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Abstract: Combustion efficiency is one of the most important parameters especially in the fluidized-
bed combustor. Investigations into the efficiency of combustion in fluidized-bed combustor fuels
using solid biomass waste fuels in recent years are increasingly in demand by researchers around
the world. Specifically, this study aims to calculate the combustion efficiency in the fluidized-bed
combustor. Combustion efficiency is calculated based on combustion results from the modification of
hollow plates in the fluidized-bed combustor. The modified hollow plate aims to control combustion
so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested
using palm oil biomass solid waste fuels such as palm kernel shell, oil palm midrib, and empty fruit
bunches. The results of the measurements showed that the maximum combustion temperature for
the palm kernel shell fuel reached 863 ◦C for M1 and 887 ◦C for M2. The maximum combustion
temperature measurements for M1 and M2 from the oil palm midrib fuel testing reached 898 ◦C
and 858 ◦C, respectively, while the maximum combustion temperature for M1 and M2 from the
empty fruit bunches fuel was 667 ◦C and M2 847 ◦C, respectively. The rate of combustion efficiency
with the modification of the hole plate in the fluidized-bed combustor reached 96.2%. Thermal
efficiency in fluidized-bed combustors for oil palm midrib was 72.62%, for PKS was 70.03%, and for
empty fruit bunches was 52.43%. The highest heat transfer rates for the oil palm midrib fuel reached
7792.36 W/m2, palm kernel shell 7167.38 W/m2, and empty fruit bunches 5127.83 W/m2. Thus, the
modification of the holed plate in the fluidized-bed combustor chamber showed better performance
of the plate than without modification.

Keywords: fluidized-bed combustor; perforated plate; heat transfer; thermal efficiency; combus-
tion efficiency

1. Introduction

Investigations into the efficiency of combustion in FBC fuels using solid biomass waste
fuels in recent years are increasingly in demand by researchers around the world. This is
due to the existence of highly promising solid biomass wastes that can be converted into
energy. Solid biomass waste is one of the renewable energy sources that can be converted
to replace fossil energy whose use has been affected and decreased in recent years. The
availability of renewable energy is currently abundant in Southeast Asia [1–3]. Abundant
renewable energy sources today include a solid waste of palm oil biomass [4–7], where the
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results of the analysis with simulations conducted showed that biomass solid waste can
produce energy of 106.15 MW from the results of a mixture of several types of biomass,
while one type of biomass alone can produce energy of 61.05 MW. Thus, renewable energy
sources from palm oil biomass solid waste are suitable for reducing the dependence on
fossil fuels, especially in remote areas/islands.

Combustion efficiency is one of the most important parameters especially in the
combustion chambers such as the fluidized-bed combustor (FBC). Combustion efficiency,
X, can generally be defined as in Equation (1) that shows the definition for combustion
efficiency i.e., the ratio of the chemical heat release rate (HRR), QCH, to the heat of the
perfect combustion, QT. This is as evidenced in [8].

X =
QCH
QT

(1)

An investigation into the efficiency of combustion in the combustion chamber with
a case study in a 1:20 scale tunnel has recently been conducted [9], in which the results
obtained show that the length of the tunnel can affect the efficiency of combustion. The
average value recorded of propane fire reached 89% and for heptane, fire was lower, at
80%. The chemical HRR value decreased from normal fire but the heptane combustion
efficiency rate reached 94%. Research to predict the combustion efficiency in methane and
propane fires has also been conducted [10], in which the overall combustion efficiency
was found to be close to one unit through various oxidizing dilutions, although at the
beginning of testing there was a sudden decrease. In different studies conducted with
combustion experiments using porous and non-porous alumina base fuel in the FBC, the
fuel chamber has been investigated [11], in which the results revealed that polypropylene
can be used effectively to fuel both FBC materials. Experiments conducted showed a
combustion efficiency rate of 99.9% at 750 ◦C. Detailed process development to evaluate
the heat potential of biomass combustion results in CFB combustion chambers. In addition,
research on the analysis of oil palm biomass burning has also been carried out, in which the
results of data analysis are obtained through simulations using Aspen Plus and FORTRAN
software [12]. An investigation into the efficiency of combustion in FBC fuel using sawdust,
rice husks, and cane pulp has been discussed [13]. The experiments tested in the study
aimed to investigate temperature, CO, NO, and CO2 concentrations, in addition to the
height of the combustion chamber and the exhaust gases (chimneys). Operating conditions
and fuel properties can affect overload and air.

