

COMPUTER-BASED INSTRUMENTATION SYSTEM FOR

TEMPERATURE MEASUREMANT USING THERMOCOUPLE IN

VISUAL BASIC APPLICATION

(C.I.S.T.V.A)

MUHAMAD AKMAL BIN ISHAK

UNIVERSITY MALAYSIA PAHANG

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

KM 11, JLN PADANG TENGKU, MR. MOHD ANWAR ZAWAWI

27200, KUALA LIPIS, (Nama Penyelia)

PAHANG DARUL MAKMUR,

Tarikh: 11 NOVEMBER 2008 Tarikh: : 11 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2008/2009

 MUHAMAD AKMAL BIN ISHAK (860213-06-5423)

DEVELOPMENT OF THE COMPUTER-AIDED DIAGRAM (CAD) FOR

ELECTRICAL MACHINE FOR UNDERGRADUATE PURPOSE LEARNING

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronic)”

Signature :

Name : MR. MOHD ANWAR ZAWAWI

Date : 11 NOVEMBER 2008

COMPUTER-BASED INSTRUMENTATION SYSTEM FOR TEMPERATURE

MEASUREMANT USING THERMOCOUPLE IN VISUAL BASIC

APPLICATION

(C.I.S.T.V.A)

MUHAMAD AKMAL BIN ISHAK

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Electronic)

Faculty of Electrical & Electronics Engineering

University Malaysia Pahang

OCTOBER 2008

ii

“All the trademark and copyright use herein are property of their respective owner.

Reference of information from other sources is quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : _________________________

Author : MUHAMAD AKMAL BIN ISHAK

Date : 11 NOVEMBER 2008

iii

Specially dedicated to

My beloved parent

iv

ACKNOWLEDGEMENT

Alhamdulillah, a lot of praise and „syukur‟ to ALLAH. I wish to express my

sincere gratitude and appreciation to Ms. Najidah Binti Hambali as my 1
st
 supervisor

and Mr. Anwar Zawawi as my 2
nd

 supervisor for encouragement, guidance and

motivation. Without their never ending guidance, patience and encouragement

throughout this project, I would never finish this project as it is. Thank you very

much! Not forget to the laboratory assistant, Mr. Hamka, who spends time to help

my researches in the lab.

 My fellow friends and colleagues should also be recognized for their support.

Without them, I do not think that I can get through this. Their tips and views are very

useful in completing this project. I would also like to thanks to panels during FKEE

R&D exhibition.

 Last but not least, I would like to use this opportunity to say thank you to my

beloved parents, Ishak bin Sat and Noriah bt Abdul Rahman. Finally, I would like to

express my appreciation to all my friends, especially to Izhan, Syamil, Mino and

Faris, thanks for your love and constant moral support.

Thank you to all of you

Assalamualaikum.

v

ABSTRACT

In this project, Visual Basic is used as a main programming language to

develop a GUI (Graphical User Interface) application. This application is developed

to help student in studying the industrial instrumentation subject. For this project,

thermocouple sensor type K will be used as an input device to detect temperature

changes. The input will be converted into current signal between 4 - 20mA. Then, a

DAQ card will be used to interface between the instrument and computer. The

software is divided into 4 sections, data preview, data control, application and

setting. Data preview section is used to preview live data from DAQ card. When the

data is completely recorded, the data is manipulated to get appropriate result and

graph, using data control section. In application section, some useful applications

have been added for student such as converter, uncertainty calculation, graph

generator, live graph, export data, data recorder and data plotter. And the setting

section has function for software‟s setting.

vi

ABSTRAK

 Dalam projek ini, Visual Basic digunakan sebagai bahasa pengaturcaraan

utama untuk membina aplikasi AGP (Antaramuka Grafik Pengguna). Aplikasi ini

dibangunkan untuk membantu pelajar dalam subjek Industrial Instrumentation.

Untuk projek ini thermocouple jenis K akan digunakan sebagai alat untuk mengesan

perubahan suhu. Input akan ditukar kepada signal arus dalam 4-20 mA. Kemudian,

DAQ akan digunakan untuk mengantaramuka antara komputer dan peralatan.

