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Abstract: Nanoscience enables researchers to develop new and cost-effective nanomaterials for
energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly
synthesized for their superior physicochemical and electronic properties. Good knowledge of these
characteristics allows the development of applications in all sensitive and essential fields in the
service of humans and the environment. This review aims to summarize the Ag NPs synthesis
methods, properties, applications, and future challenges. Generally, Ag NPs can be synthesized using
physical, chemical, and biological routes. Due to the great and increasing demand for metal and
metal oxide nanoparticles, researchers have invented a new, environmentally friendly, inexpensive
synthetic method that replaces other methods with many defects. Studies of Ag NPs have increased
after clear and substantial support from governments to develop nanotechnology. Ag NPs are the
most widely due to their various potent properties. Thus, this comprehensive review discusses the
different synthesis procedures and electronic applications of Ag NPs.

Keywords: silver nanoparticles; green synthesis; electronic applications; solar cells; gas sensors

1. Introduction

Two thousand years ago, humans knew the medicinal properties of silver [1–3]. Silver
particles have been used as antibacterial agents since the 19th century, and now their uses
have diversified to include many new physical, chemical, and biological ones [4]. Ag NPs
are considered to be one of the most widespread NPs, with about 500 tons of annual global
production [5]. In the latest research, Ag NPs have been incorporated into industrial and
surgical device coatings, dental coatings [5], and automotive smoke filters and textiles due
to their effective properties against microbes [6]. The mechanism on this topic is currently
under discussion by researchers [7].

In this review, the historical background of nanomaterials and the various synthesis
techniques will be discussed. After that, a detailed study of the properties, synthesis,
properties, and the various electronic applications of Ag NPs will be presented. This
comprehensive review provides an insight into the different methods used in the synthesis
and an overview of the applications of Ag NPs in the electronic field.
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2. Metal Nanoparticles Synthesis

As a historical background for metal nanoparticles (MNPs), it was reported that many
exploited the strengthening of ceramic matrices, including natural asbestos nanofibers,
more than 4500 years ago [8]. Lead-based chemistry was pioneered in ancient Egypt for
cosmetic preparation over 4000 years ago. Here, we look at a hair dye recipe using lead
salts described in the text since Greco-Roman times. We report direct evidence for the
shape and distribution of PbS nanocrystals that form in the hair during darkening [9].
Likewise, “Egyptian blue” was the first synthetic pigment prepared and used by the
Egyptians using a mixture of sintered nanometer-scale glass and quartz around the 3rd
century BC [10]. Egyptian Blue represents a complex mixture of CaCuSi4O10 and SiO2
(both glass and quartz). In the ancient geographic regions of the Roman Empire, including
Egypt, Mesopotamia, and Greece, Egyptian blue for decorative purposes has been observed
during archaeological excavations.

Natural or synthetic ways can synthesize NPs by two basic approaches, including
various sub-preparation methods (Figure 1). The first approach is called the "top to bottom"
method, including breaking down bulk solid materials into smaller pieces by applying
external energy from physical, chemical, and thermal techniques [11]. The second approach,
called "from the bottom up, "brings together and combines atoms or molecules of gases
or liquids. The top-down approach is expensive. However, it is impossible to obtain
perfect surfaces and edges due to the cavities and roughness in NPs, while a bottom-up
approach can get excellent results of nanoparticle synthesis. In addition, with the bottom-
up approach, no waste is formed to be eliminated, and the smaller NPs can be obtained
with better control of the sizes [12–16].

Figure 1. Techniques for synthesis metal NPs, modified with permission from Ref. [17], MDPI, 2019.
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However, adapting the production of large quantities of powders on an industrial
scale is not simple. A significant advantage of treatment in solution is the possibility of
generating encapsulated NPs using surfactants as a protective shell, which makes it possi-
ble to obtain very homogeneous and well-dispersed NPs [18]. Surfactants are amphiphilic
compounds with a polar head group and one or more hydrophobic hydrocarbon chains.
Alkyl thiols, long-chain amines, carboxylic and phosphonic acids, phosphine and phos-
phine oxides, phosphates, phosphonates various coordination solvents (e.g., ethers, THF,
DMF) or not (e.g., alkanes, alkenes) have been widely investigated as a colloidal synthesis.

2.1. Sol-Gel Method

Sol-gel technique is widely used to produce metal oxide nanostructured materials in
technical and technological applications [19–22]. This is mainly assigned to the controlled
shape and size of the obtained nanomaterials. Since the synthesis of silica gel by Ebelman
in 1846, this method has been developed in various applications with excellent optical, mag-
netic, electrical, thermal, and mechanical properties [23]. The synthesis of solid materials
usually involves wet chemistry reactions and sol-gel chemistry based on the transformation
of molecular precursors into a network of oxides by hydrolysis and condensation [21,24,25].
Morphology is crucial in developing material properties by enhancing the surface/volume
ratio. Controlling material particles’ shape, size, and packaging structure is vital in con-
structing next-generation therapeutic devices and materials [23,26]. A sol-gel procedure
is an exceptional tool for deploying a controlled architecture in materials chemistry to
fabricate metal oxide nanostructures (NSOMs). Metal oxides prepared in sol-gel solution
possess excellent optical and electrical properties. Examining important NSOMs derived
from the sol-gel method helps us understand the factors that control particle shape and
size. In general, solvents, additives, aging time, and heat post-treatment are crucial factors
determining the shape and size of the building blocks of synthesized materials [27].

Figure 2 shows a representative diagram of the sol-gel method. The sol is obtained by
hydrolysis or polymerization reactions by adding appropriate reagents to the precursor
solution. The obtained sol can be deposited on a surface of the substrate from a thin film
by spin-coating or dip-coating techniques. Typically, the gelation process condenses the
sol or adds polymers to convert the sol into a gel. The obtained gel can be used to form
various materials such as NPS, xerogel, glass, or ceramics, depending on the subsequent
processing steps involved. Both NPs and xerogels can be obtained by simple evaporation
of the solvent. The obtained xerogel can be formed into ceramic form by heat treatment,
and the glassy nature can be induced by melting techniques. Thus, the sol-gel process can
obtain different materials with a controlled phase, shapes, and sizes [28].
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Figure 2. The representative diagram of the sol-gel technique, modified with permission from Ref. [29], IntechOpen, 2017.

2.2. Hydrothermal Method

Hydrothermal synthesis is an approach based on the reaction in solution, as shown in
Figure 3. Generally, the hydrothermal process can be defined as the preparing materials
in a temperature ranging from room temperature to high-temperature solutions [30,31].
Depending on the vapor pressure of the main composition in the reaction, the applied pres-
sure should be controlled to investigate the influence on the morphology of the prepared
materials. Hydrothermal synthesis can generate nanomaterials that are not stable at high
temperatures; however, the hydrothermal method can produce high vapor pressure nano-
materials with minimal material loss. In this method, the compositions of the synthesized
nanomaterials can be controlled by liquid phase or multiphase chemical reactions.

Figure 3. The procedure for ZrO2 preparation via the hydrothermal method, copied with permission
from Ref. [32], Hindawi, 2018.
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2.3. Green Synthesis Method

Green synthesis approaches have attracted great attention in developing nanomaterial
preparations to overcome the limitations of the techniques mentioned above [33–35]. The
procedure for this technique is described in Figure 4. The green synthesis of nanomaterials,
produced by regulation, control, cleaning, and remediation, will directly help improve
their environmental friendliness. Some basic principles of “green synthesis” can therefore
be explained by several components such as waste minimization, pollution reduction, and
the use of safer (or non-toxic) solvents as well as renewable raw materials.