Furthermore, a different study was recently carried out, in which the combustion
experiment was conducted using a quatrefoil perforated plate (QPP) [14]. The main
purpose of the study was to study the degree of influence of hole height and the QPP plate
distance on thermal–hydraulic performance. The results showed that the coefficient of heat
transfer and pressure drop on the shell side of the heat exchanger increased with a decrease
in hole height and plate distance from the QPP. However, the level of heat transferred on
the side of the shell became reduced. Experiments to investigate hydrodynamic loads with
two-dimensional perforated plates have been studied [15]. The test results between the two
hollow plates with gaps of 0.14 and 0.29 overall showed an excellent association. The topic
of modifications of hollow plates in the FBC fuel chamber with the use of biomass solid
waste fuel still has very little findings in the literature. The investigation of combustion
efficiency in the FBC fuel chamber, especially with palm oil biomass fuel, is also very
rarely found in publications. Therefore, research to analyze the efficiency of combustion
by making various modifications in the combustion chamber is very important. This is
because the use of biomass solid waste as a very abundant source of renewable energy can
be used as an alternative fuel to reduce the dependence on fossil energy.

The investigation through experiments conducted in the study specifically aimed to
calculate the efficiency of combustion in the FBC combustion chamber. Efficient combustion
is calculated based on a modification of the hole plate contained in the FBC combustion
chamber. The modified hollow plate aims to control combustion so that the fuel incorpo-
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rated can burn out and not saturate. The combustion experiments were tested using palm
oil biomass solid waste fuels such as the palm kernel shell (PKS), oil palm midrib (OPM),
and empty fruit bunches (EFB).

2. Materials and Experimental Setup

This research was conducted to analyze the level of combustion efficiency through
the modification of perforated plates and different fuels. This test was conducted twice
for each of the different fuels. The type of fuel and experimental setup designed in the
research is described in the stages below.

Material of Fuel

The fuel materials used in the study were solid wastes of palm oil biomass such as the
palm kernel shell (PKS), oil palm midrib (OPM), and empty fruit bunches (EFB). Each type
of fuel used in this experiment weighed 2.5 kg as shown in Figure 1.
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Figure 1. Types of palm oil biomass fuel.

The testing tools used in this experiment include combustion chambers (FBC) and
blowers. The designed combustion chamber had an inner circle diameter of 30 cm with
a height of 47 cm. Blowers used for wind suppliers into the combustion chamber had a
pressure of 14.7 kPa as shown in Figure 2. The temperature measurements and combustion
efficiency performed in this experiment were placed at five different points. Measurement
was done using the Digital Thermometer HotTemp HT-306 brand. The measurement tool
is denoted as M1 (flame temperature), M2 (fire end temperature), M3 (lower freeboard tem-
perature), M4 (upper freeboard temperature), and M5 (outer combustor wall temperature).

The modification of the perforated plates made in this study aimed to analyze the
level of breeding efficiency using different fuels. The modification of the perforated plate
applied in this study was only the addition of four air suppliers. Thus, the air that enters
the combustion chamber can be fulfilled so that the fuel can burn completely and nothing is
left. The plate modifications carried out in this test are as shown in Figure 3a. The geometry
of the holes drilled in the plate were made based on the previous research conducted
by [16]. However, in his research, only hole geometry was carried out. Meanwhile, in
this study, the geometry of the existing holes was added with four air guides so that the
incoming air supply was sufficient.

Furthermore, the steaming of combustion temperature in this study used the Digital
Thermometer HT-306 as shown in Figure 3b and the specifications of the Digital Ther-
mometer HT-306 are presented in Table 1.
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Figure 3. (a) Modification of hollow plate with four spoons and (b) digital thermometer and thermocouple for measure-
ment data.

Table 1. Specifications of the Thermometer Digital HT-306.

