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Abstract: In wind engineering, the morphology of the turbine blade system governs the 

effectiveness in harvesting wind energy. The flow field response is the result of the turbine blade 
shape interaction with flow. Hence, mathematically interpreting the shape of the blade will help to 
understand the principals and properties of the utilized geometry for the blade construction. In this 
study, semicircle geometry of Savonius wind turbine blade is mathematically analyzed in order to 
understand its fundamental building block. We provide discussion on √2 conjecture found in the 
construction of circles, Fibonacci and Pythagoras spiral in relations to √2,√2 + 1 and  √2 + 2.  
It is found that √2 conjecture can be utilized in determining the geometrical properties of circle and 
spiral. We also performed thorough assessment of the proposed conjecture to prove its robustness 
and reliability. The proposed conjecture is adapted to construct the blade morphology of drag induced 
wind turbine. CFD analysis is carried out to investigate the aerodynamic properties namely moment 
coefficient (Cm) of the constructed wind turbine shape via the proposed conjecture. Results shows 
that the proposed shape constructed based on the conjecture has improved Cm by 7.2 % at λ = 0.59 
and 4 % at λ = 0.94 compared to conventional SWT.    
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1.  Introduction 
Elements in nature are ubiquitously and aesthetically 

constructed by patterns and algorithmic shapes that 
represents a hidden mathematical notion. The mysteries of 
hidden geometries in nature can be deduced and expressed 
in mathematical terms in order to understand nature sense 
of symmetry and building block of geometrical order.  In 
general terms, there are 3 types of pattern configuration 
namely fractals, spiral and Voronoi. Patterns in nature 
exhibit higher order of complex symmetrical properties. 
Symmetrical order is classified into two types which are 
bilateral and rotational symmetry1). Mathematicians 
define symmetry as numerical order that is invariant to 
transformation such as rotation, translation and reflection 
2). Lin (1996) 3) stated that symmetry represents the state 
of orderliness in a pattern configuration. Naturally 
reoccurring patterns exhibit similarity at different level 
and scale such as Mandelbrot set 4). It means that patterns 
are set of shapes that repeat in identical manner without 
being in random configuration 5). Mathematically 
interpreting symmetrical pattern phenomena helps to 
understand the principal of defining shapes exhibited by 
nature. In special cases, group theory method is utilized to 
analyze the complexity of symmetrical patterns. 
Symmetry shapes inspire manmade work of art such as 

architecture 6), textile 7), ornament 8) and art 9). The widely 
renowned numerical value phi denotes by the symbol of ϕ 
or φ is often found in most of the natural patterns. Phi is 
also known as the golden ratio, where the approximate 
value is 1.6180. The mathematical derivation of golden 
ratio fascinates intellectuals from various fields for at least 
2400 years 10). In mathematical term, golden ratio is 
considered as irrational number due to its large number of 
decimal places. In other words, the value of irrational 
number cannot be obtained by the division of two integers 
11). However, scientists found that golden ratio is 
overestimated in art and nature since the measurement 
does not comply to standard methodology and it is 
impossible to measure complex structures with accuracy 
12).  

Similarly, there are other irrational numbers widely 
used in the field of mathematics namely Pi (the ratio of 
circumference to the diameter of the circle, π) and e 
(exponential function of an argument). It is observed that 
irrational number such as π, e and ϕ have infinite number 
of decimal digits, hence for simplicity the value is 
approximated to 4-5 decimal digits. Sen & Agarwal 
(2008) 13) stated that rational and irrational number-π plays 
an important role in computer science and mathematics. 
Interestingly, golden ratio is also utilized for various 
business and management optimal search method 
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purposes 14). Fibonacci sequence is utilized for solving 
issues on inventory and quality control 15). While 
investigating issues on inventory and production, Disney 
et al., (2004) 16) observed that utilization of golden ratio 
method has reduced sum of inventory and order of 
variance over time. This supports the fact that 
transcendental number can be utilized in various field of 
research as an analytical toll. In mathematics, irrational 
means are grouped as metallic ratios consisting of gold, 
silver and bronze ratio. Each of the ratio is linked to a 
particular numerical sequence; golden ratio is related to 
Fibonacci sequence; silver ratio (δs) is linked to Pell 
number; bronze ratio is connected to on-line 
encyclopaedia of integer sequence (OEIS). It is worth 
mentioning that these ratios and sequence are the hidden 
fundamental element that dictates the behaviour and 
growth pattern of geometries. Conventionally, π related 
formulations are utilized to determine the parameters of 
the circles and spirals. However, it is observed that √2 
conjecture exist in these geometries as well. 