Figure 4. Green synthesis for Fe3O4 nanoparticles, copied with permission from Ref. [36], Springer-
Nature, 2020.

Green syntheses are necessary to avoid unwanted or harmful by-products by estab-
lishing reliable, sustainable, and environmentally friendly synthesis procedures. The use of
ideal solvent and natural resource systems (such as organ systems) is essential to achieve
this goal. The green synthesis of metal nanoparticles has been adopted to accommodate
various biological materials (e.g., bacteria, fungi, algae, and plant extracts). Among the
environmentally friendly methods available for synthesizing metal oxide nanoparticles,
the use of plant extracts is a straightforward process for producing NPs on a large scale
compared to the synthesis mediated by bacteria and/or bacteria and mushrooms.

3. Silver Nanoparticles

According to the Royal Society of Chemistry, the first evidence of silver mining dates
to 3000 BC in Turkey and Greece. Even the ancients knew how to polish silver, heat
silver ore, and blow air on it. Silver does not react with air, but base metals such as
lead and copper oxidize and separate from precious metals. Silver, like gold, is formed
from the explosion of a star called a supernova. A 2012 study published in Astronomy
and Astrophysics found that exploding small stars produce silver and large stars. When
Europeans arrived in the New World in 1492, silver was abundant on Earth. Spanish
invaders have enthusiastically drawn this wealth by discovering that South America has
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silver- and ore-rich veins. According to the Silver Institute, 85% of the silver produced
worldwide came from Bolivia, Peru, and Mexico between 1500 and 1800.

Among the various types of NPs, Ag NPs have been widely developed to be utilized
in various applications due to their outstanding properties. Typical applications of Ag NPs
include clothing and textiles, medical devices, food storage, cosmetics, sunscreens, laundry
detergents [37], bandages [38], and sensors [39]. Some studies have found that Ag NPs have
cytotoxicity that can induce ROS formation in cells [40]. Therefore, many products such
as detergents, toiletries, etc. In addition, their synthetic or in-use personal care, whether
industrial or household, produces a release of NPs, which ultimately ends up in the sewer.
This untreated wastewater affects aquatic ecosystems and thus microorganisms. Recently,
Ag NPs have great concerns regarding aquatic toxicology due to the difficulty of tracking
these particles in the environment and accessing their effects on living organisms [41]. The
fate of NPs in the aquatic environment and their interactions, the interactions between
NPs with biological and abiotic components, and their potential for damage are not well
understood, and these uncertainties raise concerns about related risks. These molecules
impose on humans on health and the environment [42]. Based on the Scopus database [43],
the publications on Ag NPs increase with time, where it started in 1990 (two reports) and
reached 7105 reports in 2020, as shown in Figure 5.

Figure 5. Publications distribution with time on Ag NPs.

3.1. History of Silver Nanoparticles

Colloidal Ag NPs are molecules with an average diameter of 20–40 nm and comprise
80% silver atoms and 20% silver ions. They are the best-selling nanoparticles ahead of
carbon nanotubes and titanium nanoparticles and are released into the environment. The
demand for Ag NPs has increased due to their applicability in multiple fields. Over
the years, various synthesis techniques have been developed, and procedures have been
improved to prepare small and uniform Ag NPs. Ag NPs were prepared by a chemical
reduction technique, where the silver ions are reduced by sodium citrate [44].

Further investigations into the role of citrate revealed that besides acting as a reducing
agent, the citrate anion also has a proven effect on Ag NPs. At this stage, the LaMer nucle-
ation and growth mechanism was used to characterize the nucleation and growth of the
nanoparticles. However, studies revealed that LaMer’s intent and growth [45]. Mechanism
not related to their feedback. Therefore, Fan Hing et al. examined the mechanism of
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nucleation and growth that applied to its results. They prepared Ag NPs using a chemical
reduction technique in which silver perchlorate ions are reduced by sodium borohydride.
It was determined in their study that increasing the concentration of sodium borohydride
would lead to the instability of Ag NPs.

In the study conducted by Zielińska et al. [46], the stability of Ag NPs was the main
focus. Ag NPs were prepared using the chemical reduction method. Zielińska et al. show
that the type of precursor affects particle stability. According to their research, stable and
spherical Ag NPs were synthesized using silver nitrate as a precursor in the presence of
NaBH4 as a reducing agent and stabilizer. These results were compared with Ag NPs
prepared using silver nitrate or silver acetate as a precursor. In this case, the Ag NPs were
unstable and precipitated shortly after synthesis. Alternatively, their study presented that
it is also possible to synthesize stable and uniform spherical Ag NPs via chemical reduction
technique using AgNO3 as a precursor, NaBH4 as a reducing agent, and polymer as a
stabilizing agent [47].

In a study conducted by Hsu and Wu [48], crystalline Ag NPs with a particle size
in the range of 3–15 nm were prepared by reducing silver ions by formaldehyde using
three stabilizers. Reduction by formaldehyde is relatively slow and requires a catalyst
or reaction catalyst to speed up the reaction process. Moreover, the synthesis at high
pH favors a decrease in efficiency in the presence of poly (N-vinyl-2-pyrrolidone) (PVP),
resulting in spherical Ag NPs with an average particle size of 15 nm. Thiosalicylic acid
as a stabilizer will produce spherical Ag NPs with a size of 8 nm. Finally, triethylamine
(TEA) has the smallest spherical 3 nm Ag NPs. It was observed that without the addition
of a stabilizer, the particles would agglomerate, which was inhibited by Ag-N bonding by
TEA. Adjusting the stabilizer concentration is critical, as increasing the TEA concentration
increased particle agglomeration [49]. Sánchez et al. produced Ag NPs in the application
of 20 V to silver electrodes. Another observation is that complete cathode coverage limits
the formation of NPs and thus favors the particle deposition process. To avoid cathode
precipitation and reduction in nanoparticle production [50], two metallic silver plates as
an electrode pair were used to synthesize colloidal Ag NPs. Laser wavelength on particle
morphology was investigated. They showed that the deposition of metallic Ag NPs onto
a silica substrate by laser ablation under vacuum resulted in reduced particle size as the
laser wavelength decreased [51].

3.2. Synthesis of Silver Nanoparticles
3.2.1. Top-Down and Bottom-Up Approaches

As referenced, various kinds of Ag NPs have been utilized in various applications [52].
Specifically, Ag NPs of differing sizes and shapes have been used in a broad scope of uses
and clinical gear, such as electronic gadgets, coatings, cleansers, cleansers, swathes, etc. [53].
Explicit physical and optical properties of Ag NPs are subsequently essential factors in
advancing their use in these applications. In such a manner, the accompanying subtleties
of the materials are imperative to consider in their combination: surface property, size
dissemination, clear morphology, molecule composition, dissolution rate (i.e., reactivity in
arrangement and effectiveness of particle delivery), and kinds of diminishing and capping
specialists utilized. The blend techniques for metal NPs are partitioned into top-down and
bottom-up approaches, as demonstrated in Figure 6.