Component Measurement

Model HT-306 Dual channel input
Input sensor Thermocouple type “K”
Resolution HT-306:1 ◦C/1 ◦F

Response time 15 S
Wide measuring range −50 ◦C~+1300 ◦C (−58 ◦F~+1999 ◦F)

Power supply Baterai 6F22 9V

3. Results and Discussion
3.1. Temperature Influence of Walled Plate Modification

The experiments conducted in this study were tested at five different points with their
respective details (M1, M2, M3, M4, and M5). Specifically, the discussion presented in this
study concerns the thermal temperature and efficiency of the different fuel test results.
Experiments in this study analyzed the level of combustion efficiency in the combustion
chamber by modifying the perforated plate with four steering directors in addition to the
main steering wheel located in the middle of the plate that has been designed. The results
of the combustion temperature analysis measured at the M1 are shown in Figure 4a. The
time of the initial combustion to the seventh second indicated that the temperature of the
OPF fuel reached 370 ◦C, which was recorded at the fifth second, while the PKS and EFB
fuels showed lower yields. However, at the burning time of 8–16 s, the PKS burn increased
to 863 ◦C, and at 20–30 s, the trend decreased. The resulting maximum temperature of the
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OPM fuel iwasrecorded at 21 s, which reached 898 ◦C. The maximum temperature that
fueled the EFB was 667 ◦C, recorded at 18 s. The low temperature resulting from the OPM
combustion due to the higher moisture content was raised by the PKS and EFB.
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Figure 4. M1 combustion temperature levels of the three different fuels.

The combustion temperature of the OPM fuel began to increase at seconds 12–18 and
continued to decrease until the end of testing. The desperation temperature produced in
this study is mainly for the OPM fuel, slightly lower than the results in [17]. However, the
amount of fuel in this experiment was less, thus the resulting temperature was lower due
to the shorter combustion time. Figure 4b shows the combustion temperature displayed
in 3D. It was shown that the combustion temperature of the three fuels used began to
increase from 402.4 ◦C to 815.4 ◦C and decreased until the end of testing. In addition, the
modification of the perforated plate with the four air supplies to the combustion chamber
shows that the fuel can burn perfectly compared to the results of previous studies [16].

Temperature measurement results analyzed on M2 with 30 s of three fuel types
show that EFB materials are more stable than PKS and OPM as shown in Figure 5a. At
the beginning of combustion, OPM fuel showed a significant increase compared to EFB.
However, by the time the 11–13 s decreased drastically and began to increase back at 14 s.
The maximum combustion temperature of OPM reached 858 ◦C which was recorded at
20 s and decreased until testing was complete.
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Test results for PKS fuel analyzed on the M2 showed a slight instability at the start of
testing up to 10 s. Furthermore, it continued to increase until the 15th second which reached
887 ◦C, and decreased until testing was complete. Meanwhile, the combustion temperature
from the EFB fuel test results shows a slower trend than PKS and OPM. However, the
combustion temperature obtained from burning EFB was lower than that of PKS and OPM.
The maximum temperature of EFB fuel test results reached 847 ◦C as shown in Figure 5a.
The combustion fire state of the three types of biomass used is shown in Figure 5b, in
which it can be explained that the equalization of fire in the combustion chamber was
quite spread out and stable. This is because the wind that enters from the blower through
the steering plate of the hole is modified very sufficiently so that the fuel incorporated is
burned thoroughly.

