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Thermal conductivity is one of the rheology properties that vital for engineering fluid 
which indispensable for heat transfer enhancement. For this reason, nanofluid is 
getting wider attention nowadays due to the presence of nanoparticles in the base 
fluid can further improve thermal conductivity and dynamic viscosity. These are two 
important properties for new engineering fluid in providing better cooling and 
lubricating effects, especially in mechanical and tribology applications. In this paper, 
specifically, nanofluids thermal conductivity and dynamic viscosity are discussed 
comprehensively. Both properties’ thermal conductivity and viscosity of nanofluids are 
improved over the base fluid. Furthermore, these two properties increase when more 
volume concentrations of nanoparticles are added. In addition, the thermal 
conductivity also improved with increasing the temperature. From the literature 
review, the maximum enhancement of thermal conductivity for single nanofluid is 
recorded 36% of MWCNTs in distilled water. On the other hand, the maximum 
enhancement of viscosity is recorded 39% of Al2O3 in water-ethylene glycol over base 
fluid. The hybrid nanofluids that consist of more than one type of nanoparticles exhibit 
better thermal conductivity where the maximum enhancement is recorded 68% of Cu-
TiO2 in deionized water. For dynamic viscosity measurement, the maximum 
enhancement of hybrid nanofluids is recorded 168% of MgO-MWCNT in ethylene 
glycol. Therefore, to sum up, hybrid nanofluids are really promising to enhance heat 
transfer performance especially for heating and cooling applications. The potential of 
these nanofluids should be explored extensively to discover its advantages over 
conventional working fluid. 
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1. Introduction 
 

Driven by green technology and long-term manufacturing sustainability, nanofluids are 
introduced as an alternative to the conventional fluid. Nanofluids are engineered colloidal suspension 
for minimizing environmental effects as well as for enhancing working fluid thermal and rheology 
properties. This is an innovative approach for new generation working fluid. Lubrication plays a vital 
role in the mechanical component’s movement as it can reduce the friction and subsequently reduce 
mechanical forces. It has been reported that lubrication was found 4000 years ago in Egypt based on 
a large statue of a man pouring a kind of liquid [1]. Conventional liquids possess limited thermal 
conductivity, environmental pollution and worker’s health issues that needs to resolve. Therefore, in 
the last 20 years ago the efforts have been devoted to coming up with the solution. Since then, a 
single nanofluid was introduced by the researchers and hybrid nanofluid also presented for the first 
time in 2015. The term “Nanofluid” was first introduced by Choi in 1995 [2]. Nanofluid by definition 
is referred as a working fluid that contains colloidal mixture of metallic or non-metallic nanomaterial 
with the particle size less than 100nm [3]. Research on nanoparticles has been increased rapidly by 
employing different types of nanosized materials with different volume concentrations particularly 
for various applications such as machining, heat exchanger, radiator, refrigerator, air-conditioner and 
electronics cooling. In recent years, nanofluids are prepared using different types of nanoparticles 
such as Al2O3, ZnO, TiO2, CNT, SiO2 and ZrO2. These materials can be considered inexpensive and yet 
demonstrate better thermal-physical properties. The thermal properties or convective heat transfer 
coefficient of base oil can further be enhanced using nanomaterials mainly due to the thermal 
transport capability of each particle. The performance of nanofluid in carrying heat from the heat 
source depends on its thermal conductivity, specific heat, viscosity and density [4]. Besides, the 
nanoparticle’s shape also significantly influences the thermal conductivity and dynamic viscosity of 
the fluid [5]. According to Pryazhnikov et al., [6] there is a direct proportional relationship between 
particle size and thermal conductivity. The thermal conductivity of nanofluid is improved remarkably 
when the thermal conductivity of the base fluid is lower. The solid heat transfer performance is better 
compared with the liquid heat transfer performance. This is attributed to the mass molecule motion 
when nanofluid is circulating throughout the system which resulting in higher thermal conductivity 
enhancement of nanofluids. 

The volume percentage or weight percentage of nanoparticles dispersed in based-oil is between 
0.25% and 5% for nanofluids preparation. It has been reported that the presence of SWCNTs 
dispersed in the base coolant can increase the thermal conductivity of up to 105% at 1 vol% of 
nanoparticle [7]. Thus, the heat is transferred more effectively from the cutting zone and 
subsequently the temperature can be reduced outstandingly. Fotowat et al., [8] discovered that 
about 17% of thermal conductivity enhancement of nanofluids over a base fluid. However, there was 
a corrosion effect in Aluminium and Copper however, it was negligible in Stainless Steel when all 
these materials were submerged in the Al2O3 nanofluid. Rashmi et al., [9] also studied the effects of 
corrosion using carbon wall nanotube nanofluids and various base fluids. On the other hand, 
nanofluid viscosity increases with increasing of nanoparticle diameter size and volume concentration 
however, decreases drastically in increasing temperature [10]. Murshed and Estelle [11] suggested 
that the study of nanofluid viscosity should also consider pH value, nanoparticle size and shape as 
the published articles are limited. According to Nabil et al., [12], more research is needed to 
understand the behavior of nanofluid including its characteristics and suitability in engineering 
applications. Therefore, in this paper, specifically, nanofluids thermal conductivity and dynamic 
viscosity are discussed comprehensively. The objective is to explore and expand the knowledge of 
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nanofluids in terms of preparation, thermal-physical behavior and its modeling as well as application 
potential in the near future. 
 