In regards to engineering application, the morphology 
of a system determines its performance and dictates its 
interaction behaviour namely aerofoil morphology 17), 
liquid transportation system 18), heat transfer system and 
others.  Similarly, in wind engineering the aerodynamics 
performance of a wind turbine (WT) in capturing wind 
kinetic energy is majorly dependent on the morphology of 
the blade. The blade shape influences the flow field 
properties and the behaviour of flow response. Traditional 
WT design struggles with fundamental design error which 
consequently impacted the operational capabilities. 
Compounded structural design issues namely blade 
structure constitutes to the inefficiency of the WT 19). 
Despite over 30 years of experience, manufacturers and 
engineers are adherently working to improve the 
efficiency of WT 19). In spite of other improvements 
namely material structure, gearbox modification, turbine 
and control system enhancement in WT technology, less 
attention is paid to blade morphology design. Traditional 
WT design and mechanism are investigated based on past 
studies presented by researchers, in order to understand 
the governing factors that influence the aerodynamic 
performance. It is found that conventional blade design of 
WT is incapable to extract more wind energy due to its 
blade shape. However, the complexity of WT behavior 
and flow properties can be analyzed via numerical 
Computational fluid dynamic (CFD) model. In recent 
years, CFD strategies has grown into a prominent tool of 
analysis for complex flow related scenarios20).  

Conventional Savonius turbine is adapted for this study, 
where the blade shape is geometrically analyzed in order 
to understand the aerodynamics performance of WT 
relative to the blade shape. In this study, semicircle 
geometry of Savonius turbine is mathematically analyzed 
in order to understand the reasoning behind the 
construction of circle. Previous computational fluid 
dynamics (CFD) studies on the investigation of Savonius 

turbine indicate that reduction in blade height increases 
the effectiveness energy harvesting 21). Hence this paper 
presents the developed numerical methodology based on 
√2 conjecture which is utilized for the construction of the 
proposed Savonius turbine blade.  

 
2.  Literature survey  
2.1  Golden ratio  

 Geometrically, golden mean is the ratio of the whole 
segment to the longer segment where the value is equal to 
the ratio of the longer segment to the shorter segment as 
illustrated in Figure 1 and Equation 1. The precise value 
is 1.6180339887…., an infinite non-recurring number 22). 
Due to the exhibited numerical properties, golden ratio 
cannot be expressed in fraction whole number, hence 
considered as an irrational number 23). Equation 2 shows 
the quadratic expression of Equation 1, where the positive 
quadratic root as expressed in Equation 3 is equal to 
golden ratio. Interestingly, when the value of golden ratio 
is subtracted with one, the value is equal to its reciprocal 
as shown in Equation 4. Moreover, the result via Euler 
continued fraction method equals to golden ratio as shown 
in Equation 5 24).  

 

 
Fig. 1: Illustration of golden ratio by line segments. 

 

      (1) 

      (2) 

    (3) 

        (4) 

Euler continued fraction of ϕ, 

         (5) 
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2.2  Fibonacci sequence   

Fibonacci sequence and golden ratio are closely related 
in the construction of geometrical patterns namely golden 
rectangle and spiral. In simple terms, the behaviour of 
Fibonacci (Fn) sequence is often expressed as quadratic 
recursive as shown in Equation 6 25). The sequence of 
Fibonacci can be formed with any integer more n ≥ 2, 
where the number formed is the sum of the preceding 
numbers. Fibonacci sequence frequently appears in 
geometry and pattern in nature namely sunflower florets, 
pinecone spiral, nautilus shell and others. The Fibonacci 
spiral or otherwise logarithmic spiral is generated by the 
growth factor to golden ratio. Fibonacci spiral as shown in 
Figure 2 is formed by the arc connecting two points of the 
square constructed based on the sequence as shown in 
Equation 7. Fibonacci sequence is widely used in various 
field of study which exhibits asymptotic behaviour and 
can be described through linear recurrence 26).  

