bit/min) 75.32 79.87 81.74 77.36 62.75 52.45

Average Accuracy (%) 69.25 ± 2.60 84.42 ± 2.21 92.98 ± 3.64 97 ± 2.77 97.39 ± 2.97 98.73 ± 1.86
Average ITR (bit/min) 71.54 ± 3.89 76.61 ± 2.61 78.99 ± 3.78 75.18 ± 3.63 65.84 ± 2.71 52.83 ± 1.78
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accuracy, the opposite scenery has been observed. In the 
case of subject-1, subject-2 and subject-3, the highest 
accuracy of 100% has been recorded at 2 s of the time 
window. At 3 s signal window lengths, the best classifi-
cation accuracy has appeared for the remaining subjects. 
The average ITR of all subjects at the time window of 2, 2.5 
and 3 s are 75.18 ± 3.63 (bit/min), 65.84 ± 2.71 (bit/min) and 
52.83 ± 1.78 (bit/min). The average classification accuracy 
of all subjects at the time window of 2 s, 2.5 s and 3 s are 
97 ± 2.77, 97.39 ± 2.97 and 98.73 ± 1.86. The differences in 
classification accuracy in the time window of 2, 2.5 and 3 s 
are very low. Hence, based on the classification accuracy 
and ITR listed in Table 2, we have selected a two-second 
time window for further analysis.

The achieved two traditional BCI performances, accu-
racy and ITR, has been averaged for all subjects across 
various signal window lengths and are shown in Fig. 8. The 
mean accuracy ranges significantly from 69.25% to 98.73% 
over the entire signal window lengths. In this case, the 
classification accuracies change proportionally with the 
signal window lengths. The average accuracies of all sub-
jects are 69.25 ± 2.60, 84.42 ± 2.21, 92.98 ± 3.64, 97 ± 2.77, 
97.39 ± 2.97 and 98.73 ± 1.86 at the signal window lengths 
of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 s, respectively. Average ITR 
also varies considerably with the entire signal window 
lengths and range from 52.83 (bit/min) to 78.99 (bit/min). 
The ITRs change proportionally from 0.5 to 1.5 s of the 
signal window lengths. However, the ITRs change inversely 
proportional to the signal window lengths after 1.5 s. 
The average ITRs of all subject are 71.54 ± 3.89 (bit/min), 
76.61 ± 2.61 (bit/min), 78.99 ± 3.78 (bit/min), 75.18 ± 3.63 
(bit/min), 65.84 ± 2.71 (bit/min) and 52.83 ± 1.78 (bit/min) 
at the signal window lengths of 0.5, 1.0, 1.5, 2.0, 2.5 and 
3.0 s respectively.

We have also analyzed the classifier performance using 
the combination of all subject’s trials. In this experiment, 
we have used four different flickering frequencies (6.66, 
7.50, 8.57 and 10.00 Hz). During labelling, 6.66, 7.50, 8.57 

and 10.00 has been denoted by 1, 2, 3 and 4, respectively. 
The datasets consist of 1000 observations where class-1, 
class-2, class-3, and class-4 have 250 observations. The 
performance of the classifier has been evaluated using 
the holdout validation technique. In the holdout valida-
tion method, the training and testing ratio was 70:30. 
After dividing the entire data set into training and test-
ing, the number of test trials are 69, 81, 107 and 90 for 
class-1, class-2, class-3, and class-4. These trials have been 
utilized to test the trained model. Figure 9 demonstrates 
the confusion matrix, in which the 347 observations (out 
of 338 testing observations) have been recognized accu-
rately. In this experiment, we finally achieved is 97.41% 
testing accuracy. There are some factors that prevented 
boosting up the classification accuracy to 100%. Some 
subjects failed to stimulate the flickering frequencies 
7.50 and 8.57 Hz, that is, class- 2 and class-3, properly. In 
class-2 and class-3, the four trials have been misclassified. 
However, the performance for class-1 and class-4 are very 
high. All trials for class-1 are accurately identified, whereas 
only one trial is misclassified in the case of class-4. Besides 
classification accuracy, we have also assessed the classifier 
performance using different performance metrics. These 