Perisian ini dibahagiakan kepada 4 bahagian, iaitu data pratonton, data kawalan,

aplikasi and tetapan. Bahagian data pratonton digunakan untuk melihat data secara

langsung dari kad DAQ. Apabila data telah sepenuhnya direkodkan, data akan

dimanipulasi untuk mendapatkan keputusan dan graf yang sepatutnya menggunakan

bahagian data kawalan. Dalam bahagian aplikasi, aplikasi yang berguna telah

ditambah untuk pelajar seperti pengubah, kiraan ketikpastian, penjana graf, graf

langsung, data ekspot, perakam data dan pemplot data. Dan bahagian tetapan

mempunyai fungsi untuk tetapan perisian.

vii

TABLE OF CONTENTS

CHAPTER

TITLE

TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABREVIATION

LIST OF APPENDICES

PAGE

i

ii

iii

iv

v

vi

vii

x

xi

xiii

xiv

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Objectives 2

 1.3

1..4

Scopes

Research Methodology

2

3

2 LITERATURE REVIEW 5

 2.1 Evaluation of the Freezing Point of Zinc for Pt/Pd

Thermocouple Calibration

5

 2.2 An Automated Thermocouple Calibration System 7

 2.3 High Speed PC-based Data Acquisition Systems 8

viii

 2.4 Thermocouple 12

 2.4.1 Theory 12

 2.4.2 Thermocouple types 12

 2.5 Data Acquisition 14

 2.6 Visual Basic 15

 2.7 Calibration 16

 2.8 Standard Deviation 16

3 INSTRUMENTS AND HARDWARES 17

 3.1 Overall System Connection 17

 3.1.1 Basic Instrument Connection 18

 3.2 Instruments 19

 3.2.1 Thermocouple 19

 3.2.2 Hart 375 Field Communicator 20

 3.2.3 Yokogawa Temperature Transmitter 21

 3.2.4 Isotech Jupiter 22

 3.2.5 Decade Resistance Box 23

 3.2.6 Yokogawa MT220- Digital Manometer 24

 3.2.7 Digital Thermometer 7563 25

 3.3 Data Acquisition Hardware 26

 3.3.1 Analog Input 27

 3.3.2 Analog Output 27

 3.3.3 Digital Input / Output 28

 3.3.4 Counter 28

 3.3.5 I/O Connectors 28

 3.3.6 Noise 30

 3.3.7 Input Configuration 31

4 SOFTWARE

 4.1 Software Development 33

 4.1.1 Device Driver Installation 33

ix

 4.1.2 General Software Flowchart 34

 4.2 Creating Graphical User Interface (GUI) 35

 4.2.1 Uncertainty calculation 35

 4.2.2 Sample rate / Frequency sampling 37

 4.2.3 Temperature Calibration 37

 4.2.4 Trigger modes 38

 4.3 Connecting USB-4716 DAQ with computer. 39

 4.4 GUI interface 41

 4.5 General Procedure using the software 45

5 RESULTS AND ANALYSIS 46

 5.1 Introduction 46

 5.2 Experiments 46

 5.2.1 Experiment 1: Five Point Calibration of

Temperature Transmitter.

46

 5.2.2 Experiment 2: Isotech Jupiter Heat up and

Cool down process.