 
        (6) 

 (7) 
 

 

Fig 2: Construction of Fibonacci spiral. 

 
It is worth mentioning that similar sequential properties 

can be observed in mathematical methodology developed 
by French mathematician, Blaise Pascal.  Figure 3 shows 
the array of generalized Pascal triangle, where the sum of 
diagonal number is similar to Fibonacci sequence 27). 
Pascal triangle is used to determine the combination 
problems in probability. As illustrated in Figure 3, Pascal 
triangle exhibits symmetrical properties, where the 
numbers on left and right side of triangle are identical. In 
general terms, binominal expression is the sum or 
difference of two terms. Interestingly, in the coefficient of 
a binominal expansion of (a+b)n, the n coefficient can be 
identified from the nth row of Pascal triangle. Binomial 
theorem can be represented as expressed in Equation 8-9. 

 

  

Fig 3: Fibonacci sequence in generalized Pascal triangle. 

         (8) 

    (9) 

As aforementioned, golden ratio is associated in the 
growth of Fibonacci spiral. The ratio of the successive 
number to the preceding number approximately converges 
to golden ratio as reported in Table 1 13). Fibonacci 
sequence has fundamentally associated with several other 
prominent mathematical methodologies namely Lucas 
number 28), Fermat theorem 29), Pascal triangle 30), 
Mandelbrot set 31), and Pell number 32). 

Table 1. Fibonacci sequence and ratio. 

Terms  Fn Fn (n-1) Fn/Fn (n-1) 

1 1.00 1.00 1.00000 

2 2.00 1.00 2.00000 

3 3.00 2.00 1.50000 

4 5.00 3.00 1.66667 

5 8.00 5.00 1.60000 

6 13.00 8.00 1.62500 

7 21.00 13.00 1.61538 

8 34.00 21.00 1.61905 

9 55.00 34.00 1.61765 

10 89.00 55.00 1.61818 

11 144.00 89.00 1.61798 
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2.3  Geometrical ratio inspired WT   

It is evident that geometrical driven numerical ratio 
has proven to be effective as it is being implement in the 
development of mechanical system. Zheng et al., (2019) 
investigated the aerodynamic performance of  resistant 
type vertical axis wind turbine inspired Nautilus isometric 
spiral configuration33). The author utilized Simulink to 
construct a numerical model to investigate the power 
generation characteristic of the WT. The author concluded 
that the optimized performance of the WT can be obtained 
with three blades and optimal size ratio of 0.76. Patil. 
(2018) carried out CFD and experimental analysis on 
horizontal axis wind turbine (HAWT) inspired by 
Fibonacci spiral 34). The author claimed that spiral inspired 
WT configuration is highly efficient and able to extract 
80 % of wind power in contrast to conventional WT. Lu et 
al., (2012) 35) numerically and theoretical investigated the 
aerodynamic performance of spiral inspired HAWT. The 
theoretical value is compared with numerical simulation 
conducted using ANSYS CFX v12.1. The author 
mentioned that the presented configuration is able to 
achieve maximum efficiency. Monatrakul et al., (2017) 
conducted study on spiral hydro turbine36). The author 
concluded that spiral horizontal turbine is suitable for low 
velocity fluid flow due to its strand shape. Moreover, 
spiral configured turbine is highly effective in intercepting 
the kinetic energy of the flow fluid 37). Meanwhile, 
Suntivarakorn et al., (2016) developed a horizontal spiral 
turbine based on golden ratio function 38). The author 
mentioned that the proposed turbine showed an efficiency 
of 48 % which is 15 % higher than propeller-based turbine.                  

 
2.4  Past studies on wind turbine CFD configuration  

Antar & Elkhoury. (2019) 39) work on improving the 
performance of SWT using CFD analysis in order to 
obtain the appropriate size for rotor guide plate. ANSYS 
Fluent is used for the CFD numerical study. The author 
declared that SST k-ω is highly recommended for 
predicting flow around SWT. Moreover, the author 
endorsed SST k-ω due to the fact that, it is more suitable 
for external aerodynamics flow numerical simulations 
namely flow over energy harvesting devices in contrast to 
RNG, realizable and standard k-ε. The author concluded 
that result from 2D simulation overestimated 
experimental data in terms of Cp. However, the author 
justified that 2D simulation is less burdening in 
comparison to 3D model with complex parametric 
configuration. He et al. (2020) 40) presented an 
aerodynamic study of VAWT in order to investigate on 
the reliability and accuracy several CFD numerical 
techniques such as 2D URANS, 2.5D URANS, 3D 
URANS, 2.5D large eddy simulation (LES), and 3D LES. 
The mesh topology of the configurations is generated 
using ICEM, based on SMM in order to allow data 
exchange between adjacent flow fields. In order to obtain 
2.5D configuration, the 2D model is extended in spanwise 
direction but less than the actual blade length. 