The big picture perspective disincorporates mass materials to produce the required
nanostructures, while the base-up strategy gathers single particles and molecules into
bigger nanostructures to create nanosized materials [54]. The following areas examine
different combination strategies in detail, from the union of spherical Ag NPs to shape-
controlled Ag colloids, just as size-controlled Ag NPs are synthesized. The segments
also expect to present different courses of union and their instruments, elucidating how
shape-and size-controlled amalgamation of Ag NPs can be accomplished through the
fitting choice of energy source, antecedent synthetic substances, diminishing and covering
specialist, just as well fixation and the molar ratio of synthetic compounds.
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Figure 6. Synthesis routes of Ag NPs by (a) Top-down and bottom-up methods, (b) chemical methods,
and (c) green methods, modified with permission from Ref. [55], MDPI, 2019. The electron transfer
initiates the bioreduction through nicotinamide adenine dinucleotide (NADH)-dependent reductase
as an electron carrier to form NAD+. The resulting electrons are obtained by Ag+ ions, which are
reduced to elemental Ag NPs.

3.2.2. Physical Methods

The physical technique usually utilized to prepare Ag NPs is the evaporation-condensation
method. It is commonly performed using a tube furnace at atmospheric pressure, synthesizing
various sizes [56]. Several attempts have been made. For instance, Tsuji et al. [57] proposed a
new method for synthesizing Ag NPs by a laser ablation technique with focused and unfocused
laser beam irradiation carried out at 12 and 900 mJ cm−2 intensities, respectively. The radiation
wavelengths used were 355, 532, and 1064 nm. This study revealed that the surface plasmon
wavelength of Ag NPs irradiated using 355, 532, and 1064 nm is ~400 nm for focused and
unfocused beams.
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The physical synthesis of Ag NPs incorporates the evaporation-condensation way
and the laser ablation method (Figure 6) [58]. Both approaches can synthesize enormous
quantities of Ag NPs with high immaculateness without using chemicals that discharge
poisonous substances and endanger human health and climate. Notwithstanding, agglom-
eration is regularly an incredible test due to the absence of capping agents. Moreover, both
approaches devour more noteworthy power and generally need a longer production and
complex hardware, increasing the total production cost.

Evaporation–condensation and laser ablation are the principal physical attitudes.
The shortfall of solvent contamination in the readied thin films and the consistency of
NPs conveyance are the upsides of physical synthesis methods compared to the chemical
processes. The biological synthesis of Ag NPs utilizing a tube furnace at an atmospheric
pressing factor has a few drawbacks. The tube furnace consumes a considerable space,
burns through a great measure of energy while raising the ecological temperature around
the source material, and requires a ton of time to accomplish warm steadiness. Additionally,
a commonplace tube furnace needs power utilization (a few kilowatts) and several minutes
of preheating to arrive at a stable operating temperature [59]. It was revealed that Ag NPs
could be synthesized using a small ceramic heater with a neighborhood heating zone [60].
The little ceramic heater was used to evaporate source materials. The evaporated fume can
cool quickly because the temperature angle near the heater surface is exceptionally steep in
examining a tube furnace.

Furthermore, Ag NPs sizes obtained from the laser ablation with nanosecond and
femtosecond laser beats were analyzed. In the arrangement, the wavelength of the laser
utilized was 800 nm. Additionally, a Ti: sapphire laser system created femtosecond laser
beats used in the examination [61]. It was tracked that Ag NPs sizes retrieved from the
nanosecond laser beats were more modest than those from femtosecond laser beats were.
The average widths of the obtained Ag NPs from nanosecond and femtosecond laser
beat schemes were 27 and 41 nm. For technique enhancement, synthesizing Ag NPs by
condensation utilizing a small ceramic heater with a nearby warming area of 500 m2 was
projected [60]. Unadulterated spherical Ag NPs with shifting measurements from 6.2 to 21.5
nm were effectively created. The examination inferred that the geometric mean breadth,
the geometric standard deviation, and the absolute number centralization of Ag NPs
increased with the surface temperature of the heater. Their approach could dependably
synthesize stable Ag NPs, since the heater surface temperature did not fluctuate with
time [60]. Various Ag NPs prepared by physical methods are listed in Table 1.

Table 1. A list of various physically synthesized Ag NPs.

Physical
Method Applications Shape Size (nm) Reference

Laser ablation

Antibacterial efficiency Semi-spherical 14 [62]

Spherical 13–32 [63]

Antibacterial activity 5–30 [64]

Catalytic degradation
activity

Spherical-like 17 [65]

Spherical
8–10 [66]

Thermal
decomposition

40–50 [67]

5–15 [68]

Cubic/hexagonal 3.0–4.5 [69]

Small Ceramic
Heater

Inhalation toxicity
studies Spherical 14 [70]

3.2.3. Chemical Methods

The famous method for Ag NPs synthesis is a reduction by natural and inorganic
reducing agents (Figure 7). By and large, unique reducing agents, for example, sodium
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citrate, ascorbate, sodium borohydride, essential hydrogen, polyol measure, Tollens reagent,
N, N-dimethylformamide (DMF), and poly (ethylene glycol)-block copolymers are utilized
for the reduction of silver particles (Ag+) in aqueous or non-aqueous arrangements. These
reducing agents decrease Ag+ and lead to metallic silver (Ag0), trailed by agglomeration
into oligomeric clusters. These clusters ultimately arrange the metallic colloidal silver
particles [71]. It is critical to utilize defensive agents to stabilize dispersive NPs during
metal nanoparticle planning and ensure that the NPs consumed or tied onto nanoparticle
surfaces stay away from their agglomeration [72].

Figure 7. Ag NPs synthesis mechanism from plant extract, modified with permission from Ref. [73],
Royal Society of Chemistry, 2019.

Surfactants involving collaborations with molecule surfaces can stabilize molecule
growth and shield particles from sedimentation, agglomeration, or losing their surface
properties. Stabilizing dispersive NPs during Ag NPs synthesis is critical. The most
well-known methodology utilizes stabilizing agents that can be absorbed outside Ag NPs,
evading their agglomeration [74]. To stabilize and to dodge agglomeration and oxidation
of NPs, capping agents can be utilized, for example chitosan, oleylamine gluconic acid,
cellulose or polymers such as poly N-vinyl-2-pyrrolidone (PVP), polyethylene glycol (PEG),
polymethacrylic acid (PMAA) and polymethylmethacrylate (PMMA) [75]. Adjustment
using capping agents can be accomplished either through electrostatic or steric shock. For
example, electrostatic adjustment is typically achieved through anionic species such as
citrate, halides, carboxylates, or polyoxoanions that adsorb or cooperate with Ag NPs to
bestow a negative charge on the outside of Ag NPs. Therefore, the surface charge of Ag NPs
can be constrained by covering the particles with citrate particles to give a solid negative
charge. Contrasted with utilizing citrate particles, fanned polyethyleneimine makes an
amine-functionalized surface with a profoundly specific charge. Other capping agents
likewise give extra usefulness. Polyethylene glycol (PEG)-coated NPs show excellent
stability in exceptionally salty solutions, while lipoic acid-coated particles with carboxyl
gatherings can be utilized for bioconjugation.
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3.2.4. Green Methods

Green synthesis methodologies dependent on natural reducing agents rely on different
reaction parameters such as solvent, temperature, pressing, and pH conditions (acidic,
fundamental, or impartial). For the union of metal oxide nanoparticles, plant biodiversity
has been extensively viewed as the accessibility of successful phytochemicals in different
plant separates, particularly in leaves such as ketones and aldehydes flavones, amides,
terpenoids, carboxylic acids, phenols, and ascorbic acids [36,76]. These parts are fit for
decreasing metal salts into MNPs [77]. The fundamental focus of such nanomaterials has
been researched for biomedical diagnostics, antimicrobials, catalysis, atomic detecting,
optical imaging, and marking of natural frameworks.