57

6 CONCLUSIONS AND RECOMMENDATION 62

 6.1 Summary of the Work 62

 6.2 Recommendations for Future the Work 63

 6.3 Commercialization 64

 REFERENCES 65

 APPENDICES 67

x

LIST OF TABLES

TABLE NO TITLE PAGE

2.1 Thermocouple type 14

3.1 I/O Connector Signal Description 30

5.1(a) Result from experiment 48

5.1(b) Mean, Standard Deviation and Error 48

xi

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Design Flow 4

2.1 Zinc Freezing Point Furnace 7

2.2 Channel Skew 11

2.3 Thermocouple Junction 14

3.1 Overall system connection 18

3.2 Basic Instrument Connection 19

3.3 Instruments 20

3.4 Thermocouple 21

3.5 Hart Field Communicator 22

3.6 Temperature Transmitter 23

3.7 Isotech Jupiter Temperature Bath 23

3.8 Isotech Graph 24

3.9 Decade Resistance Box 25

3.10 Yokogawa MT220- Digital Manometer 26

3.11 Digital thermometer 7563 27

3.12 USB-4716 DAQ Card 28

3.13 Single-ended input connection 31

3.14 Differential input channel connection - ground reference

signal source

32

3.15 Differential input channel connection - floating signal

source

32

4.1 General Flowchart 34

4.2 Current Vs Voltage 38

4.3 Advantech Form 40

4.4 Advantech Device Test 40

xii

4.5 Data logging tab 41

4.6 Data control & Preview tab 42

4.7 Application tab 43

4.8 Setting tab 44

4.9 General Procedure How to Use the Software 45

5.0 Connection for Experiment 1 47

5.1 Temperature VS MSU Applied value 49

5.2 Error Curve 49

5.3 Mean VS Digital Thermometer Temperature 50

5.4 Uncertainty due to Repeatability of the Experiment (U1) 50

5.5 Uncertainty Contribution due to MSU Error (U2) 51

5.6 Uncertainty Due to UUT Resolution (U3) 51

5.7 Combined Standard Uncertainty (Uc) 52

5.8 Removing Noise 56

5.9 Thermocouple cold junction 57

5.10 Temperature increase rate 58

5.11 Temperature decrease rate 59

xiii

LIST OF ABREVIATIONS

GUI - Graphical User Interface

VB - Visual Basic

SIMULATION - Simulation and Capture

DAQ - Data Acquisition

DAO - Data Access Object

RDO - Remote Data Objects

DOS - Disk Operating System

BASIC - Beginners' All-purpose Symbolic Instruction Code

xiv

LIST OF APPENDICES

APPENDIX

A

TITLE

Datasheets

PAGE

68

1

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, the major change occurring at the present is the increasing

number of user friendly software that make it possible for student to experience new

and fast ways of learning. In minutes, simulation, controller and real world

interfacing can be created instantly. The software is developed to help students to

learn and explore the experiment with an interesting and interactive way.

In this project, Visual Basic will be used as a main programming language to

develop a GUI (Graphical User Interface) application. This application is developed

to help student in studying the industrial instrumentation subject.

For this project, thermocouple sensor type K will be used as an input device

to detect temperature changes. The input will be converted into current signal

between 4 - 20mA. Then, a DAQ card will be used to interface between the

instrument and computer.

The software will be developed using Visual Basic to calculate and analyse

the output. Visual basic software does all the manipulation, analysis and report

generation.

2

1.2 Objectives

There are three main objectives of the project which are:-

1. To understand basic measurement principal of temperature instrumentation.

For this project, the instruments that will be used consist of several parts. This

part is important because it is an input for the system and required deeper

knowledge and understanding.

2. Interface the temperature transmitter output to software application. The

interface process is done with Data Acquisition process (DAQ). DAQ card

will be used to interface between instrument and computer.

3. Develop software application to help in student learning process. Visual

Basic 2008 Express Editon will be used as a main programming language.

The software is developed to be interactive and user friendly to the user. And

the software will be used during lab session of Industrial Instrumentation

subject (BEE4523) to help in student learning process.

1.3 Scopes

This project involves designing the software application to analysis the data

using Microsoft Visual Basic 2008 Express Edition. USB Data Acquisition (USB-

4716) is used to interface between the computer and temperature instrument such as

temperature transmitter, hart communicator and digital manometer. Thermocouple

type K is used as a primary transducer to detect temperature changes in Isotech

Jupiter temperature bath.

3

1.4 Research Methodology

i) Literature review to understand the concept and identify the problems and

techniques.

ii) Understand the whole system especially how to communicate between PC

and instrument.

iii) Design and writing program according to lecturer needs and

understanding of the system.

iv) Interface between computer and thermocouple through USB-4716DAQ

card

v) Test the software and verify the result with manual calculation.

Design step of work methodology can be simplified as shown in Figure 1.1

4

Study/

review

Objectives

Identify the

system

Writing VB Program

Integration with DAQ

card

Hardware

Connection & DAQ

card Installation

Visual Basic 2008

VB.net language

Thermocouple

Theory

Fulfill

Spec?

Comparison

& Analysis

Yes

No

Conclusion

Figure 1.1: Design Flowcharts.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Evaluation of the Freezing Point of Zinc for Pt/Pd Thermocouple

Calibration

This research was conducted by H.Narushima*, H.Ogura, M.Izuchi and

M.Arai from National Metrology Institute of Japan, National Institute of Advanced

Industrial Science and Technology (NMIWIST). In this research, a new apparatus

was developed to calibrate thermocouple at zinc freezing point. The stability of the

temperature repeatability as well as effect of surroundings temperature was also

investigated as uncertainty components.

With the rapid globalization of economic activities and borderlessness of

industry, many kinds of products are assembled by parts from several countries. To

this concern, measuring instruments traceable to national standards for these products

and parts are essential. In the field of measuring instruments, a lot of thermocouples

are widely used. To calibrate these thermocouples accurately, several fixed points

(Cu, Ag, AI) apparatuses have been developed”’ since 2000 at NMIJ. The zinc fixed-

point apparatus was needed to calibrate thermocouples from 0°C to 1100°C [5].

6

Figure 2.1: Zinc Freezing Point Furnace

Schematic view of the zinc freezing point fumace is shown in Fig.1. The zinc

freezing point cell installed in the aluminum isothermal block is heated hy a three-

zone heater. To reduce the electromagnetic noise during measurement, the sheathed

heaters are wound noninductively and supplied by DC power. The zinc freezing

point cell is an open type filled with pressurized argon gas whose pressure is

measurable.[5] To measure the emf of thermocouples, reference junction is generally

maintain at 0°C in an ice bath.