 Celik et al. (2020) 41) investigated H-rotor type VAWT 
self-starting behavior via CFD numerical analysis. In 
terms of CFD configuration, the simulation is based on 
pressure-based solver using SIMPLE algorithm as for 
pressure-velocity coupling. In terms of spatial 
discretization, green gauss node is applied for gradient and 
pressure and momentum is set to second order upwind. 
Since the paraments on turbulent intensity is unknown in 
the experimental study, therefore the author utilized 1% 
and 10% for turbulent intensity and turbulent viscosity (β) 
respectively. Based on the author’s past study, it is found 
that SST k-ω is widely endorsed by several author due to 
its capabilities. Hence the author chose to proceed the 
simulations with SST k-ω turbulent transport model.  
Mauro et al., (2019) 42) studied the behavior of ducted 
SWT via CFD analysis in 2D configuration. The author 
validated the CFD result against data gather from 
experimental procedure conducted in subsonic wind 
tunnel. The author employed sliding mesh model (SMM) 
to initiate rotation of the 2D WT domain in ANSYS Fluent. 
The author mentioned that URANS model is highly 
recommended for cases with low Reynolds number. In 
terms of mesh topology, the discretized grid meets the 
requirement of Y+ < 1. The author claimed that PISO 
algorithm is more efficient and the convergence criteria is 
faster and more reliable in contrast to SIMPLE and couple 
algorithm. Moreover, author stated that k-ε, k-ω and SST 
k-ω is not suitable and conceptually incorrect since the 
simulation is govern by high transitional effects. Hence, 
the simulation is carried out based on transition SST 
model as for turbulent transport model.              
 
2.5  Savonius wind turbine  

There are two basic blade morphologies for WT namely 
guide cavity vane and aerofoil. The blade of conventional 
WT is a semi-circular structure as shown in Figure. As for 
aerodynamic profile, guide cavity vane blades are 
considered as drag based. In the matter of configuration 
for axis of rotation, Savonius WT is considered as vertical 
axis wind turbine (VAWT). In precis of historical timeline 
of wind blade design, Fausto Veranzio in 1616 from 
Venetian Republic (Modern Croatia) presented several 
types of windmill blade designs in his book titled 
“Machinae Novae” 43). Later on, Finish inventor Sigurd 
Johannes Savonius patented the Savonius WT in 1927 44). 
Soon after, several other designs of WT guide cavity vane 
and modified Savonius blades were introduced. Figure 4 
shows the traditional parametric design attributes of 
Savonius turbine.  

Conventionally, parametric modification is made on 
overlap ratios (OR) and aspect ratio of the turbine design 
in order to improve the performance. Aspect ratio of the 
turbine is the ratio of the rotor diameter (DR) to turbine 
height (H). However, less attention is paid on the blade 
morphology and blade height (h). Previous study showed 
that adjustment in blade height and blade curvature 
improves the effectiveness in torque generation.  
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Fig 4: Savonius blade geometry. 
 
3.  Methodology 
3.1  Shape factor of circle   

Definition 3.1. Let length 𝑃𝑃𝑃𝑃���� (x,y) defined as Lpr-sq, 
be an arbitrary line segment of a square, 𝑃𝑃𝑃𝑃����  = a as 
manifested in Figure 5. Suppose there is an intersection 
point between the arc of the circle and the line of segment 
of the square. Point C (x,y) of line 𝑃𝑃𝑃𝑃����  lies on the 
circumference of the arc. Remark: The units of the 
parameters is set to meter (m).     