Essential elements for the green synthesis of Ag NPs are silver salts and bioreducing
agents [78]. In general, bioreducing agents or various components present in cells act
as stabilizers or capping agents, reducing these agents’ need for external inclusion [79].
Traditional strategies for producing NPs are costly, harmful, and not environmentally
friendly. Therefore, to overcome these problems, experts are adopting a green method for
synthesizing NPs. Natural resources and their constituents were used in the synthesis of
NPs. Generally, plants and their extracts, bacteria, fungi, and biopolymers can prepare Ag
NPs via the green technique, as shown in Table 2. The green composition of plants, plant
extracts, bacteria, fungi, and overall biopolymers is discussed in Section 3.2.5 of this review.

Table 2. Various plant extracts, bacteria, fungi, and biopolymers as bioreducing agents for the
synthesis of Ag NPs.

Source Bioreducing Agent
of Silver Nitrate The Mechanism for the Synthesis

Plants
Alkaloids, Terpenes, Steroids and
Saponins, Flavonoids and Tannins,
Alcohol, Phenolic Acids.

Electrostatic interaction between the
functional groups of a respective
constituent of plant extract and Ag+

Bacteria

Bacillus Cereus, Bacillus licheniformis,
Staphylococcus aureus,
Enterobacteriaceae, Pantoeaananatis,
Proteus
mirabilis

In the extra-cellular synthesis of Ag
NPs by Bacillus subtilis, the
synthesis of Ag NPs was observed
in the reaction mixture after 6 h
contact time at room temperature.

Fungi

Proteins, peptides enzymes,
napthoquinones, NADH, NADPH,
peptides, nitrogenous
biomacromolecules,

Intracellular and extracellular
synthesis of Ag NPs

Biopolymers Cellulose, Chitosan, polypeptides,
alginate, lignin, protein

Electrostatic interaction between
Ag+ ion and polar groups attached
to the polymer

3.2.5. Green Synthesis by Plant Extract

The plant-based synthesis of Ag NPs is largely embraced more in contrast to tech-
niques that utilize microorganisms, since it tends to be developed effectively, is less bio-
compromising, and excludes the progression of cell culture growth [80]. Leaves, natural
products, roots, seeds, and stems contain biomolecules such as compounds, alkaloids,
polysaccharides, tannins, terpenoids, phenols, and nutrients of extraordinary restorative
worth despite their complex structures, are helpful for the environment [81,82]. Plant
extract replaces all harmful synthetic compounds such as trisodium citrate and sodium
borohydride. The concentrate from plants helps well in the amalgamation of NPs because
of the arrangement of Ag NPs settled by the flavonoid and terpenoid parts present in
leaf stock, while the decrease of silver particles is assigned by the polyol water-solvent
heterocyclic segments of leaf broth [83]. The concentrate of plant Salvia spinosa under
in vitro conditions was utilized interestingly to incorporate Ag NPs [84]. The preparation
of Ag NPs by Alfalfa sprouts was firstly introduced [85].
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These days, the creation of NPs centers around green synthesis from the extract of
various plant parts [86]. The multipurpose agents of reduction and adjustment of plant
extraction for biological synthesis of NPs are used to execute green science [87]. Extraction
of nontoxic plants for synthesis nanoparticles offer characteristic capping agents. Besides,
as far as the cost for nanoparticle synthesis, plant extraction improves the cost viability over
the disconnection of microorganisms for the achievability of nanoparticle synthesis [88].
As of late, there is a growing interest in synthesizing MNPs by ‘green’ techniques.

For this reason, extracts of various plants have been used for Ag NPs preparation. One
of the primary approaches to utilizing plants as a source for the synthesis of MNPs was
with Alfalfa sprouts [85], which was the main report on the arrangement of Ag NPs using
a living plant system. Hay roots can engross Ag from agar medium and move them into
the plant’s shoots in a similar oxidation state. These Ag molecules orchestrated themselves
in the shoots to shape NPs by joining themselves and framing bigger courses of action.

In contrast with bacteria and fungi, green synthesis utilizing plants has all the earmarks
of being quicker, and the principal examinations exhibit that synthesis methodology can
produce Ag NPs quite quickly. For example, Shankar et al. showed that utilizing Geranium
leaf takes around nine hours, arriving at 90% response contrasted with the 24 to 124 h
vital for other responses announced before [89]. Therefore, the utilization of plant extracts
in green synthesis has prodded various examinations and studies up till now. It was
shown that the creation of MNPs utilizing plant extracts could be finished in the metal
salt arrangement inside the space of minutes at room temperature, contingent upon the
idea of the plant extract. After the decision of the plant extract, the primary influencing
boundaries are the grouping of the extract, the metal salt, temperature, pH, and contact
time [90]. The mechanism of preparing Ag NPs from plant extract is shown in Figure 7.
In addition, Table 3 lists the synthesis of Ag NPs using plant extracts with different sizes,
shapes, characterization, and applications.

Table 3. A list of synthesis Ag NPs using plant extracts with different sizes, shapes, characterization,
and applications.

Plant Sources Part Applications Operating Conditions Size/Shape Reference

Onion,
tomato,
Acacia
catechu

Pieces Photocatalytic
application

16.987 g of AgNO3 in 1 L
of distilled water, 10 mL

extract, stirred for 10 min.
and kept for 24 h at room

temperature

32.1, 22.6, 14.5
nm, Spherical [91]

Curcuma longa L. Leaf Antibacterial
activity

10 mL of Curcuma longa
L. leaf extrac, 90 mL of 1

mM AgNO3.

15–40 nm,
spherical [92]

Phaseolus vulgaris L. Seeds

Photocatalytic
activity,

antimicrobial
activity

Extract (1, 2, 3, and 4 mL),
AgNO3 (0.01 M, 50 mL),

(300 rpm) for 30 min

10–20 nm,
spherical [93]

Solanum nigrum L. Leaves Ecotoxicity
Studies

1 mL leaf extract, AgNO3
(10−3 M, 50 mL), stirred

continuously at room
temperature

10–50 nm,
spherical [94]

f Citrus
reticulata Peels

Biocide and
anticorrosion

properties

1 mM AgNO3, ratio 1:1
with tangerine peels

extract

39.6–56.1 nm,
round [95]

Apple Fruits Antibacterial
activity

AgNO3 (1 mM, 90 mL), 10
mL of extract, at 70 ◦C.

45–110 nm,
spherical shape [96]

Clove Buds
Antibacterial

and antidiatom
activity

AgNO3 (1 mM, 400 mL),
80 mL of extract, darkness

for 24 h
9.42 nm [97]

Delonix regia Leaf

In vitro
cytotoxicity and

interaction
studies with

bovine serum
albumin

Leaf extract and an
aqueous solution of 1 mM

AgNO3 (20:80, V/V).