2. Base Fluid  
 

Base fluid or single-phase liquid exhibits low thermal conductivity in which the effectiveness of 
heat transfer could not be obtained. This is the reason that researchers have attempted to enhance 
thermal-physical properties by introducing second-phase liquid such as single and hybrid nanofluid. 
The selection of base fluid is vital in preparing nanofluids in order to obtain nanofluids stability and 
enhancing its thermal-physical properties. There are many types of base fluid that are commonly 
used nowadays to prepare nanofluids such as water, deionized water, ethylene glycol (EG), vegetable 
oil, a mixture of water and ethylene, etc. Each of these base fluids has its own advantages. For 
instance, Ethylene Glycol is commonly used as anti-freeze addictive due to it able to further reduce 
the freezing temperature of working liquid (0°C to -12°C) for circulating the liquid particularly in 
heating and cooling systems [13]. Nazari et al., [14] revealed that a 30% volume of Ethylene Glycol in 
the nanofluids has better cooling performance than 50% volume of Ethylene Glycol. It was 
recommended by Lim et al., [15] to mix water and ethylene glycol of 60:40 ratios as the base fluid for 
cooling purposes. The vegetable oil-based fluid is one of many alternative lubricants that can be 
considered as base fluid due to some reasons. For example, Wang et al., [16] revealed that palm oil 
has better lubrication properties compared to other vegetable oils. Commonly known for 
biodegradability and low production cost, it also has good lubrication properties [17]. Furthermore, 
it has great potential as metal cutting liquid which needs to be explored [18]. Synthetic or mineral 
oils display good lubrication properties; however, they possess lower thermal properties which not 
suitable for the metal cutting process that generates high temperature at the cutting zone especially 
under high-speed machining [17]. According to Xuan and Li [19], oil-based nanofluid was better than 
water-based nanofluid in terms of heat transfer characteristics. Minh et al., [20] mentioned that 
based on comprehensive studies emulsion 5% coolant was more effective than soybean oil in 
enhancing hard milling performance in terms of surface roughness, cutting forces and the tool life. 

 
2.1 Nanomaterial  
 

The characteristics of nanomaterials depend on their size, shape, physical properties and 
dispersibility. The nanoparticles can be divided into three groups which are based on its physical 
characteristics such as (i) Metallic particles like Fe, Al, Cu, Au, Ag, (ii) Non-metallic or metal carbide 
particles like Al2O3, CuO, SiC, TiO2 and (iii) Carbon Nanotubes [21]. The size of the particle should be 
less than 100nm to be considered as a nanoparticle. The effectiveness of lubricating properties 
depends on the smaller size of nanoparticle which can form a protective film layer and subsequently 
reduce the friction between the cutting tool and workpiece during the machining process. 
Nanomaterials have a high ratio of surface area over their weight and possess anti-friction properties 
in base fluids [22]. According to Zhang et al., [23], MoS2 nanoparticles show good lubrication 
performance, while CNTs were able to increase the heat transfer coefficient. By dispersing both 
nanomaterials into a base fluid, it would enhance the thermo-physical properties of nanofluid. 
Similarly, findings by Wang et al., [24] Al2O3, MoS2, and SiO2 have better lubricating properties when 
grinding Nickel Alloy GH4169. It has been reported that Fe3O4 nanoparticles exhibited the maximum 
thermal conductivity enhancement of 200% in water [25]. Vafaei et al., [26] revealed that the 
maximum enhancement of thermal conductivity of 48% was associated with Fe3O4 nanoparticles. 
Similarly, the maximum enhancement of the nanofluid viscosity was found almost 294% when Fe3O4 
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nanoparticles dispersed in ethylene glycol-water mixture [27]. Li et al., [28] evaluated the grinding 
performance of six different nanofluids (MoS2, ZrO2, CNT, polycrystalline diamond, Al2O3, and SiO2) 
and found that CNT nanofluids produced excellent thermal properties compared with other 
nanofluids. According to Guo et al., [29], carbon nanotubes have outstanding characteristics 
compared to other nanomaterials in terms of chemical stability, physical strength, high electrical and 
thermal conductivity, as well as mechanical resistance. Raju et al., [30] mentioned that multiwall 
carbon nanotubes (MWCNT) nanoparticles have a maximum thermal conductivity of 3000 W/mK 
compared with other nanomaterials resulting in 36% improvement of thermal conductivity on 
nanofluid compared to the conventional fluid. Moreover, this type of nanomaterial easily disperses 
in distilled water when sodium dodecyl sulfate (SDS) is added [31]. Copper metallic nanoparticles 
demonstrate 95% higher thermal conductivity at 400 W/mK compared to Copper Oxide (CuO) which 
was at 20 W/mK [32]. Furthermore, Aluminum oxide (Al2O3) nanoparticles display better thermo-
physical properties compared to SiO2 and TiO2 nanofluids for the same volume concentrations 
whereas Al2O3 have lower lubrication properties [17,33]. Minh et al., [20] claimed that Al2O3 
nanoparticles produced excellent tribological and anti-toxic properties. While Su et al., [34] 
mentioned that graphite nanoparticles were able to reduce anti-friction characteristics where a 
physical deposition layer could form on the surface thereby resulting in low friction forces. Sayuti et 
al., [35] revealed that the Vickers hardness of silicon dioxide (SiO2) nanoparticle is 1000kgfmm-2 
which possesses good mechanical properties of hard and brittle particles. 
 