At the start of estimating zinc freezing point realization apparatus, an

automatically operating ice-point device was used to maintain the temperature of the

reference junction. But, on and off of the electronically cooling in the automatically

operating ice-point device induced the temperature up and down to the reference

junction [5].

In this experiment Pt/Pd thermocouples were used, because they show

outstanding stability compared to the conventional thermocouples.

7

2.2 An Automated Thermocouple Calibration System

An Automated Thermocouple Calibration System was invented by Mark D.

Bethea and Bruce N. Rosenthal. It was developed for calibration type K

thermocouple.

 This system operates from room temperature to 650°C and has been used for

calibration of thermocouples in an eight-zone furnace system which may employ as

many as 60 thermocouples simultaneously. It is highly efficient, allowing for the

calibration of large numbers of thermocouples in significantly less time than required

for manual calibrations. The system consists of a personal computer, a data

acquisition/ control unit, and a laboratory calibration furnace. The calibration furnace

is a microprocessor-controlled multipurpose temperature calibrator with an accuracy

of f.7”C. The accuracy of the calibration furnace is traceable to the National Institute

of Standards and Technology (NIST). The computer software is menu-based to give

the user flexibility and ease of use. The user needs no programming experience to

operate the systems [6]. The purpose of calibration is to determine if the

thermocouple being tested are within the standard. If the thermocouple is outside the

standard, a proper calibration must be made.

 The calibration of a thermocouple consists of the determination of its

electromotive force (emf) at a sufficient number of known temperatures so that with

some means of interpolation, its emf will be known over the temperature range in

which it is to be used. This process requires a standard thermometer to indicate

temperatures on a standard scale, a means for measuring the emf of the

thermocouple, and a controlled environment in which the thermocouple and the

standard can be brought to the same temperature [6]. The standard thermometer can

be considered as MSU (Master Standard Unit). Usually digital thermometer and

RTD is used as MSU because it has high accuracy and fast response.

 To calibrate thermocouples by the temperature comparison method, the

thermocouples are placed in a special calibration furnace which provides a stable,

repeatable environment. The heating block inside the furnace has a high thermal

8

conductivity and is heated by resistance elements. The temperature is controlled by a

precision platinum resistance thermometer (RTD sensor) and a closed-loop circuit

[6].

 Using the ATCS, the experimenter needs only to be present at the beginning

and end of a calibration session. If a thermocouple is to be calibrated at five different

temperatures, the experimenter simply specifies those temperatures at the start of the

calibration and then returns when all five temperatures have been reached and the

calibration session is complete [6]. This benefit of this system is it can save a lot of

time for calibrating thermocouples and reduce the cost. This system can be applied in

industry that uses a lot of thermocouples.

2.3 High Speed PC-based Data Acquisition Systems

Until recently, within the last three years, high speed data acquisition systems

which guaranteed data integrity could only be implemented on high end platforms

such as VAX/VMS or U N I X systems. These provided sophisticated multitasking

operating systems and enough horsepower to not only provide data collection of tens

of thousands of U 0 points, but also provide graphical interfaces to users. These

systems were, and still are, expensive to buy and maintain [7].

Data collection on PCs has been, and continues to be, rather disappointing for

users who demand high speed sampling, data integrity, and data storage. This has

been due to a combination of the lack of CPU power, the lack of sophistication of PC

operating systems, and the slow speed of peripheral devices such as disk drives.

Therefore, many users are reluctant to leave their high end systems and look at what

can be done on the PC platform [7]. Recent availability of powerful PC hardware and

software has now made it possible for the PC platform to match the data acquisition

performance of traditional high end systems.

9

The first step in designing and implementing a flexible, high speed data

acquisition system on the PC platform is to specify a set of goals which the system

must achieve. This section lists these goals, and also how most other PC systems fail

to meet them. The failure of these existing systems to meet these goals is what

separates them from the PC system being designed [7]. Thus, the following goals are

discussed.

2.3.1 Guaranteed high speed data acquisition

First, the system must support high speed data acquisition. High speed

processes, such as variable speed drive control, and steel rolling, demand high speed

data acquisition. Sample intervals of 20 milliseconds to 50 milliseconds are the goal

of the system being discussed here. Also, to meet the data demands of modern

production machinery, the system must be able to provide this sampling for up to

10,000 analog and digital values from the monitored system [7].

2.3.2 Minimized channel skew

Skew refers to drifting in time from the specified sampling interval. For

example, reading a 20ms sample at 18ms since the last sample or at 22ms since the

last sample means that a 2ms skew has been introduced into the data collection.

When skew approaches the sample interval, detecting cause and effect relationships

using trended and exception data becomes impossible [7]. You can think of the

channel skew as the time it takes the analog input subsystem to sample a single

channel.