72.77 nm,
non-uniform [98]
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3.2.6. Green Synthesis Using Bacteria

As of late, the capability of biosynthesis of Ag NPs using bacteria has been acknowl-
edged [99]. For example, Pseudomonas stutzeri AG259, disconnected from silver mine,
was utilized to deliver Ag NPs inside the cells [100]. In addition, a few bacterial strains
(Gram-negative just as Gram-positive), specifically A. calcoaceticus, B. amyloliquefaciens,
B. flexus, B. megaterium, and S. aureus have been utilized for both extra-and intracellular
biosynthesis of Ag NPs [101]. These Ag NPs are spherical, disk, cuboidal, hexagonal, and
triangular fits. Saifuddin et al. [102] have exhibited an extracellular biosynthesis of Ag NPs
(∼5–50 nm) using a mix of culture supernatant of B. subtilis and microwave light in water.
Shahverdi et al. [103] have detailed quick biosynthesis of Ag NPs (inside five min) using
the way of life supernatants of K. pneumonia, E. coli, and Enterobacter cloacae.

The first evidence of bacterial synthesis of Ag NPs was generated using a strain, the
Pseudomonas stutzeri AG259 strain, meticulously isolated from silver mines [104]. A few
microorganisms can endure metal particle concentrations and likewise grow under those
conditions, and this wonder is because of their protection from that metal. The instru-
ments engaged with the opposition are efflux frameworks, change of solvency and toxicity
through reduction or oxidation, biosorption, bioaccumulation, extra-cell complex forma-
tion or precipitation of metals, and absence of explicit metal transport frameworks [105].
However, there is another perspective that these organisms can grow at lower concentra-
tions, and their openness to higher concentrations of metal ions can incite toxicity. Figure 8
shows the proposed mechanism for silver nanoparticle synthesis by Streptomyces sp.LT3
involving an NADH/NADPH dependent nitrate reductase enzyme that converts Ag+ to
Ag0 through electron shuttle enzymatic bioreducing agent.

Figure 8. Proposed mechanism for Ag NPs synthesis by Streptomyces sp.LT3 involving NADH/NADPH dependent nitrate
reductase enzyme, modified with permission from Ref. [106], Royal Society of Chemistry, 2019.
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3.2.7. Green Synthesis Using Fungi

Compared with bacteria, fungi can create more significant measures of NPs because
they can emit more proteins, which directly means higher productivity of NPs [107]. The
mechanism of silver nanoparticle creation by fungi follows the accompanying advances:
catching Ag+ ions outside the fungal cells and reducing the silver ions by the enzymes
present in the fungal framework [108] (as shown in Figure 9). The extracellular enzymes
such as naphthoquinones and anthraquinones are said to work with the reduction. Regard-
ing the case of F. oxysporum, it is accepted that the NADPH-dependent nitrate reductase
and a van quinine extracellular cycle are answerable for nanoparticle formation [109].
Although the specific mechanism engaged with silver nanoparticle creation by fungi is not
completely interpreted, it is accepted that the previously mentioned marvel is liable for
the interaction. A significant downside of using microbes to synthesize Ag NPs is that it is
an exceptionally sluggish cycle compared to plant extracts. Thus, the utilization of plant
extracts to synthesize Ag NPs turns into a practical alternative.

In a recent study, Hietzschold et al. [110] showed that nanoparticle synthesis happened
by the action of NADPH, with no requirement for the nitrate reductase protein. This is in-
credibly fascinating since it prompts various organisms to synthesize NPs without the vital
condition of reductase compound creation. Nonetheless, Durán et al. [111] synthesized Ag
NPs using Fusarium oxysporum and proposed that the reduction of silver ions was because
of the action of the nitrate reductase protein and anthraquinones. Using sanitized nitrate
reductase and phytochelatins from a similar fungus was tracked down that extracellular
NADPH-dependent nitrate reductase enzymes and quinones were answerable for the
formation of NPs [112].

Figure 9. Mechanisms of biosynthesis of Ag NPs using fungi, modified with permission from Ref. [113], Frontiers, 2019.

3.3. Characterizations of Silver Nanoparticles
3.3.1. Biological Characterizations

The beneficial properties of silver, limiting the spread of infection and improving daily
hygiene, have been known and used for over 7000 years [51]. The compound was then con-
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tinued to prevent water pollution or prevent eye infections in infants due to the application of
AgNO3 [50]. Due to the release of Ag+ ions, its antibacterial properties have been recognized
since bacteria were identified as the causative agents of infection. Many silver products were
used until discovering antibiotics, including creams made from silver sulfadiazine and dressings
made from silver leaves [114]. Silver is considered a “trace dynamic” element due to its antibacte-
rial effect at low concentrations (range 0.1–10 mg L−1) [114]. According to Schierholz et al. [115],
the minimum inhibitory concentration of most Gram-positive and Gram-negative bacteria is
0.5–10 ppm.

Bacteria in the presence of ionic silver can contain up to 100 Ag+ ions, even if they are
highly diluted. This is the same number of digits as the number of enzymes present in
the cell [51]. This phenomenon, called “in vivo accumulation,” explains the effectiveness
of Ag+ ions at low concentrations [51]. Silver in metallic form is inert. However, when
oxidized in contact with the atmosphere or humidity (Ag metal → Ag2O), the formed
silver oxide dissolves, and Ag+ ions are released. These ions have a wide range of effects
on Gram-positive and Gram-negative bacteria and yeast, fungi, and viruses. It is important
to note that the killing effect of silver depends on the amount of Ag+ ions present in
the medium and can interfere with microorganisms. Indeed, due to its high reactivity,
silver can interact with proteins and salts in suspension media (e.g., AgCl formation, very
sparingly soluble precipitates) and is an active amount for cells. Light also negatively
impacts the biokilling efficiency of Ag+ ions by causing photoreduction of cations to metal
atoms (Ag0) [116].

3.3.2. Electronic Characterizations

In recent years, AgNP showed great attention in modern technological applications
due to their high conductivity; conductive inks based on Ag NPs are widely utilized
for electronic applications are based on Ag NPs [117,118]. As a noble metal, Ag NPs
show a Localized Surface Plasmon Resonance (LSPR) as an optical phenomenon observed
when the electromagnetic radiation excites the surface conducting electrons of MNPs,
resulting in a coherent resonance oscillation of the particles. The location of the extinction
maximum is highly dependent on the reflective index and dielectric properties of the
surrounding environment and the adsorption of the molecules on the metal surface. This
phenomenon can be utilized to detect the changes in the molecule-induced environment
by measuring the visible and near-infrared wavelength regions [119]. Moreover, Ag NPs
are used in solar cells to enhance light trapping and thus improve the assembled devices’
overall conversion efficiency. Ag NPs are employed in microelectronic materials due
to significantly reduced melting points with increased surface energy. Ag NPs show a
promising ability for microelectronic applications and can be applied as a conductive filler
in electronically conductive adhesives [120]. The lower surface roughness of Ag NPs is an
important feature to reduce the electrical losses at a higher frequency. Thus, the electrical
conductors assembled with a thick film of silver nanoparticle reduce the electrical loss,
giving better packing and fabricating antennas [121]. The electro reflectance (ER) effect of
Ag NPs is one of the most promising features in optoelectronic and sensor applications.
The change in the electronic charge stored on the particles alters the particle ensemble’s
absorption spectrum. Typically, the ER effect for Ag NPs is 100 times stronger than for a
bulk metal surface, which is readily discernible to the unaided eye [122].