Definition 3.2 The constructed square based on the line 
segment 𝑃𝑃𝑃𝑃����  is defined as primary square. Since the 
construction is initiated with primary square, the arc is 
tangential to line passing point C as illustrated in Figure 5. 
In other words, point C of the primary square is positioned 
45 ⁰ to tangent line of the arc and 135 ⁰ to the radius line 
which is connecting to the center point of the arc.  

 

 
Fig 5: Line segment of a square at arbitrary length. 

 

Proposition 3.3. Assuming an arbitrary length 𝑃𝑃𝑃𝑃���� 
(x,y) of a quadrilateral is (5,0), where point C (x,y) = 
(12.07,12.07)  lies on the circumference of the circle. 
Assuming the relationship is linear, the radius (r) of the 
circle is the product of factor length segment [𝑃𝑃𝑃𝑃���� ] to 

constant k as shown in Equation 10. Remark. The smaller 
square is denoted as the primary and the overlapping 
larger square is secondary as shown in Figure 6. The 
secondary square has to cover the arc of a circle quadrant.   

      (10) 

 
Fig 6: Illustration on the construction of circle and square. 

 
Proof. It is found that the radial and bilateral growth of 

quadrants forming in to a circle is based on √2 as shown 
in Figure 7. The ratios are shown in Equation 10-11.  

        (11) 

 

 

 

Note. Meanwhile the Chord length of the quadrant (Cl-
quad), diagonal length of the primary square (Dlp-sq). 
Definition 3.4. , Cl-qua 
also can be calculated using √2 + 1 as shown in Figure 
7.  
Theorem 3.1. Given that ,  
Proof. Then , 
meanwhile in terms of √2 + 1 , 

. In terms of 
√2, , 

Therefore, the radius of the circle is =

, or .  
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Fig 7: Construction of √2 in a circle. 

 
Note. The length or arc of a segment is denoted as (La-

seg) and length of arc of quadrant (La-qua). Definition 3.5. 
As shown in Equation 13, the relationship between Cl-qua 
and La-qua is analyzed in terms of ratio and angle relative 
to π. Remark. The ratio k is depended on angle of the 
sector.  

 
Fig 8: Sector of a circle of angle 64.8⁰. 

 
3.2  Shape factor of spiral  

It is observed that √2  conjecture appears in the 
construction of Fibonacci spiral. Hence, Fibonacci spiral 
configuration is constructed based on the proposed 
conjecture as shown in Equation 12. Fibonacci number 
consequently from a set of infinite sequence, where the 
proceeding number is the sum of two previous number 13). 
The Fibonacci spiral or otherwise logarithmic spiral is 
generated by the growth factor of ((1+ √5 ) / 2) 
converging to golden ratio 45).  

      (12) 

Definition 3.6. Let Fibonacci sequence be the radius of 
the arc in the spiral configuration. As shown in Figure 9, 
the dimension of the inner square intersecting the arc is 
the ratio of Fibonacci sequence to √2 + 2. The arc chord 
length of Fibonacci spiral is obtained using Equation 13. 
Interestingly, the Cl-quad obtained from Equation 13, forms 
the Pythagoras spiral. Theorem 3.2. The consecutive line 
segments of Pythagoras spiral (Pl) as manifested in Figure 
9 can be also numerated using Equation 14 based on Dlp-

sq. Where, . Table 2 
reports the line segments of Pythagoras spiral using the 
proposed conjecture.  

  (13) 

 

  (14) 

 

 
Fig 9: The properties of √2 conjecture in Fibonacci spiral. 

 
Table 2. Pythagoras spiral based on proposed conjecture. 

Term  Primary square  Pythagoras spiral length  

1 
0.2929 * √2  = 
0.4142 

0.4142 * √2  + 2 = 
1.4142 

2 
0.5858 * √2  = 
0.8284 

0.8284 * √2  + 2 = 
2.8284 

3 
0.8797 * √2  = 
1.244 

1.2440 * √2  + 2 = 
4.2475 

5 
1.4655* √2  = 
2.0725 

2.0725 * √2  + 2 = 
7.0759 

 
Proof. A primary square with edge length of 15 is 

utilized to construct Fibonacci spiral configuration as 
shown in Figure 10. The dimension of the secondary 
overlapping square is determined using Equation 15-16. 
The following primary square on the adjacent side is 
determined by using Equation 17. Table 3 reports the 
convergence of the sequence to golden ratio. Factoring of 
any number as constant to Fibonacci sequence produces 
spiral configuration and ratios converging to golden ratio. 
However, the properties of the primary square can only be 
obtained by √2 conjecture.  