Fig. 8   Accuracy and ITR of all subjects in different time windows

Fig. 9   Confusion matrix of the testing trial
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performance evaluation metrics including sensitivity, 
specificity, kappa, precision, F1-score, MCC, AUC. Figure 10 
shows the performance of the k-NN classifier in terms of 
different performance evaluation metrics. The value of 
sensitivity, specificity, precision, F1-score, MCC, kappa and 
AUC are 0.9755, 0.9915, 0.9731, 0.9739, 0.9656, 0.9308 and 
0.9899 respectively.

The proposed system has been tested in a real-time 
manner by all subjects. Every subject has been performed 
five trials, and they were asked to stimulate four SSVEP 
responses to select 16 targets under the main menu and 
submenu. Moreover, all the subjects were also asked to 
perform single blink and double blink to confirm and 
ignore the target selection. Table 3 tabulates the perfor-
mance of the proposed real-time hybrid environment 
control system. All subjects except subject-3 and subject-8 
performed accurately to operate the hybrid environment 
control system. The subject-3 and subject-8 have made 
three misidentifications among 30 targets. Subject-1, sub-
ject-2, subject-3 subject-8 made a single mistake among 
30 targets, indicating excellent performance in real-time. 
Subject-4 and Subject-5 have made two mistakes among 
thirty times which also indicates comparatively good 
performance.

In summary, eight subjects performed 40 trials where 
each trial consists of 30 control commands. Hence, eight 
subjects perform a total of 240 control commands. Among 
240 controlling commands systems in a real-time manner, 
the hybrid environment control system has made only 14 
wrong recognition and 226 right recognition. This perfor-
mance is very encouraging and could be implemented in 
a real BCI environment control system.

4 � Discussion

When a patient with neurological disorders needs to turn 
on or off their home appliances such as lights, air-condi-
tioners, television or other important services, they require 
support from other people. If no one is around, their needs 
cannot be easily provided. The above devices must be con-
trolled either manually or with a remote. Thus, impaired 
patients are unable to function independently, which 
raises the strain on nursing assistants. Therefore, patients 
with disabilities cannot work independently, which raises 
the workload on nursing assistants. An innovative envi-
ronment control system is designed to allow disabled 
patients to manage BCI domestic devices to improve the 
above problem.

We have developed a control mechanism for a hybrid 
BCI-based environment control system in this study. The 
proposed system may generate 18 control commands to 
operate the assistive applications. Among 18 commands, 
16 commands are generated through SSVEP response 
and the remaining two commands are generated using 
eye blinking. The proposed CSP-KNN approach has classi-
fied the SSVEP responses with an accuracy of 97.41%. The 
proposed architecture may provide an innovative way for 
physically impaired people to operate different assistive 
devices utilizing SSVEP and eye blinks. It enables the user 
to accomplish regular everyday activities utilising just their 
brain impulses, obviating the need for physical movement.

In reality, BCI’s versatility, accessibility and usability 
must be significantly enhanced in order to construct BCI Fig. 10   Performance of k-NN classifier in terms of different metrics

Table 3   Performance of 
proposed real-time SSVEP-
based environment control 
system