4. Applications of Silver Nanoparticles

Over the last decades, the production of NPs has been increasing rapidly for appli-
cations in electronics, chemistry, biology, and almost all our daily life applications [123].
This is mainly due to their properties of being very small, close to the biomacromolecules
and providing high surface area, rapid diffusion, and high reactivity in both liquid and
gas phases [124,125]. Recently, Ag NPs have attracted attention in various applications
such as biological, food, optoelectronics, electronic devices for energy conversion, elec-
tron field emission sources for emission displays, and surface-enhanced Raman proper-
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ties [99,122,126,127]. Accordingly, utilizing Ag NPs in sensing, electronics, and photo-
voltaics, mainly for the excellent physio-chemical properties, will be reviewed in detail in
the following sections.

4.1. Electronic Applications

Recently, great efforts have been dedicated to inkjet printing technology due to their
wide applications in photovoltaics [128], radio-frequency identification devices [129], smart
clothing [130], light-emitting diodes displays [131]. This interest is due to these advantages:
(i) the inkjet technology could offer a digital and non-contact additive patterning that can be
utilized for fabricating a wide range of materials, and (ii) low cost, which is the major factor
for large scale production [132]. Hence, inkjet printing is proper for printing conductive
tracks and patterns on various flexible substrates for assembling flexible electronics [133].
A lot of conductive materials, such as conductive polymers [134], carbon-based mate-
rials [135], and metal NPs [136], have been investigated as injecting materials and as a
multi-directional printing of flexible and stretchable silver micro-electrodes [137]. However,
the lower conductivity of both polymers and carbon (~10–102 S cm−1) comparable to that
of metals (~104–105 S cm−1) and the high temperature (>250 ◦C) needed for printing are
main limitations for flexible substrates [138]. Therefore, MNPs have significant attention
as conductive inks [139,140]. The detailed procedures for printing nanomaterials have
been reviewed in the literature [140,141]. Due to their high conductivity, conductive inks
based on Ag NPs are widely utilized for electronic applications and are based on Ag
NPs [117,118,137].

For instance, Shen et al. synthesized highly stable, homogeneous aqueous Ag NP inks
by dispersing the Ag NPs in water [118]. These inks were printed on photo paper and
polyethylene terephthalate (PET) substrates by a color printer. The printed patterns showed
a significantly decreased resistivity to 3.7 µΩ cm when annealed at 180 ◦C, twice that of
bulk silver. Furthermore, the printed patterns showed high conductivity (>20% of the bulk
silver). A few years later, Mo et al. prepared Ag NPs with various radii (48–176 nm) as
conductive ink for printed, electronic applications [117], as shown in Figure 10. It was
found that the conductivity of the Ag NPs films significantly increased with increasing
particle size. The prints on the art coated paper exhibited better flexibility compared to
those on the photo paper. The RFID antenna was screen printed on art-coated paper using
the Ag NPs-based conductive ink. The printed antenna with the conductive Ag line shows
a resistance of 12.5 Ω after heating at 120 ◦C for 10 min, which is much lower than the
commercially available screen-printed RFID antenna (~70 Ω). The printed RFID antenna
also shows good resistance stability, changing from 12.5 to 13.4 Ω after face-to-face folding.
Recently, Fernandes et al. [142] prepared seven conductive inks by Ag NPs, then printed
them on a glossy photo paper (EPSON) substrate. As the temperature increases from 150
to 300 ◦C, the resistivity of the prepared inks reduced from 3.3 to 5.6 × 10−6 Ω cm, and
the viscosity ranged from 3.7 to 7.4 mPa s, which is suitable for inkjet printing fabrication.
Furthermore, the electrical impedance of all printed electrode pairs is less than 200 Ω,
which is suitable for formulated inks for flexible electronic devices.
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Figure 10. SEM images of Ag NPs powder (a), a cross-section of the printed silver track after heating
at 50 ◦C (b), and LED device assembled by inkjet printing silver conductive circuits on photo paper
(c) and PET (d) substrate, copied with permission from Ref. [118], Royal Society of Chemistry, 2014.
The relationship between the resistivities of Ag NPs-based films and the average diameter of Ag NPs
at 140 ◦C (e), hand-drawn 7 segment digital LED display circuit-bent in various shapes (f–h), and
screen printed high-frequency RFID antenna before (i) and after folding (j), copied with permission
from Ref. [117], Springer-Nature, 2019. SEM cross-section of ink Ag NPs on a photo paper and
embedded in an epoxy resin (k), designs of the printed electrodes (l), with a closer view of design
D-6 (m), and mechanical bending outwards (n) using the ink formulation, copied with permission
from Ref. [142], Nature, 2020.

4.2. Sensing Applications
4.2.1. Gas Sensing Applications

Developing fast, sensitive and selective gas sensors has received great attention in
environmental monitoring, national security, and food safety applications [143]. Typically,
the total performance of gas sensors strongly depends on the specific area surface of the
materials utilized for detection gas. Thus nano-scale sensing is predictable to display
improved sensing performance [39]. Typically, semi-conductive nano metal oxides such as
ZnO and SnO2 exhibit high sensitivity and fast responses to some gases [144]. A relatively
higher temperature (150–600 ◦C) required for maximum response is a big problem that
restricts the practical applications in most areas [145]. Therefore, developing suitable
nanomaterials to enhance the sensor response is highly recommended. Noble metal
nanostructures are the most promising in this field due to LSPR. The LSPR is an optical
phenomenon observed when the electromagnetic radiation excites the surface conducting
electrons of MNPs, resulting in a coherent resonance oscillation of the particles. The location
of the extinction maximum is highly dependent on the reflective index and dielectric
properties of the surrounding environment and the adsorption of the molecules on the
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metal surface [119,146]. Therefore, the peak wavelength shift in the extinction maximum of
NPs is used to fast detect molecule-induced changes surrounding the NPs. Thus, UV-Vis
spectroscopy and the naked eye can observe the changes in the absorbance of the visible
and near-infrared wavelength regions.

There are many published articles on the use of LSPR sensing applications in the liquid
phase to detect organic phosphorous pesticides [147] and ammonia [148]. Generally, SPR
absorption of noble metal NPs is strong in the visible to near-infrared (IR) region. Moreover,
SPR is particularly sensitive to its size, shape, composition, distance, and surroundings.
Therefore, it displays a promising ability for various sensors. However, Ag NPs have
higher extinction coefficients than gold nanoparticles (Au NPs) of the same size [149]. Due
to this feature and high specific surface area, high catalytic, high crystallinity, and their
electrical and optical properties, Ag NPs have been widely investigated as gas sensor ap-
plications [127,150]. This section will present the recent progress on Ag NPs as gas sensors
for ammonia, methane, and hydrogen peroxide. Despite the wide use in industry, such as
fertilizers, animal feed production, and manufacturing of paper and plastics, ammonia is
a toxic material with a harmful effect on the human body as it can harm tissues and the
immune system [151]. Ammonia is largely produced in deteriorating food and fruitbodies
by various micro/macrofungi [152]. Thus, monitoring the concentration of ammonia in air
and liquid in the atmosphere is extremely important. Recently, Ag NPs have been widely
used to sense organic gases such as methane and ethanol [39,153,154]. Cannilla et al. [155]
successfully prepared Ag NPs in a poly-methacrylic acid (PMA) matrix by a photo-induced
reduction process followed by deposition on a ceramic substrate to sense ammonia gas
in resistive base sensors. To improve the conductivity of the thin films to be suitable
for sensing, the as-prepared Ag NPs/PMA were loaded with multi-walled carbon nan-
otubes (MWCNTs). The developed sensor shows the considerable ability to work at low
temperature with a wide range of detection range and represent fast response/recovery
times (Figure 11). Kumar et al. prepared face-centered cubic polyvinylpyrrolidone (PVP)
capped Ag NPs at room temperature and a chemical reduction method [127]. The prepared
sample showed an average size of ~22 nm, showing a conductive and metallic nature. As
ammonium gas sensing, the synthesized NPs thin films showed the maximum sensitivity
towards ammonia gas.