           (15) 
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  (16) 

               (17)    

 
Fig 10: Constructed Fibonacci spiral based on √2 conjecture. 

 
Table 3. Spiral configuration relative to Fibonacci sequence 

and  √2 conjecture. 
(nth) Sequence √𝟐𝟐 + 𝟐𝟐 Ratio 

1 

15.0 * √2 + 2   
= 51.21 
 

51.21/51.21 
 = 1.00000 
 

2 

(15+15) * √2 + 2   
= 102.42 
 

102.42/51.21  
= 2.00000 
 

3 

(30+15) * √2 + 2   
= 153.63 
 

153.63/102.42  
= 1.50000 
 

4 

(45+30) * √2 + 2   
= 256.05 
 

256.05/153.63  
= 1.66667 
 

5 

(75+45) * √2 + 2   
= 409.68 
 

409.68/256.05  
= 1.60000 
 

6 

(120+75) * √2 + 2  
= 665.73 
 

665.73/409.68  
= 1.62500 
 

7 
(195+120) * √2 + 2   
= 1075.41 

1075.41/665.73  
= 1.615385 

8 
(315+195) * √2 + 2  
= 1741.14 

1741.14/1075.41  
= 1.61905 

9 
(510+315) * √2 + 2  
= 2816.55 

2816.55/1741.14  
= 1.61764 

10 
(825+510) * √2 + 2  
= 4557.69 

4557.69/2816.55  
= 1.61818 

11 
(1335+825) * √2 + 2  
= 7374.24 

7374.24/4557.69  
= 1.61797 

 
3.3  Blade construction   

Figure 11 illustrates the constructed blade morphology 
based on the proposed mathematical conjecture. Previous 
study shows that reduction in blade height improves the 
performance of the turbine. The proposed mathematical 

conjecture is utilized to construct Savonius wind turbine 
blade. As shown in Figure 11, the rotor diameter is set as 
the domain for the construction of the blades. Figure 12 
shows the blade construction methodology at different 
curvature configuration. The first arc of the proposed 
blade is constructed based on the value obtained from (√2 
+ 2) by rotor diameter. Meanwhile the secondary 
curvature of the blade is formed based on the straight-line 
connection from point A to B. The line segment 𝐴𝐴𝐴𝐴���� acts 
as the centreline for the construction of an arc, which acts 
as the control point for the formation of the blade 
curvatures. Line 𝐷𝐷𝐷𝐷����   is taken as the maximum height 
reference for the blade curvature. Line 𝐶𝐶𝐶𝐶����  is 
perpendicular to line 𝐴𝐴𝐴𝐴����. Hence segment AEB is formed 
as shown in Figure 12. Arc EB is divided into 6 equidistant 
segments which act as the tangential line for the formation 
of the arcs. The segmentation process of the composite 
ACB, is methodologically reduced by ratio from √2  to 
approximately 1, meaning that the ratio of the line 
segment 𝐴𝐴𝐴𝐴���� to the line 𝐴𝐴𝐴𝐴���� is √2  and evenly reduced 
by ratio until approximately 1. Hence with this procedure, 
multiple secondary blade curvature can be obtained. For 
simplicity, randomly selected arc curvature which is 
highlighted in red is chosen for CFD analysis. 

 

 
Fig 11: Comparison on proposed blade shape and standard 

Savonius turbine blade. 

 

 
Fig 12: Proposed blade construction. 