2.2 Single and Hybrid Nanofluids 
 

Single nanofluid is referred as a one-type nanoparticle with a certain amount of concentration 
dispersing into the base fluid. Single nanofluid has been received great attention since 1995 with the 
objective to enhance base fluid and conventional working fluid properties and subsequently improve 
cooling and lubricating characteristics. Yogeswaran et al., [36] applied TiO2-Ethylene Glycol nanofluid 
for enhancing milling performance. Esfe et al., [37] evaluated MgO/water nanofluid thermal 
conductivity coefficient between 0.01 and 0.03 volume fractions. In order to further enhancing the 
thermal-physical and rheology properties of single nanofluids, a combination of different 
nanoparticles dispersing into the base fluid could be the solution. Therefore, for the past few years, 
research on hybrid nanofluids has attracted great attention to exploring its potential. Hybrid 
nanofluids possess excellent thermal and rheology properties due to synergistic effect and can be 
prepared by two methods: (i) suspending two or more different nanoparticles in the base fluid, (ii) 
combining between two or more nanoparticles physically in the base fluid which is referred as hybrid 
material [38]. For instance, MgO-MWCNTs in EG, Al2O3-SiC, MoS2-CNT in Synthetic Lipids and Al2O3-
GNP in oil-water emulsion were the hybrid nanofluids prepared in various applications [17,23,26,39]. 
This hybrid material exhibits better thermophysical properties due to the synergistic effect which 
does not exist in the single nanofluids. Many scholars mentioned that hybrid nanoparticles that 
disseminate in the base fluid produced higher heat transfer enhancement, cooling effect and anti-
friction performance rather than single nanoparticles in the material cutting process [21,23,39]. The 
combination of two different nanoparticles for preparing the hybrid nanofluids could produce 
manifesting results that able to increase heat transfer effectiveness in many engineering applications. 
In such, there are applications of hybrid nanofluids in heat exchanger, car radiator, rubbing process, 
electronics component cooling system, machining process as well as in solar energy collector [41-45]. 
However, the research of hybrid nanofluids for improving machining performance especially in metal 
cutting process are still limited, therefore more experimental work needs to be conducted in order 
to explore its great potential [17,46]. Both lubricating and cooling effects can be offered by hybrid 
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nanofluids which regards the formation of thin-film on the contact interface to alleviate the cutting 
forces and able to demonstrate higher thermal-rheology properties that can carry the heat away 
from the heat source. Due to the advantages far outweigh the disadvantages, thus, the potential of 
hybrid nanofluid and its application in the metal cutting process is promising in the future and should 
be explored extensively. 
 
3. Thermal Conductivity of Nanofluids 
 

Heat can be transferred through conduction, convection and radiation. In these modes of heat 
transfer, the heat flows from high to low temperatures. Thermal conductivity is defined as the heat 
transfer rate within the temperature difference through a thickness material per unit area [47]. Thus, 
thermal conductivity can be described as the ability of a material to transfer the heat by conduction 
through it. This thermal property is critical for nanofluid to carry and dissipate the heat effectively. 
Subsequently, the cooling rate could be faster and the operating system would be more reliable. It 
essential that thermal conductivity measurement should be conducted for a new introduction of 
nanofluid which the objective is to discover the capability of the liquid to carry and dissipate the heat. 
In order to measure nanofluids thermal conductivity, thermal properties analyzer such as KD2 Pro 
and TC3010 can be used [14,29,49-52]. It is essential to ensure that nanofluid is stable and no particle 
sedimentation found when measuring thermal conductivity. Basically, the thermal conductivity can 
be measured by applying three different techniques; i) The transient hot-wire method, ii) 
Temperature oscillation method and iii) 3-ɷ method. The main factor affecting the thermal 
conductivity of nanofluid is volume concentration [48,49]. Besides, the nanoparticle size, shape, type 
of base fluid, temperature and preparation technique also will influence the thermal conductivity. 
The enhancement of nanofluid thermal conductivity depands on volume concentration and working 
temperature. Higher thermal conductivity of nanofluid observed at higher volume concentration and 
temperature as reported by Alirezaie et al., [50]. However, the thermal conductivity decreased with 
the increase in the percentage of Ethylene Glycol in the mixture of Ethylene Glycol/water as a base 
fluid [51]. Furthermore, the thermal conductivity of oil-based nanofluid decreases at the temperature 
greater than 180°C due to the vaporization of organic oil which regards its flash point [52]. Abubakar 
et al., [53] stated that 0.08% of temperature reduction at 0.8% volume fraction of Fe3O4 in water over 
the pure water in microchannel heat sinks thermal analysis. 