Subject No. of Trial Performance: Right recognition/Wrong Recognition

Class 1 Class 2 Class 3 Class 4 Eye Blink 1 Eye Blink 2 Total Commands

S1 5 5/0 4/1 5/0 5/0 5/5 5/5 29/30
S2 5 5/0 5/0 4/1 5/0 5/5 5/5 29/30
S3 5 5/0 4/1 3/2 5/0 5/5 5/5 27/30
S4 5 5/0 4/1 4/1 5/0 5/5 5/5 28/30
S5 5 5/0 4/1 4/1 5/0 5/5 5/5 28/30
S6 5 5/0 5/0 4/1 5/0 5/5 5/5 29/30
S7 5 5/0 5/1 4/1 5/0 5/5 5/5 29/30
S8 5 5/0 4/0 4/1 4/1 5/5 5/5 27/30
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practical devices for a broad range of users with real-
world communication limitations. In order to achieve 
these aims for BCI, high ITRs and classification accuracy 
are crucial [42]. As a result, we have evaluated the pro-
posed system’s output and then compared it to the out-
put of state-of-the-art environmental control systems in 
terms of ITR and accuracy. An asynchronous BCI P300 
virtual environmental control technique for handling 
household devices have been documented by Aloise 
et al. [43]. In the corresponding experiment, the aver-
age accuracy of four patients having chronic neurologi-
cal conditions is 73.7%, with 0.225 false positives (FPs) 
per minute. With the eleven healthy subjects, we have 
achieved obtained an average accuracy of 87.5% and 
a rate of 1.73 FPs per minute in a household automa-
tion control experiment that included an asynchronous 
P300-based BCI. In these two systems, the P300 poten-
tial was evoked by a classical row and column pattern. 
A multifunctional environmental control system, using 
an asynchronous P300 BCI for smart home manage-
ment (for example, light control, fan monitoring, radio 
and multimedia player), cognitive rehabilitation and 
Web access (for example, web surfing and emailing) 
was documented by Miralles et al. [44]. In the six-week 
evaluation, 61 and 72% of the experimental activities 
were carried out by two subjects with serious brain inju-
ries, respectively. The explanation why the tasks were not 
completed was because the decision-making threshold 
has not been achieved. A study [45] suggested a BCI-
based environmental control system for event-related 
potential (ERP) incorporating electrical home equip-
ment, a nursing bed, and an intelligent wheelchair to 
help paralyzed patients with serious spinal cord injuries 
(SCI’s) on a daily basis. Average accuracy was reached 
by 89.6% and an average FPs of 0.97 / minute. In Guger 
et al. [46], 47, the BCI method, which provides a stimulus 
to the subject and records his response as an input, is 
noninvasive as well as subject-dependent P300 stimulus 
oriented. A GUI with different icons that reflect several 
tasks such as lighting on / off, windows and TV channels 
opening etc. belonged to the user. This method achieved 
30% accuracy in the worst-case scenario with 12 sub-
jects. At the same time, one of the subjects reached 
100% accuracy in the best-case scenario. Kim et al. [48], 
suggested another P300 BCI method for switching TV 
channels with eight subjects getting a visual stimulus 
by flashing a green cursor in the upper-left corner of 
each channel icon. If the channel has been reached on 
the desired channel, it was considered to be an input 
for channel selection with a peak in neural signals of 
the subject. The system achieved an average accuracy 
of 92.3%. In reference to [22], the average accuracy was 

recorded 92.5% based on an SSVEP BCI based nursing 
bed system with 15 healthy subjects.

In the presented study, the highest mean ITR and clas-
sification accuracy for all subjects is 78.99 (bit/min) and 
98.73%, respectively. Furthermore, 83.12 bit/min was the 
highest ITR recorded in subject-7. Similarly, the highest 
classification accuracy of 100% was recorded for subject 
subject-1, subject-2, subject-4 and subject-6. However, the 
overall accuracy and ITR for the entire dataset are 97.41% 
and 77.52 bit/min, respectively. The validation perfor-
mance of the proposed system in a real-time manner was 
also very encouraging. Among 240 control commands in 
a real-time manner, accurate operation of the proposed 
system has been recorded in 226 commands. Hence, the 
accuracy of the proposed system in a real-time manner is 
94.16%. Unlike conventional BCI systems, the proposed 
system of environmental control has many advantages, 
such as (1) a wearable EEG acquisition device with a lim-
ited number of electrodes, lightweight and easy setup (2) 
the flexible operation of the control mechanism of the 
proposed hybrid BCI-based environmental control system.