10

Figure 2.2: Channel Skew

Not only must skew be minimized from sample to sample, but also within

samples. For example, skew is introduced into a sample if the system interrupts its

sampling to perform an operator task such as responding to a mouse click.

Introducing skew within a sample makes the data collected in that sample

questionable, and there is no way to tell that the skew was introduced [7].

2.3.3 High Speed Response

In order to monitor high speed processes, the PC platform must be powerful

enough to support the running software. This includes components such as the

microprocessor, peripheral devices like the disk drive and video accelerator, and

memory capacity. Powerful PC platforms have become available only within past

several years. Also, the operating software must be sophisticated enough to take

advantage of provided platform [7].

This goal must be met in order to provide a useful operator interface.

Graphical elements on the screen should update fast enough to emulate analog

display devices, such as bar graphs. If these graphical elements cannot update this

quickly, problems in the monitored process can be masked [7].

11

2.3.4 Data Acquisition Functionality

The system must provide all expected data acquisition functionality, such as

fault and alarm management, and trending. This functionality must be provided at the

sampling rates being supported, and for suitable lengths of time, for example, storing

trended data for several days [7].

Indeed, one of the goals of the system is to provide trending for up to 1,000

digital and analog values continuously and simultaneously [7]. This will allow

maintenance personnel to diagnose a problem without having to specify which values

to trend beforehand.

2.3.5 Hardware

The hardware of the PC system is the foundation of high speed data

acquisition and storage. The most sophisticated operating software cannot provide

the required functionality if the hardware cannot run it fast enough. As mentioned

previously, it is only in recent years that hardware powerful enough for this system

has become available [7]. A very powerful PC platform can be put together today for

less than RM 2000. The base platform for the PC system being designed here is a

desktop PC. The minimum requirement for Data Acquisition System is:

 2 GHz microprocessor

 1 GB RAM

 60GB Hard Drive

 Graphic Card

12

2.3.6 Operating System

The operating system provides the environment in which all of the PC system

software runs. It controls which competing software tasks can have access to the

underlying hardware, including the CPU. It also controls when tasks can access the

hardware. Different operating systems control access differently. In the PC

environment, either “cooperative” multitasking or “preemptive” multitasking is

provided [7]. Nowadays, most PC use Microsoft Windows as their operating system.

Engineering software such as MatLab, LabView only support Microsoft Windows as

their operating system and sometimes we can only find driver for Microsoft

Windows.

2.4 Thermocouple

2.4.1 Thermocouple

The basic theory of a thermocouple is found from a consideration of the

electrical and thermal transport. When the temperature changes at the junction

formed by joining two unlike conductors, its electron configuration changes due to

the resulting heat transfer. This electron reconfiguration produces a voltage (emf or

electromotive force), and is known as Seeback effect. Two junctions or more of a

thermocouple are made with two unlike conductors such as iron and constant an,

copper and constantan, chrome and alumel, and so on. One junction is place in a

reference source (cold junction) and the other in the temperature.[1]

13

Figure 2.3: Thermocouple Junction

 One junction in Figure 1.0 is placed in a shave ice bath and the temperature is

0°C. This junction is reference or cold junction and its thermoelectric reference

voltage is defined as Vr = 0V. Temperatures are measured with respect to Tr by the

remaining measuring junction, Tm. If Tm is placed in boiling water at Tm 100°C, Vo

will equal 5.268mV with the polarity shown in figure 1.0.[1]

2.4.2 Thermocouple types

Thermocouples consist of many types, such as type J, K, T, E, S, and R. Each

type has its particular features, such as range, linearity, inertness to hostile

environment and sensitivity. In each type, various sizes of conductors may be

employed for specific cases such as oven measurement.[3] Thermocouple is

considered as transducer. Transducers and sensors convert a real world signal into

measurable electrical signal, such as voltage or current. A thermocouple will produce

a voltage difference that increases as the temperature increases. For this project

thermocouple type K will be used as it is the most commonly used thermocouple.

Table 2.4: Thermocouple type

Type Materials Normal Range

J Iron-constantan -190°C to760°C

T Copper-constantan -200°C to 371°C

14

K Chromel-alumel -190°C to 1260°C

E Chromel-constantan -100°C to 1260°C

S 90% platinum+ 10% rhodium-platinum 0°C to 1482°C

R 87% platinum + 13% rhodium-platinum 0°C to 1482°C

2.5 Data Acquisition

Data acquisition is a process of gathering and sampling signals from real

world to generate data which can be stored, analyzed, and presented by a PC.