In addition, certain nanoparticles such as MWCNTs and Ag possess higher thermal conductivity 
compared to other nanoparticles. Therefore, the dispersion of these nanoparticles would 
significantly enhance the thermal conductivity of nanofluids over base fluid. However, obtaining the 
stability of these nanofluids is always challenging which is associated with the higher density. In order 
to avoid instability conditions of suspension, nanoparticles concentration should be managed wisely 
as they have significant influence on the thermal conductivity and stability. On the other hand, the 
effect of nanoparticle shape is significant for nanofluid thermal conductivity. For instance, as 
reported by Jeong et al., [54] that nearly rectangular ZnO exhibited 18% of thermal conductivity 
enhancement over the sphere shape of the same material which recorded 15% enhancement at the 
same concentration of 5.0vol%. This is due to a higher interface area which directly increasing surface 
interaction and the possibility of higher contact area with other materials in transferring the heat 
[55,56]. According to Cui et al., [57], nanofluids that consist of the cylindrical shapes of nanoparticles 
displays higher thermal conductivity rather than sphere shape due to micro-convection activities of 
rotational motion in nanofluids. However, Kim et al., [58] mentioned that the thermal conductivity 
of nanofluids increases with decreasing nanoparticles size. With smaller particle sizes, the suspension 
would be more stable and the chemical interaction could happen even in confine space. 
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Nevertheless, according to Jeong et al., [54], the nanoparticle shape is more dominant in getting 
higher thermal conductivity of nanofluids than the particle size which regards specifically to ZnO and 
more study should be conducted for other nanoparticles. The summary of thermal conductivity and 
viscosity enhancement findings for single and hybrid nanofluid are shown in Table 1 and Table 2 
respectively. 
 
Table 1 
Summary of single nanofluid thermal conductivity and viscosity maximum enhancement 

Author Base Fluid Nano-
particles 

Volume 
Fraction 

Measurement 
Temperature  

Measurement 
Property 

Maximum 
Enhancement 
(%) 

Sundar et al., [59] Ethylene 
Glycol (EG): 
Water 
20:80% 
40:60% 
80:20% 

Al2O3 0.0%, 
0.3%, 
0.6%, 
0.8%, 
1.0%, 
1.5% 

20°C – 60°C Thermal 
Conductivity 

32.26% of 1.5 
vol% at 60°C 

Dynamic 
Viscosity 

1.37 times 
compared to 
base fluid 

Chen et al., [60] Natural 
Seawater 

SiC 0.0% - 1.0% 10°C – 50°C Thermal 
Conductivity 

5.2% 

Huminic et al., 
[61] 

Distilled 
Water 

SiC 0.5 wt%, 1.0 
wt% 

20°C – 50°C Thermal 
conductivity 

17.62% of 1.0 
wt% at 50C 

Dynamic 
Viscosity 

17.62% 

Al-Waeli et al., 
[62] 

Deionized 
water 

SiC 1% - 4% 25°C – 60°C Thermal 
Conductivity 

8.2% 

Yu et al., [63] Ethylene 
Glycol (EG) 

ZnO 0% - 5% 10°C – 60°C Thermal 
Conductivity 

26.5% of 5 
vol% 

Suganthi and 
Rajan [64] 

Water ZnO 0.25% - 2% 35°C – 55°C Dynamic 
Viscosity 

28% 

Nadooshan [65] Ethylene 
Glycol (EG) 

ZnO 0.125% - 
4.0% 

20°C – 50°C Thermal 
Conductivity 

20% of 4 
vol.% 

Lim et al., [15] Water-
Ethylene 
glycol (EG) 

Al2O3 0.2%, 0.4%, 
0.6%, 0.8%, 
1% 

15°C – 55°C Thermal 
Conductivity 

10% of 1 vol%  

Dynamic 
Viscosity 

39% of 1 vol% 

Convective Heat 
Transfer 
Coefficient 

25.4% of 1 
vol%  

Andhare and Raju 
[66] 

Distilled 
Water 

MWCNT
s 

0.2% 33°C,40°C,50°
C 

Thermal 
Conductivity 

36% 

Contact Angle reduced by 
33.3% 

Murshed et al., 
[67] 