Although the performance of some subjects is very 
impressive, the overall accuracy of the proposed system 
has not been met 100%. The causes may be induced by 
lower SNR because of the individual variation caused by 
the amplitude of SSVEP, stimulus frequency, and electro-
deposition. It was reported by Jia et al. [19] that the posi-
tion of the reference electrode affects the achieved SSVEP. 
The experimental findings indicate that certain subjects 
can constantly and clearly evoke the SSVEP, whereas oth-
ers cannot. Wang et al. [14] and Pastor et al. [49] suggested 
that with respect to the same flicker frequency, everyone 
has a different SSVEP response. Thus, it is almost impos-
sible to select a flicker frequency for evoking the same 
SSVEP response. Therefore, it is necessary to construct 
an algorithm with all the same SSVEP responses to each 
flicker. It is essential to remember that this system realiza-
tion is completely online; that is, before the online experi-
ment, no calibration is done. Moreover, the problems of 
poor performance for subjects 3, 5 and 8 can be solved by 
addressing such a calibration session and recommending 
changing the stimulating frequencies of these subjects. 
Changing the stimulating frequencies may be suggested 
for these subjects. A further solution could be the use of 
the BCI wizard [50] that can automatically define and opti-
mize essential parameters in various BCI methods, not just 
for a single BCI paradigm.

The traditional BCI performance measurement in bit/
min is directly proportional to time and the number of tar-
gets. Two ways to gain a higher ITR are also available: (1) 
reducing the time needed for single command classifica-
tions and (2) increasing the numbers of identifiable targets 
(generally easier). There is no restriction to the standard 
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formula in [2]; it is possible to measure the ITR if only one 
command passes through the communication channel. 
With the experimental protocol containing several tar-
gets and the aim of classifying only one of them, a high 
ITR could be achieved after this initial selection, even if it 
takes a comparatively long time to generate this control. 
The complexity of calculation ITRs is not new. In a recent 
study, the mean times for command classification (known 
as CTI—command transfer interval) has been employed 
by Shyu et al. [51]. In real-life applications, BCI utilizers 
with different impairments often requires to apply 1 bit 
of information at the right time to launch an autonomous 
sequence.

The proposed framework is simulated in the virtual 
environment. The real environment control system’s 
online operation may show slightly lower accuracy due 
to the lousy human mental state and the signal transmis-
sion issue between the controlling commands device and 
the EEG device. While the physically impaired patients are 
intended users of BCI technology, experimental data of 
the proposed research have been obtained from healthy 
subjects. However, authors in [52] conducted an experi-
ment to control a BCI-based smart home where the users 
operated four toggle actions. They believed that physically 
impaired end-users have good motivation and incen-
tives to utilize BCI technology, and they may handle this 
technology more accurately than the healthy end-users. 
According to their findings, disabled and healthy people 
achieved 81 and 77% accuracy, respectively.

5 � Conclusion

The study proposes a hybrid real-time BCI based envi-
ronment control system to assist the physically impaired 
patients using SSVEP responses and EMG. By avoiding 
manual operation, patients could easily use the proposed 
environmental control system by focusing on the flicker-
ing visual stimulation generator control icons and gen-
erating eye blinking. The proposed study consists of two 
modules: analyzing SSVEP data and offline assessment of 
the proposed controlling mechanism. Some factors that 
affect efficiencies, such as training procedures, human 
factors, the time behaviour of the complete system, and 
error recognition and error correction at the early stages of 
the BCI signal processing, should be considered in future 
research. In addition, some subjects require a longer time 
to build up SSVEP energy. Experimental findings indicate 
that certain subjects can consistently and clearly evoke 
SSVEP while certain subjects cannot do it. The future 
study will explore this phenomenon too. The findings of 
this study have demonstrated the feasibility of the pro-
posed BCI to provide environment controlling assistance 

in real-life applications with high accuracy and practicality 
for disabled people. Further research will be conducted to 
explore the limits of the number of SSVEP frequencies that 
the proposed BCI can detect to expand its applications in 
a reasonably high-performance manner.
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