Generation of these signals from the real world is through instruments and sensors,

and each type of signal needs its own special consideration. Simple ways to store

data use a strip-chart recorder or an x-y plotter. But for modern instruments, digitized

data is essential for later analysis and storage purposes. Digital system samples all

data collected from the instruments, takes average of the data and gives an improved

value of the measured signal. Many instruments digitize and store data in their inbuilt

memory which can later be transferred to a computer. Other instruments use certain

software for data acquisition and control. [2] Data acquisition is a process used to

convert a signal in analog to digital so the computer can understand thus process the

signal in computer language.

A transducer is an electronic device that converts energy from one form to

another. Common examples include microphones, loudspeakers, thermometers,

position and pressure sensors, and antenna. Although not generally thought of as

transducers, photocells, LEDs (light-emitting diodes), and even common light bulbs

are transducers [6].The ability of a data acquisition system to measure different

phenomena depends on the transducers to convert the physical phenomena into

signals measurable by the data acquisition hardware. Transducers are synonymous

with sensors in DAQ systems. There are specific transducers for many different

applications, such as measuring temperature, pressure, or fluid flow. DAQ also

15

deploy various Signal Conditioning techniques to adequately modify various

different electrical signals into voltage that can then be digitized using ADCs. [3]

Signal conditioning may be necessary if the signal from the transducer is not

suitable for the DAQ hardware to be used. The signal may be amplified or

deamplified, or may require filtering, or a lock-in amplifier is included to perform

demodulation. Various other examples of signal conditioning might be bridge

completion, providing current or voltage excitation to the sensor, isolation,

linearization, etc.[3]

2.6 Visual Basic

Visual Basic (VB) is a third-generation event-driven programming language

and associated development environment (IDE) from Microsoft for its COM

programming model. [9]

Visual Basic was designed to be easy to learn and use. The language not only

allows programmers to create simple GUI applications, but can also develop

complex applications as well. Programming in VB is a combination of visually

arranging components or controls on a form, specifying attributes and actions of

those components, and writing additional lines of code for more functionality. Since

default attributes and actions are defined for the components, a simple program can

be created without the programmer having to write many lines of code. Performance

problems were experienced by earlier versions, but with faster computers and native

code compilation this has become less of an issue [9].

A programmer can put together an application using the components

provided with Visual Basic itself. Programs written in Visual Basic can also use the

Windows API, but doing so requires external function declarations.

16

The latest version of Visual Basic is Microsoft Visual Basic 2008 Express

Edition.

2.7 Calibration

Calibration is the process of establishing the relationship between a

measuring device and the units of measure. This is done by comparing a device or

the output of an instrument to a standard having known measurement characteristics.

For example the length of a stick can be calibrated by comparing it to a standard that

has a known length. Once the relationship of the stick to the standard is known the

stick is calibrated and can be used to measure the length of other things.[9]

2.8 Standard Deviation

The standard deviation is a measure of the dispersion of a set of values. It can

apply to a probability distribution, a random variable, a population or a multiset. The

standard deviation is usually denoted with the letter σ (lowercase sigma). It is defined

as the root-mean-square (RMS) deviation of the values from their mean, or as the

square root of the variance. [9]

This calculation is described by the following formula:

Where the mean of X is define as:

17

CHAPTER 3

INSTRUMENTS AND HARDWARES

3.1 Overall System Connection

Software/

Visual Basic
DAQ

USB-4716
Thermocouple Type K

4mA- 20mA Digital Data

Figure 3.1: Overall system connection

Figure above show the overall system connection for this project. There are

three major parts:

i. Thermocouple Type K- Thermocouple will detect temperature changes and

then transmit the value in voltage form to DAQ.

ii) DAQ USB-4716 – DAQ is used to convert analogue data to digital data.

iii) Software – Visual basic is used to stored, saved and analysis the data.

18

Thermocouple and DAQ card is considered as hardware part in this project.

3.1.1 Basic instrument connection

Isotech Jupiter 650B

Thermoco

uple Type

K

Thermoco

upel

Type k

Digital

Thermometer

7563
Temperature

Transmitter

Hart 375

Field

Communicator

P-1

P-5

P-9

P-11

P-23P-24

P-26P-28 P-29 P-30

4-20mA 24V

Yokogawa

Temperature

Transmitter

PT100

2793 Decade Resistance

Box

250Ω

DAQ card

USB-4716

P-32

P-33

P-34 P-35

P-40

P-26

Figure 3.2: Basic Instrument Connection

Instrument part as in Figure 2 consists of Digital Thermometer 7563, RTD,

Isotech Jupiter 650B, Yokogawa Digital Manometer MT220, Decade Resistance

Box, Yokogawa Temperature Transmitter PT100, and Hart 375 Field Communicator.