Ag NPs also show a promising activity as sensors for methane gas. Ghanbari et al.
decorated Ag NPs with an average size of 29.3 nm on graphene via the chemical reduction
method [150]. The sensing ability of the prepared Ag NPs/G was investigated against
the methane gas in a resistive-based sensor. The results demonstrate that at methane
concentrations less than 2000 mg L−1, the maximum response directly increases even
at room temperature. Moreover, the Ag NPs/G shows a low limit of detection (LOD),
highly selective, reversible, repeatable for methane sensing. Furthermore, Rithesh et al.
prepared an Ag NPs/PVP/PVA composite with various concentrations of silver at room
temperature [156]. The designed tapered plastic optical fiber gas sensor is utilized to
mentor various concentrations of organic gases (ammonia, methanol, and ethanol) with
a concentration ranging from 0 to 500 mg L−1. The Ag NPs/PVP/PVA showed better
selectivity towards ammonia compared to the other gases.

Moreover, among the investigated gases, the sensitivity of the proposed sensor against
ammonia significantly increases with an increase in silver concentration. The sensor ability
of Ag NPs against ethanol gas was investigated, as shown in Figure 12 [39]. Triangular Ag
NPs were fabricated by a nanosphere lithography method; the obtained sample is arranged
in an ideal hexangular array. The sensor of the prepared sample was investigated against
vapors of ethanol, acetone, benzene, hexane, and propanol. However, ethanol exhibits the
highest sensitivity (0.1 nm mg−1 L−1) with the lowest DOL (~10 mg L−1), as well as the
ethanol vapor test process is also fast (~4 s) and reversible.
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Figure 11. (a) Scheme for AgPMA/MWCNTs composite, (b) comparison between dynamic responses of PMA/MWCNTs
and Ag2PMA/MWCNTs sensors to 44.7% of NH3 at 50 ◦C, copied with permission from Ref. [155], Royal Society of
Chemistry, 2014.

Figure 12. (a) TEM of Ag NPs/PVP/PVA composite, and (b) SEM of Ag NPs/PVP/PVA film on a glass plate, copied with
permission from Ref. [156], Elsevier, 2015, (c) SEM of the triangular nanoprisms, and (d) calibration sensitivity curves of
peak wavelength response to the concentrations of the tested vapors, copied with permission from Ref. [39], MDPI, 2011.
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Banihashemian et al. successfully prepared single-wall carbon nanotubes (SWCNTs)
decorated with Ag NPs using a reduction process [157]. The Ag NPs/SWCNTs reflect
reasonable sensing for ethanol gas in the ambient temperature. The results revealed that
the Ag NPs/SWCNTs sensor shows a response in the order of 7.1–45.3 at room temperature
for 1–200 ppm (8–116 s response time and 7–38 s recovery time) LOD of 2 ppb with a full
recovery response. Recently, Daniel et al. developed that adding Ag NPs to the hematite
(α-Fe2O3) significantly improves the response of the assembled sensor against ethanol
vapor at room temperature. This is mainly assigned to enhance the charge carrier density
and the ethanol adsorption rate, thus increasing the selectivity and sensitivity. All these
allowing quantifications of ethanol vapor in the 2–35 mg L−1 range with an excellent
linear relationship.

4.2.2. Hydrogen Peroxide Sensing Applications

In the last decade, hydrogen peroxide (H2O2) monitoring has gained importance due
to its widely employed in many industrial, atomic power stations, medical sectors and its
application as a disinfecting agent for water pools [158–160]. However, the high presence
of H2O2 can cause various biological damages, leading to aging, neurodegeneration,
and cancer [161,162]. Therefore, developing a high-response, cheap method is highly
recommended for medical, pharmaceutical security, and environmental protection [161].
Various techniques, such as spectrophotometry [162,163], chemiluminescence [164], and
electrochemistry [165], have been utilized to detect H2O2. These methods are categorized
as enzymatic and non-enzymatic methods. In the case of enzymatic, the peroxidase is an
illustrative enzyme for H2O2 exposure; however, both pH and temperature are limited.

As mentioned above, noble metal NPs display strong SPR absorption with extreme
sensitivity to the size, shape, composition, and surroundings suitable for colorimetric
sensors in the range of visible to near-infrared region. For colorimetric assays, Ag NPs
have a high ability toward the decay of H2O2 [166]. This reaction can mainly be sensed by
colorimetric principles, as the colloidal Ag NPs exhibit a characteristic color from the LSPR.
The alteration in both particle size and shape results from the incorporation of colloidal Ag
NPs with H2O2 can be identified by determining the change in the absorption spectral at
the wavelength of LSPR. For instance, Zhang et al. [167] investigated H2O2 via colorimetric
detection using three different morphologies of Ag NPs (triangular, spherical, and cubic) as
in Figure 13. The Ag NPs with various shapes reacted with H2O2, and the edges of Ag NPs
had been etched. The change shape transformation induced visible color change, which
was used for the quantitative determination of H2O2. The triangular Ag NPs display the
highest sensitivity for a quite small level of H2O2 (5 mM), while the cubic Ag NPs display
lower sensitivity. Recently, Srikhao et al. [168] prepared Ag NPs with an average particle
size of 16.9 nm by using phenolic compound extracted from sugarcane leaves as a reducing
agent. The results showed that 90 ◦C and stirring for 20 min are the optimum conditions
for phenolic compound extraction. The prepared Ag NPs were evaluated as ammonia and
H2O2 solution sensing by UV-Vis spectrophotometer and the naked eye. It observed that
the Ag NPs sensitively detect both H2O2 and ammonia even at low concentrations.

Moreover, the prepared Ag NPs could detect these toxic agents even after two weeks.
However, measuring in spectrophotometric methods requires some standard solutions and
tools such as standardized cuvettes, microwell plates, and spectroscopic equipment. To
overcome these limitations, Yoshikawa et al. utilized an optical technique for detecting
H2O2 in their work Ag NPs deposited on a glass plate/Au NPs [166]. The Ag NPs chip
diffracts incident light, and the diffraction efficiency is correlated with the amount of Ag
NPs. By applying a drop of H2O2 onto the chip, the diffraction strength debilitates due
to the decay of Ag NPs. A movable measurement technique of the diffraction intensity
changes is assembled, and the H2O2 detection in a concentration range of 6.7–668 mmol
L−1 in about 2 min by dropping the H2O2 solution onto the substrate.
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Figure 13. (a) Scheme for Ag NPs-H2O2 scheme for H2O2 sensing. TEM image of Ag NPs before etching, (b) triangular
(d) spherical, and (f) cubic. TEM images of Ag NPs after etching, (c) triangular, (e) spherical, and (g) cubic. Plots of SPR
peak change of (h) triangular, (i) spherical, and (j) cubic Ag NPs vs. concentrations of H2O2. (Inset the color change of
Ag NPs in the presence of H2O2 with various concentrations), copied with permission from Ref. [167], Royal Society of
Chemistry, 2016.