De-ionized 
Water 

TiO2 0.001% - 
0.05% 

10°C – 60°C Thermal 
Conductivity 

17% 

Najiha et al., [68] De-ionized 
Water 

TiO2 0.5%,2.5%,4.
5% 

30°C – 60°C Thermal 
Conductivity 

11.4% 

Nazari et al., [14] Water Al2O3 0.1%, 0.25%, 
0.5% 

20°C – 50°C 
 

Heat Transfer 
Coefficient 

6% of 
0.5vol.% 

CNT Heat Transfer 
Coefficient 

13% of 
0.25vol.% 

Xuan and Li et al., 
[19] 

Water Cu 2wt% - 9wt% 15°C – 55°C Thermal 
Conductivity 

1.78 times 
higher than 
base fluid 

Baghbanzadeh et 
al., [69] 

Distilled 
Water 

MWCNT
s 

0 wt.% - 1 
wt.% 

27°C, 40°C Thermal 
Conductivity 

23.3% 
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Ilyas et al., [70] Thermal Oil 
(THO) 

MWCNT
s 

0 wt.% - 1 
wt.% 

25°C - 60°C Thermal 
Conductivity 

28.7% of 
1wt.% 

Li et al., [71] Waste 
Cooking Oil 

SiC 0.02% - 0.1% 25°C - 60°C Thermal 
Conductivity 

23% 

Khedkar et al., 
[72] 

Paraffin Oil Fe3O4 0.01% - 0.1% 27°C Thermal 
Conductivity 

20% 

Abareshi et al., 
[73] 

Deionized 
Water 

Fe3O4 0% - 3% 10°C - 40°C Thermal 
Conductivity 

11.5% of 3 
vol.% at 40°C 

 
Table 2 
Summary of hybrid nanofluid thermal conductivity and viscosity maximum enhancement 
Author Base Fluid Nanoparticle

s 
Volume 
Fraction 

Measuremen
t 
Temperature 

Measurement 
Property 

Max. 
Enhancement 
(%) 

Toghraie et 
al., [74] 

Ethylene glycol 
(EG) 

ZnO – TiO2 0% - 3.5% 25°C – 50°C Thermal 
Conductivity 

32% of 3.5 vol% 
when measured 
at 50°C 

Afrand et al., 
[75] 

Engine Oil 
(SAE40) 

SiO2 -
MWCNTs 

0.0625%, 
0.125%, 
0.25%, 0.5%, 
0.75%,1.0% 

25°C – 60°C Dynamic 
Viscosity 

37.4% 

Harandi et 
al., [76] 

Ethylene glycol 
(EG) 

MWCNTs-
Fe3O4 

0.1%, 0.25%, 
0.45%, 0.8%, 
1.25%, 1.8%, 
2.3% 

25°C – 50°C Thermal 
Conductivity 

30% of 2.3 vol% 
when measured 
at 50°C 

Madhesh et 
al., [77] 

De-ionized 
water 

Cu – TiO2 0.1% - 2.0% 30°C – 90°C Heat Transfer 
Coefficient 

68% 

Mechiri et 
al., [78] 

Vegetable Oils 
(Ground nut) 

Cu - Zn 0.1%,0.3%, 
0.5% 

30°C – 60°C Thermal 
Conductivity 

1.125-times 

Akilu et al., 
[79] 

Ethylene glycol 
(EG) 

TiO2 - CuO/C 0.5% - 2.0% 30°C – 60°C Thermal 
Conductivity 

16.7% 

Dynamic 
Viscosity 

80% 

Esfe et al., 
[80] 

Ethylene glycol 
(EG) 

SWCNT- MgO 0.0% - 2.0% 30°C – 50°C Thermal 
Conductivity 

32% of 2 vol.% 

Aberoumand 
and 
Jafarimoghad
dam [81] 

Transformer Oil Ag - WO3 1 wt.%, 2 
wt.%, 4 wt.% 

40°C – 100°C Thermal 
Conductivity 

41% 

Kannaiyan et 
al., [82] 

Water-Ethylene 
glycol (EG) 

Al2O3 - CuO 0.05%, 0.1%, 
0.2% 

20°C – 70°C Thermal 
Conductivity 

45% 

Afrand [83] Ethylene glycol 
(EG) 

MgO -
FMWCNTs 

0% - 0.6% 25°C – 50°C Thermal 
Conductivity 

21.3% 

Nabil et al., 
[84] 

Water-Ethylene 
glycol (EG) 

TiO2 – SiO2 0.5% - 3.0% 30°C – 80°C Thermal 
Conductivity 

22.8% 

Dynamic 
Viscosity 

62.5% 

Sundar et al., 
[85] 

Distilled Water GO - Co3O4 0.05%, 0.1%, 
0.15%, 0.2% 
 
 

20°C – 60°C Thermal 
Conductivity 

19.14% 

Dynamic 
Viscosity 

1.70-times 

Ethylene glycol 
(EG) 