Thermocouple type K is used as an input device to detect temperature changes. Type

K (chromel–alumel) is the most commonly used general purpose thermocouple. It is

inexpensive and, owing to its popularity, available in a wide variety of probes. They

19

are available in the −200 °C to +1350 °C range. Isotech Jupiter 650B is an artificial

heater used to simulate temperature changes. Thermocouple will detect the

temperature changes and transmit the signal to Yokagawa Temperature Transmitter.

Then, Yokogawa Temperature Transmitter will convert the signal to current value

and the current can be read by Digital Manometer or Hart 375 Field Communicator.

Figure 3.3: Instruments

3.2 Instruments

3.2.1 Thermocouple

 Thermocouple is a transducer used to convert temperature value into

equivalent value of voltage or current. In this project, there are two thermocouple

types K used. One Master Standard Unit (MSU), for reference point and another one

for Unit Under Test (UUT). These thermocouples produce output between 0 to 44μV

20

Figure 3.4: Thermocouple

Thermocouple properties:

1) Sensor type : TC type K

2) Lower Range value: -270°C

3) Upper Range value : 1372°C

4) Minimum Range : 50°C

5) Accuracy : ± 0.45°C

3.2.2 Hart 375 Field Communicator.

 Hard communicator has many functions, and one of them is to calibrate the

thermocouple current with specific temperature ranges. For instance, if we want to

read value between 50°C - 200°C we need to set the high PV value at 200°C and the

lowest PV value at 50°C using hart communicator. The calculation how to calibrate

the device is shown in chapter analysis and result. Hart communicator also used to

read present value such as current and temperature from instrument.

21

Figure 3.5: Hart Field Communicator

3.2.3 Yokogawa Temperature Transmitter

Temperature transmitter converts the temperature dependent change in

resistance or voltage of the instrument into a load independent current standard

signal. In other words, it converts low level voltage from thermocouple to current

value. Current is use to transmits signal because it is much less affected by

environmental noise. A 40-20mA signal has the advantage that even at minimum

signal current value, there should be a detectable current flowing. The absence of

current signal indicates a wiring problem.

22

Figure 3.6: Temperature Transmitter

3.2.4 Isotech Jupiter

Figure 3.7: Isotech Jupiter Temperature Bath

23

 Isotech Jupiter is a heater used to heat up the thermocouple to a specific

temperature. The Isotech Jupiter’s controller has dual display, the upper display

indicates the current temperature and the lower display indicates the setpoint or

desired temperature. To change the temperature set point, simply use the UP and

DOWN keys to raise and lower the setpoint. The temperature changes very quick to

desired temperature in heating up process but it will take time to cool down to

desired temperature.

Figure 3.8: Isotech Graph

The graph above shows a theoretical value of temperature heating up process and

cool down process. The actual value taken from real experiment shows a slightly

different result. All experiment results are shown in chapter 4.

3.2.5 Decade Resistance Box

24

Figure 3.9: Decade Resistance Box

 Decade resistance box is adjustable resistor used to give minimum load to

Hart Communicator. Without a minimum load, the hart communicator won’t work.

3.2.6 Yokogawa MT220- Digital Manometer

25

Figure 3.10: Yokogawa MT220- Digital Manometer

 Yokogawa MT220- Digital Manometer used as digital ammeter as well as

power supply for the circuit.

3.2.7 Digital thermometer 7563

 Digital thermometer is used as a Master Standard Unit (MSU). It has high

sensitivity measurement. This instrument is capable measuring DC voltages,

resistance and temperature (Thermocouple and RTD). This model also provides a

thermocouple temperature measurement resolution of 0.1°C, and temperature 0.01°C

when using RTD.

26

Figure 3.11: Digital thermometer 7563

3.3 Data Acquisition Hardware

Data acquisition is achieved by using USB-4716 DAQ Card which is

manufactured by Advantech. USB-4716 DAQ Card use USB (Universal Serial Bus)

to connect to computer. The Advantech Data Acquisition driver is designed to

support programming language such as Visual Basic. Figure 3.1 shows the data

acquisition card that used in this project. This daq card has analog input, analog

output, digital input and digital output channel.

27

Figure 3.12: USB-4716 DAQ Card

3.3.1 Analog input

Analog input subsystems convert real-world analog input signals from a

sensor into bits that can be read by your computer. USB-4716 is 16bits resolution

and analog input subsystems are also referred to as AI subsystems

3.3.2 Analog output

Analog output subsystems convert digital data stored on your computer to a

real-world analog signal. These subsystems perform the inverse conversion of analog

input subsystems. USB-4716 offers two output channels with 16 bits of resolution,

28

with special hardware available to support multiple channel analog output operations.