The electrochemical technique is promising to detect H2O2 due to its simplicity, lower
cost, ease of operation, and high sensitivity and selectivity compared to the other tech-
niques [165]. Many electrochemical sensors based on metals and metal oxides-based
complexes have been developed to overcome the high overpotential. Due to the high
electron transfer rates, high catalytic activity toward reducing H2O2, and significantly
decreasing overpotential at oxidizing and reducing agents, Ag NPs are widely utilized to
fabricate these sensors. Zhan et al. [169] decorated Ag NPs on three-dimensional graphene
(3DG) via the hydrothermal process as a sensing electrode for electrochemical detection
of H2O2 in phosphate-buffered solutions. The electrochemical results approved that the
Ag NPs-3DG based biosensor exhibits fast amperometric sensing, low LOD, wide linear
responding range, and perfect selectivity for non-enzyme H2O2 detection. Recently, Madu-
raiveer et al. [170] utilized an electrochemical sensor for H2O2 by using Ag NPs introduced
in a silicate matrix (APS(SG). The prepared APS(SG)-Ag NPs were deposited on glassy
carbon (GC) electrode. The electron transfer behavior of the APS(SG)-Ag NPs was inves-
tigated by potassium ferricyanide ([FeCN)6]3−), methyl viologen (MV2) and ruthenium
hexamine ([Ru (NH3)6]3+). The GC/APS(SG) electrode displayed a twofold increase in the
peak currents and fast electron transfer kinetics toward [Fe (CN)6]3− in comparison with
the GC electrode. The GC electrode modified with APS(SG)-Ag NPs significantly improved
electron transfer. The GC/APS(SG)-Ag NP electrode as an electrocatalytic sensor against
H2O2 offered a reduction of H2O2 at less negative potential and showed the experimen-
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tal low detection limit of 25.0 µM with the sensitivity of 0.042 µA/µM. Additionally, an
APS(SG)-Ag NP-based sensor showed a fast response, good stability, and reproducibility.

4.3. Solar Cell Applications

Although the excellent research work in the conventional silicon and thin film-based
solar cells, the production cost of solar cell electricity is still too high compared to the
electricity supplied by fossil fuels. The efforts that have been made in recent decades
can be categorized under two main strategies. One is to enhance the power conversion
efficiency (PCE) and reduce the total production cost of silicon and thin film-based solar
cells. At the same time, the other way involves fabricating alternative solar cells with
low-cost production simultaneously with considerable total performance. The first one
was achieved by using deposited thinner films or thinner silicon wafers. However, with
the thinner films, the efficiency of light trapping will be reduced. To overcome this issue,
introducing metallic NPs exhibited a promising way to enhance light trapping. This is
mainly due to the excitation of surface plasmons. Ag NPs have a promising ability to
increase absorption in wafer-based and thin-film silicon solar cells [171]. Bonsak et al.
deposited a thin layer of Ag NPs as a trapping layer in silicon-based solar cells [172]. Ag
NPs of various sizes were synthesized by the chemical reduction method using sodium
borohydride and sodium citrate reducing agents. The photovoltaic study confirmed ~9%
enhancement in the quantum efficiency at longer wavelengths. A few years later, Dzhafarov
et al. reported the influence of Ag NPs on the optical and photovoltaic properties of silicon
substrates, silicon solar cells, and glass [173]. Ag NPs layer was deposited by evaporation
followed by thermal annealing. The deposition of Ag NPs on silicon substrates leads to
17.3% decreasing the reflectance at 600–1100 nm, at the same time resulting in 34% increases
in the absorption in the wavelength ranger of 900–1100 nm. Moreover, Ag NPs deposited
onto the front surface of the solar cells without antireflection coating increase the total
efficiency by 39% comparing to the silicon cells without Ag NPs.

Another way that has also been taken into consideration is developing alternative
solar cells with lower-cost materials. For instance, Gratzel group, in 1991, developed a kind
of solar cell called dye-sensitized solar cell with a power conversion efficiency of about
7% [174]. However, the maximum power conversion is still lower than 15% [175–178]. The
assembled device usually requires cost materials and a volatile liquid electrolyte unsuitable
for the market in the current stage [175]. Replacing the expensive Pt with alternative
materials with high catalytic activity is a promising way to reduce the total production cost
of the assembled devices [179,180].

Furthermore, utilizing polymers as an electrolyte is a promising technique to pre-
vent the volatilization of electrolytes [181] and develop the photoanodes with various
techniques. For example, Photiphitak et al. introduced Ag NPs to mesoporous titanium
dioxide films using a photoreduction method [182]. TiO2/Ag NPs composite films were
sensitized by N719 dye and inserted for fabricated dye-sensitized solar cells. The related
device showed a PCE of 4.76%, higher than without adding Ag NPs (4.02%). Furthermore,
Kislov et al. showed that Ag NPs on Gratzel cells enhance the total performance and
show a noteworthy influence on the capacitive and transport properties of the assembled
cells [183]. Recently, Saadmim et al. showed that the DSSCs assembled with photoanode
supported with Ag NPs showed remarkable enhancing power conversion efficiency com-
pared to that fabricated without Ag NPs [184]. Another work by Sreeja et al. achieved
plasmonic enhancement in the two natural pigments (betanin-lawsone) co-sensitized so-
lar cells by utilizing the bimodal size distribution of Ag NPs. The results significantly
improve current density, voltage, and efficiency by 20.1%, 5.5%, and 28.6%, respectively.
According to the Finite Difference Time Domain (FDTD) simulations, Ag NPs with a 20
and 60 nm diameter are best for enriched absorption by lawsone and betanin, respectively
(see Figure 14). The FDTD simulations of the plasmonic photoelectrodes demonstrated
30% and 15% enhancement in the power absorption by betanin and lawsone at the LSPR
peaks of the 60 and 20 nm Ag NPs, respectively. An average PCE of 1.02% was succeeded
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by the betanin-lawsone co-sensitized solar cell with the bimodal distribution of Ag NPs,
compared to 0.793% achieved by the non-plasmonic solar cell. Moreover, electrochem-
ical impedance spectroscopy approved that Ag NPs enriched the electron lifetime and
diminished recombination rate, thus increasing the charge transfer.

Figure 14. (a) Scheme of the betanin-lawsone sensitized solar cell with the bimodal distribution of
20 nm and 60 nm plasmonic Ag NPs incorporated in the photoanode. (b) absorption spectra of the
sensitized TiO2 photoanodes, and (c) photocurrent density-voltage (J–V) curves of the assembled
devices, copied with permission from Ref. [185], Nature, 2020.

5. Conclusions and Future Perspectives

This article presented the synthesis, properties, and applications of silver nanoparticles
in detail. The recent progress on utilizing Ag NPs in electronics, sensing, and photovoltaics
have been reviewed. Despite the great role of Ag NPs in sensing applications for detecting
gases and vapors of some organic compounds and detecting hydrogen peroxide in industry
and biosystems, the function of this effect needs more study to be fully understood. Further-
more, the long-term stability and sensitivity should be more developed by adjusting the
preparation conditions, utilizing eco-friendly stabilizing agents. For solar cell application,
Ag NPs can be introduced in both counter electrodes and an electrolyte to investigate
the obtained total performance. Moreover, recycling Ag NPs from electronic wastes is an
important issue from both environmental and economic points of view. This would help in
developing Ag NP based nanomaterials more safe, biocompatible, and efficient for some
vital applications in our life.
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