Thermal 
Conductivity 

11.85% 

Dynamic 
Viscosity 

1.42-times 
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Wei et al., 
[86] 

Diathermic Oil SiC – TiO2 0.1% - 1.0% 10°C – 50°C Thermal 
Conductivity 

8.39% 

Sundar et al., 
[87] 

Water-Ethylene 
glycol (EG) 

ND - Co3O4 0% - 0.15% 20°C – 60°C Thermal 
Conductivity 

16.0% at 60°C 

Dynamic 
Viscosity 

1.51-times at 
60°C 

Yarmand et 
al., [88] 

Distilled Water GNP - Pt 0.0% - 0.1% 20°C – 40°C Thermal 
Conductivity 

17.77% of 0.1 
vol.% at 40°C 

Dynamic 
Viscosity 

33% of 0,1% at 
40°C 

Soltani and 
Akbari [89] 

Ethylene glycol 
(EG) 

MgO -
MWCNT 

0.1% - 1.0% 30°C – 60°C Dynamic 
Viscosity 

168% 

Sundar et al., 
[90] 

Water-Ethylene 
glycol (EG) 

ND – Fe3O4 0.005%, 
0.1%, 0.2% 

20°C – 60°C Thermal 
Conductivity 

17.8% 

Dynamic 
Viscosity 

2.19-times 

 
Table 1 and Table 2 show the important findings of nanofluids thermal conductivity and dynamic 

viscosity. It has summarized the maximum enhancement based on experimental studies. The 
maximum enhancement of thermal conductivity for single nanofluid is 36% of MWCNTs in distilled 
water. Meanwhile, the enhancement of viscosity for single nanofluid is recorded 39% of Al2O3 in 
water-EG over the base fluid. On the other hand, the hybrid nanofluids exhibit superior thermal 
conductivity over single nanofluid where the maximum enhancement is recorded 68% of Cu-TiO2 in 
deionized water. Furthermore, the maximum enhancement percentage for hybrid nanofluid viscosity 
is recorded 168% of MgO-MWCNT in ethylene glycol. Based on experimental results, hybrid 
nanofluids have greater potential as the future working fluid in cooling and heating which regards 
the enhancement of thermal-physical properties of single nanofluids. 
 
3.1 Thermal Conductivity Model 
 

The overall cost of experiments nowadays is getting more expensive and conducting the 
experiments may consume a lot of time. Hence, the prediction correlation models of nanofluid 
thermal conductivity developed by scholars may assist in calculating the important property such as 
thermal conductivity. Table 3 shows thermal conductivity models developed by scholars based on 
actual experimental data. The regression models may differ due to different considerations of 
nanoparticle characteristics such as size, shape, different materials and coating layer as well as the 
type of the base fluid and its composition when preparing the fluid. However, the results obtained 
using the correlation model should be verified with the actual experimental data. 
 
 
 
 
 
 
 
 

Table 3  
Summary of nanofluids thermal conductivity models developed by various scholars 

Author Thermal Conductivity Models Description 
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Maxwell 
[91] 

𝑘𝑛𝑓

𝑘
=
𝑘𝑠 + 2𝑘 + 2𝜑(𝑘𝑠 − 𝑘)

𝑘𝑠𝑠 + 2𝑘 − 𝜑(𝑘𝑠 − 𝑘)
 

The first model and always referred to 
define the effective thermal conductivity 
of combination liquid and solid 
suspensions. Where φ is the particle 
sphericity. 

Hamilton 
and Crosser 
[92] 

𝑘𝑛𝑓

𝑘
=
𝑘𝑠 + (𝑛 − 1)𝑘 + (𝑛 − 1)𝜑(𝑘𝑠 − 𝑘)

𝑘𝑠𝑠 + (𝑛 − 1)𝑘 − 𝜑(𝑘𝑠 − 𝑘)
 

This model considers a non-spherical 
nanoparticle and a shape factor that 
affects the liquid-solid thermal 
conductivity. Where n is the empirical 
shape factor given by 3/ φ and φ is the 
particle sphericity where 1 for the 
spherical and 0.5 for the cylindrical shape 
respectively. 

Yu and Choi 
[93] 𝑘𝑝𝑒 =

[2(1 − 𝛾) + (1 + 𝛽)3(1 + 2𝛾)]𝛾

−(1 − 𝛾) + (1 + 𝛽)3 + (1 + 2𝛾)
𝑘𝑝 

 
𝑘𝑛𝑓

𝑘𝑓
=
𝑘𝑝𝑒 + 2𝑘𝑏 + 2(𝑘𝑝𝑒 − 𝑘𝑝)(1 + 𝛽)3∅

𝑘𝑝𝑒 + 2𝑘𝑏 − (𝑘𝑝𝑒 − 𝑘𝑏)(1 + 𝛽)3∅
 

 
 
 

The nanolayers at solid/liquid interface 
take into considerations when defining 
the equivalent thermal conductivity kpe. 
Where γ is the ratio of nanolayer thermal 
conductivity to particle thermal 
conductivity (γ = kpe/k). In extreme case, 
kpe = k, thus, γ is equivalent to 1. Where ϕ 
is the particle volume concentration and 
β is the ratio of thickness layer, h over 
particle radius, r (β = h / r). 