 
3.4  CFD configuration   

CFD analysis is carried out in 2D configuration based 
on finite volume method (FVM) 46). The aim of the 
computational methodology is to investigate the 
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aerodynamic properties of the proposed morphology in 
comparison to conventional SWT blade shape via Ansys 
Fluent 16.0. CFD technique computes Navier-Stokes 
equation to obtain flow field properties namely continuity 
equation as shows in Equation 19. In order to be cost 
effective in terms of computational power, widely utilized 
numerical strategy is adapted namely Reynolds-Averaged 
Navier Stokes Equation (RANS). Equation 18 shows 
Reynolds decomposition numerical model. The 
simulation is conducted using pressure-based solver 
assuming the flow is incompressible. Meanwhile, for 
turbulent transport model sensitivity, the turbine model is 
simulated using renormalized group (RNG), shear stress 
transport (SST) and standard k-ω. Ashwindran et al., 
(2020) reported that (SST) and standard k-ω exhibited 
trivial dissimilarities and stable numerical oscillation 21). 
However, RNG did not agree well with other two models. 
Hence, SST k-ω is chosen for the rest of the simulation 
due to its robust feature. Moreover, pertaining to WT 
simulation SST k-ω is widely preferred by researcher, due 
to its blending feature as shown in Equation 20-21. 
Neumann boundary condition type is applied under the 
influence of constant U∞ = 8 m/s. The bounding domain 
wall is set to symmetry and outlet pressure to 0-pascal 
gauge pressure. Operating pressure is set to 101.325 kPa 
47). Table 4 shows the boundary condition utilized for the 
CFD investigation. Figure 13 (a) and (b) shows the 2D 
CFD rotating domain configuration of Savonius WT and 
proposed morphology respectively.   

 

Reynolds decomposition 
         (18)  

 

Conversation of mass or continuity equation,   

  (19) 

Turbulent kinetic energy, k-equation  

 

(20) 

Specific rate of dissipation of kinetic energy, ω-equation  

(21) 

 

 
Fig 13: (a) Savonius WT, (b) Proposed morphology. 

 
In terms of grid sensitivity, the discretized mesh 

topology is investigated under fine and medium densities. 
Results presented by Ashwindran et al., (2020) 21) shows 
that fine and medium mesh densities indicated trivial 
dissimilarities in terms of moment coefficient (Cm) at λ = 
0.59. Therefore, medium mesh configuration is chosen for 
the rest of the simulation. In this study the grid topology 
of both turbines is discretized into static and dynamic 
domains using non-conformal mesh technique. Hence, 
sliding mesh method (SMM) is adapted in order to 
initiated rotation of the dynamic domain subjected to the 
defined rpm values. The WTs is subject to constant wind 
speed, U∞ = 8 m/s at 100 and 160 rpm. The numerated tip 
speed ratio using Equation 22 is λ = 0.59 and λ = 0.94 at 
respective rpm. The preliminary aim of the research is to 
evaluate the moment coefficient properties of the turbines 
subjected to defined parameters. Therefore, moment 
coefficient of the computational WTs is numerated based 
on Equation 23.   
 
Tip speed ratio 
 

           

      (22)  

Moment coefficient  

             (23) 

(a) 

(b) 
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Table 4. Boundary condition on 2D CFD analysis of proposed 

and SWT turbine. 
Boundary 
condition  

Parameter Value  

Boundary 
condition type   

Neumann condition  - 

Zone condition  Air @ 23 ⁰ C ρ = 1.2041 kg / 
m3 

Inlet  Constant velocity, U∞ 8 m/s  
Surrounding wall 
type  

Symmetry  - 

Outlet  Pressure outlet  0-pascal gauge 
pressure  

Turbulent 
viscosity, Tv  

Typical medium 
turbulent condition 

10 % 

Turbulent 
intensity, I 

Typical medium 
turbulent condition 

5 % 

 
Since information on I and turbulent viscosity (Tv) is 

unavailable the values are maintained at default value 
indicating medium turbulence scenario. It is 
recommended to utilize the default values for I and Tv  as 
it represents a typical medium turbulent case 48). The 
computed parameter is Cm with reference area of 0.9 m2. 
Table 5 represents the parameters on solver configuration. 
Couple scheme is utilized for pressure-velocity coupling 
process. The residual imbalance criteria for governing 
equations are set to 10-5. In terms of spatial discretization, 
kt is set to second order upwind. Moreover, in order to 
make it less computationally expensive, the courant 
number (CFL) is set to 10 and time-step to 0.01 for 4 
complete revolutions. Similar simulation configuration 
can be found in research conducted by Takeyeldein et al., 
(2020)49) pertaining to WT CFD analysis. 
 

Table 5. Solver configuration. 
Solver configuration  Parameter Value  
State   Fixed time-step 

transient state 
- 

Continuity, 
Momentum and 
energy Solver  

Pressure based 
solver  

Incompressible 
flow  

Turbulent transport 
model  

SST k-ω - 

Velocity 
formulation  

Absolute  - 

Pressure-velocity 
coupling  

Couple scheme  Second order 
upwind for kt. 