Furthermore, the analysis in this test was conducted at the M3 point, which aims to
determine the maximum temperature in the lower freeboard chamber after the combustion
chamber. The results of the analysis conducted on the M3 reveal that the OPM fuel at the
beginning of testing showed a higher temperature than reached 520 ◦C. This temperature
height can be affected by the state of the fire that suddenly rises, resulting in higher
temperatures. This is evident clearly at 10 s, decreasing significantly and beginning to
increase again at 15 s. The maximum temperature of the analysis using the OPM fuel was
recorded at 19 s, reaching 823 ◦C as shown in Figure 6a. The results of the analysis of
the test using the PKS fuel revealed that the maximum combustion temperature reached
870 ◦C and showed more stable results than the OPM. Meanwhile, the analysis of the EFB
fuel usage showed better stability both at the beginning and towards the end of the test.
The maximum temperature of the EFB fuel for point M3 reached 747 ◦C, recorded at 14 s.
Temperature stability was analyzed at the M3 test point as shown in Figure 6b, although
there was an increase in the initial combustion for the OPM fuel. However, it decreased
rapidly to 180 ◦C and at the 15th second, it started to rise again to 850 ◦C. The results
of combustion are said to be complete when the remaining fuel used can be burned and
nothing remains. The remaining fuel from the combustion process tested in the study is
shown in Figure 7, in which nothing remains of the rest of the three types of fuel used in
this test. Thus, the plate modification designed in this study showed maximum results.
This is because the air that enters the combustion chamber is fulfilled by the presence of an
excess air supplier.
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Further analysis was conducted in this study at the M4 point with the same time and
fuel from the previous analysis. Measurements at the M4 are performed to determine the
maximum heat temperature level when reaching the boiler. Based on the results of the
analysis, the OPM fuel was slightly higher at 757 ◦C, recorded at 19 s, while the maximum
heat temperature of the PKS and EFB reached 729 ◦C and 692 ◦C, respectively, as shown in
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Figure 8a. The heat temperature phenomenon of the three types of fuel used shows better
results as shown in Figure 8b.
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The last analysis of the combustion chamber temperature on the outer wall aimed to
calculate the level of combustion efficiency. The phenomenon and temperature of the outer
combustion chamber walls are necessary to predict the level of efficiency produced. The
outer wall temperature of the PKS combustion indicated a stable temperature compared to
the OPM and EFB. At 20 s, the temperature shows a drastic decrease in the OPM fuel. This
decrease is affected by malfunctioning dredging tools (errors) as shown in Figure 9a. This
result is reinforced from the results of the 3D analysis as shown in Figure 9b.
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3.2. Combustion Efficiency

The combustion process in the combustion chamber for producing heating, cooling,
and electrical energy needs to be calculated efficiently so that the energy produced can be
predicted. The efficiency of the furnace, or better known as the FBC combustion chamber,
can be done by Equation (2).

Eff =
Pout

Pin
× 100% (2)

where

Eff is the efficiency,
Pin is the power input, and
Pout is the power output.

The results of the calculation of the furnace efficiency revealed that the OPM fuels
showed better results compared to the PKS and EFB fuels. The furnace efficiency level
recorded for OPM was 11.23%, PKS 10.78%, and EFB 9.36% as shown in Figure 10. The
results of the search in various publications showed that investigations of the efficiency
of fuel furnaces are still very rarely found [18]. Studies comparing thermal efficiency
between air–fuel combustion (AFC) and oxy–fuel combustion (OFC) in axial-fueled heating
furnaces have been studied [19]. The measurement of the furnace efficiency tested with
five different cases can increase efficiency by 50%. However, previous tests have shown
that in general efficiency measurements are not within the FBC space. In addition, the fuel
used in previous studies was liquid fuel in general.
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3.3. Thermal Efficiency

The calculation of thermal efficiency in a combustion test is a very important variable.
It aims to know the efficient combustion resulting from the fuel used. Calculation of
thermal efficiency can be done using Equation (3) [20].

ηth =
ma Cp ∆T

mb LHVf uel
(3)

where

ηth is the efficiency thermal,
ma is the liters of water,
Cp is the calorific value,
∆T is the last value − first value,
mb is the fuel weight, and
LHVfuel is the lower heating value.

Based on the results of the calculations made, thermal efficiency with the use of the
OPM fuel reached 72.62%, while the FBC chamber tested using the PKS fuel can produce a
thermal efficiency of 70.04% as shown in Figure 11. The EFB fuel combustion testing can
deliver thermal efficiency of 52.43%. The level of thermal efficiency in the FBC combustion
chamber used in this study was lower than that of [21], in which the final thermal efficiency
produced through the design of the solar receiver reached 84.20%. Meanwhile, different
studies predicting the thermal efficiency of LPG energy-efficient burners (EB) using CFD
data showed lower yields than the thermal efficiency in the FBC space in [22]. The results
of the calculation of the experiments conducted from both burners were carried out at
9.02% and 7.87%, respectively. Different studies tested combustion engines using mixed
fuels of flaxseed oil and diesel, which showed lower thermal efficiency [23].
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3.4. Measurement Heat Transfer Coefficient

Calculation of the heat transfer in combustion needs to be done so that the necessary
energy can be known. In addition, the calculation of the heat transfer also aims to find out
how much efficiency of combustion furnaces is produced in this study. The calculation of
the heat transfer in this test was done using Equation (4) [20].

q =
M1 − M5

1
hoAo +

ln( ro1
ri1 )

k1 +
ln ( ro2

ri2 )
k2 +

ln ro3
ri3

k1 + 1
hiAi

(4)

where:

q is the convection heat rate;
M1 is the temperature fluid;
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M5 is the temperature wall;
ro1 is the outer radius of the cylinder;
ri1 is the radius in cylinder;
ro2 is the outer radius of insulation;
ri2 is the outer radius in isolation;
ro3 is the cylinder outer radius;
ri3 is the radius in the cylinder;
k1 is the thermal conductivity of the plate;
k2 is the insulating conductivity;
ho is the convection heat transfer coefficient;
Ao is the outer cross-sectional area;
hi is the coefficient in the wall; and
Ai is the inner cross-sectional area.