Bruggeman 
[94] 

𝑘𝑛𝑓

𝑘𝑏𝑓
=
1

4
(3∅ − 1)𝑘𝑛𝑝 + [(2 − 3∅)𝑘𝑏𝑓] +

𝑘𝑏𝑓

4
√∆ 

 
where, 
 

 ∆= [(3∅ − 1)2 (
𝑘𝑛𝑝

𝑘𝑏𝑓
)
2

+ [(2 − 3∅)2 + 2(2 + 9∅ −

9∅2)]
𝑘𝑛𝑝

𝑘𝑏𝑓
] 

Bruggeman has proposed a better model 
than two models above to predict the 
thermal conductivity at any v/v% and 
valid for spherical shape nanoparticle. 
Where ϕ is the particle volume 
concentration, knp is the thermal 
conductivity of nanoparticle and kbf is the 
thermal conductivity of the base fluid. 

Feng et al., 
[109] 

𝑘𝑠
𝑘𝑓

=
𝑘𝑝 + 2𝑘𝑓 − 2𝜑(1 + 𝜆𝑛𝑎𝑛𝑜)

3(𝑘𝑓 − 𝑘𝑝)

𝑘𝑝 + 2𝑘𝑓 + 𝜑(1 + 𝜆𝑛𝑎𝑛𝑜)
3(𝑘𝑓 − 𝑘𝑝)

 
A model that considered of nanolayer, 
λnano which is referred to the ratio of 
nanoparticle thickness and radius 

(𝜆𝑛𝑎𝑛𝑜 =
𝑡𝑝

𝑟𝑝
) in determining the 

nanofluid thermal conductivity. 
Timofeeva 
et al., [95] 

𝑘𝑒𝑓𝑓

𝑘𝑓
= (1 + 3𝜙) 

The model considers geometry, 
agglomeration state and surface 
resistance of nanoparticles in determining 
the efficiency of thermal conductivity. keff 

is an effective thermal conductivity. 
Where ϕ is the particle volume 
concentration. 

Vafaei et al., 
[26] 

𝑘𝑛𝑓

𝑘𝑏𝑓
= 0.9787 + exp(0.3081𝜙0.3097 − 0.002𝑇) 

The model is based on optimum 
conditions using an artificial neural 
network and can be used to predict 
hybrid nanofluids. Where ϕ is the particle 
volume concentration and T is measured 
temperature. 

 
 
 
3.2 Dynamic Viscosity of Nanofluids 
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Viscosity is a measure of the liquid tendency against the flow. It is important rheology property 
of nanofluid that affecting the convective heat transfer coefficient [96]. When the liquid viscosity is 
constant over the shear rate, thus the liquid can be classified as Newtonian fluid as reported by 
Ghasemi and Karimipour [97]. On the other hand, when the fluid viscosity is changing over the shear 
rate, then the fluid is classified as Non-Newtonian fluid [98]. The viscometer is a key measurement 
instrument to measure the nanofluid viscosity. In order to measure nanofluids’ dynamic viscosity, 
viscometer such as NDJ-9s rotating viscometer and Brookfield can be used [49,52-55]. For nanofluids, 
volume concentration is the most important factor whether it can be classified as Newtonian or Non-
Newtonian fluid. For instance, Hong et al., [99] found that FeO4/water nanofluid exhibited Newtonian 
at a low concentration but behave non-Newtonian at a higher volume concentration due to the 
viscosity is changing over shear rate. The viscosity level in nanofluid is crucial because it may lead to 
high-pressure drop and subsequently more energy is required for pumping power prior to supply the 
cutting fluid. Based on the experimental investigation done by Pak and Cho [100], there was no 
significant influence on fluid viscosity based on different pH values and there was an additional 31% 
of the pumping penalty at a 3% of volume concentration where the fluid velocity remains constant. 

However, nanofluid with higher viscosity has better performance for the lubricating effect due to 
it has a better contact area between the cutting tooltip and the workpiece [101,102]. This led to 
wettability effects of nanofluids on the contact surface. Moreover, higher viscosity prevents 
nanofluid from flowing freely out of the contact zone. This relationship between cutting fluid viscosity 
and surface tension is associated with cutting fluid wetting and spray characteristics. Sundar et al., 
[21] reported out that the viscosity of nanofluids is directly proportional to volume concentration. In 
contrast, the viscosity is inversely proportional to the temperature. Brownian motion effect where 
the molecules move freely and randomly could be attributed to the inverse relationship between 
temperature and viscosity [103]. 
 