Residual imbalance 
criteria  

Convergence 
criteria   

10-5 

Number of 
revolutions  

- 4 

Time-step   Fixed time step  0.01 
 
 

4.  Result and discussion  
Results shows that the proposed morphology has 

improved the performance in moment coefficient (Cm) by 
7.2 % at λ = 0.59 and 4 % at λ = 0.94 in comparison to 
conventional SWT as shown in Table 6. Meanwhile, the 
pressure distribution of the proposed design and SWT 
along the blade region at different angular position namely 
0⁰, 45⁰ and 90⁰. At 0⁰, the pressure distribution on the 
concave side of SWT is higher than the proposed shape. 
However, at 0⁰, the suction pressure region behind the 
blade of the proposed shape is higher and denser than 
SWT. Suction pressure is negative pressure between two 
points of a region which cause the fluid to drawn from 
high to low pressure.  As the angular position shifts to 
45⁰ the pressure distribution along the proposed advancing 
blade increases with less denser suction pressure region 
behind the blade in comparison SWT. This is due to the 
morphology of the blade as the fluid distributes along the 
blade region. It is observed that at 45⁰, proposed shape 
started to exhibit higher Cm than SWT. This is due to the 
concentred pressure distribution on tip side and lower 
blade height of the proposed blade in comparison to SWT. 
This consequently produces higher moment as tip of the 
blade is further from axis of the rotation, unlike semi-
circle SWT the tip is at center of the shape and the blade 
height is greater than the proposed shape. Meanwhile at 
90⁰ angular position, both blades indicated similar flow 
properties which is high pressure region at convex side of 
returning blade and low-pressure region at blade tips. 
However, the proposed shape indicated higher pressure 
than SWT due to its sharp edge at the blade curvature. 
Self-staring issue can be obverse in the presented contours, 
as the advancing blade of each design requires high 
pressure or drag force to initiate the rotation. 
Comprehensive information on simulation configuration 
and flow results can be found in the article previously 
published by Ashwindran et al., (2020) 21).  
 
Table 6. Average moment coefficient at λ = 0.59 and λ = 0.94. 

Turbines  Average Cm at λ 

=0.59 

Average Cm at 

λ=0.94 

Savonius  0.375023 0.199312 

Proposed 0.401881 0.207343 

 

Conclusion  
In this paper, the governing numerical factor for the 

construction of circles and Fibonacci spiral is investigated. 
The extracted numerical conjecture is adapted for the 
construction of DIWT relative to Savonius design 
configuration. It is found that the proposed conjecture 
(√2 + 2)  provides an alternative approach in 
parametrically constructing DIWT blade morphology. The 
effectiveness of the proposed blade is analyzed via CFD 
in terms of Cm. Previously conducted CFD result shows 
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that the constructed blade morphology based on the 
conjecture has improved Cm by 7.2 % at λ = 0.59 and 4 % 
at λ = 0.94 in contrast to conventional SWT. It appears that 
irrational number √2  is fundamental in the creation of 
circle and spiral. In addition, multiple combination of 
blade curvatures is also possible to be constructed with the 
newly found conjecture. 
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Nomenclature 

cm Moment coefficient  
U∞ Free stream velocity (m/s) 
I Turbulent intensity  
Tv Turbulent viscosity (kg/m-s) 
kt Turbulent kinetic energy (J/kg) 
SST Sheer stress transport  
Lpr-sq Length of primary square (m) 
Cl-quad   Chord length quadrant (m) 
Dlp-sq Diagonal length of the primary square (m) 
Pl Consecutive line segments of Pythagoras 

spiral (m) 
Dr Rotor diameter (m) 
f Frequency (Hz) 
rpm Revolution per minute  
Fn Fibonacci sequence  
CFD Computational fluid dynamics  
RANS Reynolds Averaged Navier Stokes  
SMM Sliding mesh method 
FVM  Finite volume method 
SWT Savonius wind turbine 
CFL Courant number 

 
Greek symbols 

ρ Density (kg/m3) 
ϕ Golden ratio 
π 22/7 
ω Specific turbulent dissipation rate (1/s) 
λ Tip speed ratio  
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