Based on the results of the calculations, the rate of heat transfer in the combustion
furnaces conducted with the oil palm biomass fuel showed to be higher than the results
of experiments in [24]. The heat transfer rate of the OPM fuel reached 7792.36 W/m2 at
21 min compared to the PKS shown in Figure 12, while the heat transfer rate for EFB fuels
showed lower yields of 5127.83 W/m2 and the PKS of 7167.38 W/m2. However, the overall
fuel used in this study was higher than in [25]. In that study, they used the component
of main heat transfer from the fuel combustion, which is primary air, burning as much
as 33%, while charcoal did not burn as much as 25%, pots 23%, others by 14%, and fuel
space by 6%. The resulting efficiency rate was 24% with a time of 17 min. The experiments
conducted in this study used palm oil biomass fuel with a test time of 28 min. Overall, the
fuel used was not that important, as shown in Figure 7. The results of the study on the
calculation of heat transfer rates conducted earlier are lower than the experiments in [26].
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Based on the overall experimental results, the modification of the perforated plate
with the addition of four air suppliers shows perfect combustion results because there was
no fuel left. At the measurement points M1 and M4, the combustion temperature of the
OPM fuel was higher than that of PKS and EFB, as shown in Figures 4 and 8. Meanwhile,
the highest combustion temperatures at the M2 and M3 measurement results are recorded
from the PKS fuel as shown in Figures 5 and 6. However, the combustion temperature
trend shown for EFB fuels shows a slower trend compared to PKS and OPM fuels. The
results of combustion using the OPM fuel show a higher combustion efficiency than PKS
and EFB. Meanwhile, for thermal efficiency and heat transfer rate, OPM fuel combustion
results are also higher than for PKS and EFB. Thus, the modification of the perforated plate
with the addition of four air suppliers shows perfect results because there was no fuel left
in the combustion chamber. The modification of the hollow plate as we applied in this
study is mainly for the burning process of oil palm biomass and, as far as our literature
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search confirms, it is the first instance of such a modification. Thus, the application of the
modification of the perforated plate in our experiment is the novelty of this work.

4. Conclusions

The tests conducted in the study aimed to analyze the temperature and efficiency of
combustion using three different types of biomass fuels. Temperature measurements are
allocated at five different points denoted by M1, M2, M3, M4, and M5. The fuel used are
palm oil biomass solid wastes such as PKS, OPM, and EFB. The measurement results in
this study can draw the following conclusions:

1. Combustion temperatures at M1 and M2 reached 863 ◦C and 887 ◦C, respectively,
for PKS fuel. The highest combustion temperature recorded at M1 was obtained
from OPM fuel at 898 ◦C. Meanwhile, the highest combustion temperature at M2 was
recorded from the combustion of PKS at 863 ◦C.

2. Modification of the perforated plate with four air suppliers from the blower to the com-
bustion chamber shows maximum results. EFB fuels exhibited a slower combustion
temperature trend compared to PKS and OPM fuels.

3. Furnace efficiency levels using PKS, OPM, and EFB fuels were 10.78%, 11.23%, and
9.36%, respectively. Based on these results, it can be reported that OPM fuel shows
the maximum combustion furnace efficiency.

4. The highest thermal efficiency in the FBC fuel chamber reached 72.62% for the OPM
fuel. Meanwhile, thermal efficiency for the PKS and EFB fuels was 70.03% and
52.43% respectively.

5. The highest heat transfer rate was obtained from OPM fuels reaching 7792.36 W/m2,
while the heat transfer rates for PKS and EFB fuels were 7167.38 W/m2 and
5127.83 w/m, respectively.

6. Overall, the plate modification applied in this study showed perfect results, indicating
that all the fuels used could be burned and nothing remained.
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