3.3 Viscosity Model 
 

Besides the thermal conductivity model, scholars since the 1950s have developed a viscosity 
model for predicting working fluid viscosity based on experimental works as can be seen in Table 4. 
This is an attempted to model the important property of nanofluids by mathematical regressions. 
Hence, the property can be calculated from the mathematical modelling. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  
Summary of nanofluids dynamic viscosity models developed by various scholars 
Author Viscosity Models Description 
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Pak and Cho 
[100] 

𝜇𝑒𝑓𝑓 = 𝜇𝑒𝑓𝑓(1 + 39.11𝜙 + 533.9𝜙2) This model is referred to 
as two different metallic 
particles at room 
temperature. Where ϕ is 
the particle volume 
concentration. 

Einstein [104] 𝜇𝑒𝑓𝑓 = 𝜇(1 + 2.5𝜙)  ,  𝜙 ⋜ 0.05 Based on the suspension 
of spherical particles. 
Where ϕ is the particle 
volume concentration. 

Roscoe [105] 
𝜇𝑒𝑓𝑓 = 𝜇𝑓(1 −

𝜙

𝜙𝑚

)−2.5 
A model for equal size 
rigid spheres and for all 
concentrations. Where ϕ 
is the particle volume 
concentration. 

Koo and 
Kleinstreuer 
[106] 

𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 =

5𝑥104𝛽𝜌𝑚𝜙𝑝√
𝐾𝑔𝑇

2𝜌𝑝𝑟𝑝
[(−13463 + 17223𝜙𝑝) + (0.4705 − 6.04𝜙𝑝)𝑇  

Small scale interaction 
may occur between the 
hot and cold regions. Thus, 
temperature, particle size 
and volume fraction also 
affect the viscosity. Where 
ϕ is the particle volume 
concentration, T is 
temperature, ρ is particle 
density and r is particle 
radius. 

Brinkman 
[107] 

𝜇𝑒𝑓𝑓

𝜇𝑓
=

1

(1 − 𝜙)2.5
 

This model is extended 
from Einstein’s model 
which dilutes copper, gold, 
CNT suspension. The 
model includes base fluid, 
nanoparticle viscosity and 
volume fraction 
respectively. Where ϕ is 
the particle volume 
concentration. 

Batchelor 
[108] 

𝜇𝑒𝑓𝑓 = 1 + 2.5𝜙 + 6.5𝜙2 The effect of Brownian 
motion takes into 
consideration and it was 
extended from Einstein’s 
model. Where ϕ is the 
particle volume 
concentration. 

 
The suitability of the models as shown in Table 3 and Table 4 is relied more on the type of base 

fluid, size of the nanoparticle, type of nanoparticle, volume concentration and addition of surfactant. 
Moreover, the accuracy of these models had been tested which close to the experimental results. 
However, these thermal-physical modelling can be expanded by considering additional factors such 
as measured temperature, coated and uncoated particles and different shapes when more than one 
nanoparticle is dispersed in the base fluid. However, the experimental works must be performed in 
the sense that a deviation of the results can be avoided. Therefore, a newly developed regression 
model can be examined proven by conducting an experimental study to ensure the models and the 
results are valid. Recently, many researchers have developed empirical correlation models using 
different methods like genetic algorithms and artificial neural networks. The objective is to generate 
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mathematical modelling that will be represented nanofluids’ prediction of thermal conductivity and 
dynamic viscosity. 
 
4. Conclusion 
 

The capability of nanofluid in enhancing thermal and rheology properties is really encouraging 
for the next generation of the working fluid. Even though the pressure drops increases with higher 
nanofluid viscosity however the presence of more than one type of nanoparticles in preparing 
nanofluid can further enhance the base fluid heat transfer capability. Due to the pressure drop, more 
energy is required for circulating the nanofluids. This circumstance might affect the pump specifically 
where the pump is overworking in supplying the nanofluid consistently into the working zone. For 
that reason, the viscosity of hybrid nanofluid must be controlled wisely in getting a suitable range of 
viscosity level. Furthermore, appropriate selection of nanoparticle materials, shape and size as well 
as type of base fluids, with or without surfactant is crucial to get the optimum condition of nanofluid 
in terms of physical, thermal and rheological properties. From the literature review, it can be 
concluded that hybrid nanofluids exhibit better performance than single nanofluid and base fluid. 
Therefore, hybrid nanofluids have greater potential as the future working fluid in cooling and heating 
which regards the enhancement of thermal-physical properties of single nanofluids. Thus, more 
experimental works must be carried out to further understand the behaviour of hybrid nanofluids in 
terms of the effect of nanoparticle shape, size, concentration and the application of surfactant 
particularly on both thermal conductivity and dynamic viscosity as well as to explore its great 
potential. With the huge potential of hybrid nanofluids in terms of thermal-rheology properties, the 
elevation of overall engineering performance is realistic to be achieved. 
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