Analog output subsystems are also referred to as AO subsystems.

3.3.3 Digital input/output

Digital input/output (DIO) subsystems are designed to input and output

digital values (0 and 1) from and to hardware. These values are typically handled

either as single bits or lines, or as a port, which typically consists of eight lines.

USB-4716 provides 8 channel digital inputs and 8 channel digital outputs.

3.3.4 Counter

Counter/timer (C/T) subsystems are used for event counting, frequency and

period measurement, and pulse train generation. USB-4716 has 1 channel for event

counter.

3.3.5 I/O Connectors

USB-4716 is equipped with plug-in screw-terminal connectors that facilitate

the connection to the module without cables or terminal boards.

29

Figure 3.13

Table 3.1: I/O Connector Signal Description

Signal
Name

Name
Reference

Direction Description

AI<0…15> AGND Input Analog Input Channels 0
through 15.

AIGND - - Analog Input Ground.

AO0
AO1

AGND Output Analog Output Channels 0/1.

AOGND - - Analog Output Ground. The
analog output voltages are referenced
to these nodes.

DI<0..7> DGND Input Digital Input channels.

DO<0..7> DGND Output Digital Output channels.

DGND - - Digital Ground. This pin supplies
the reference for the digital

30

Channels at the I/O connector.

GATE DGND Input A/D External Trigger Gate.
When GATE is connected to +5
V, it will disable the external
Trigger signal to input.

EXT _TRG DGND Input A/D External Trigger. This pin is
external trigger signal input for
the A/D conversion. A low-tohigh
edge triggers A/D conversion
to start.

EVT_IN DGND Input External events input channel.

P_OUT DGND Output Pulse output channel

3.3.6 Noise

Noise must be considered before using the DAQ card because DAQ card is

very sensitive to noise. Noise can be divided into two components. The first one is

internal noise and the second is external noise.

Internal noise arises from thermal effects in the amplifier. Usually, amplifier

generates a few microvolt of internal noise. The amount of noise added to the signal

depends on the bandwidth of the input amplifier. To reduce internal noise, an

amplifier with a bandwidth that closely matches the bandwidth of the input signal

must be selected.

External noise arises from many sources. A common external noise is

fluorescent lightning. These lights generate an arc at twice the power of line

frequency (120Hz). The noise is added to the acquisition circuit because every wire

in the circuit acts as aerials picking up environmental electrical activity. To remove

this noise the input channel should be configured in differential mode. Beside that,

the signal wire must be twisted together rather than separate. And the signal wire

must be kept as short as possible and far away from environmental electrical activity.

23

3.3.7 Input Configuration

Input configuration can be divided into 2 categories. First, single-ended input

and second differential input.

When single-ended input is used, there is one signal wire associated with

each input signal, and each input signal is connected to the same ground. This type of

input configuration is more susceptible to noise than the differential measurements

because of differences in signal paths. It is advised to use this configuration when the

input signal is greater than 1 volt and the wire connecting the signal is are less than

10 feet.

Figure 3.13: Single-ended input connection

 When differential input is configured, there are two signal wires associated

with each input signal, one for input signal and one for reference signal. The

measurement is the difference between the two wires. This configuration type helps

reduce noise. It is recommends to use this configuration when the input signal is less

than 1 Volt, the wires connecting the signal are greater than 10 feet and the signal

wires travel through noisy environment.

24

Figure 3.14: Differential input channel connection - ground reference signal source

Figure 3.15: Differential input channel connection - floating signal source

33

CHAPTER 4

SOFTWARE

4.1 Software Development

Microsoft Visual Basic 2008 Express Edition is chosen because it is free

software and hosted a VB.Net platform. In addition VB.Net is the most efficient

programming language and consumes low CPU utilization compare to other high

level programming languages.

4.1.1 Device Driver Installation

Before start programming using Visual Basic, device driver for DAQ USB-

4716 must be installed. If not, Visual Basic won’t detect the DAQ USB-4716

hardware. To install the device driver the following steps are required.

i) Insert the DAQ CD.

ii) Install Device Manager.

iii) Install USB-4716 driver.

34

4.1.2 General Software Flow Cart

The flow chart below shows the basic construction of the software

Start

Data is

collected

from DAQ

Record

Data is

stored in

database

Uncertainty

Calculation

Generate

Graph

1
st

Reading

2
nd

Reading

3
rd

Reading

Export to

Excel

Data is displayed.

Voltage VS Time

graph

Stop
Yes

No

Data is displayed.

Temperature Value

Figure 4.1: General Flowchart

35

4.2 Creating Graphical User Interface (GUI)

This project used Object oriented-programming (OOP) in order to implement

the Data Acquisition. OOP is the process of developing well-defined design model

[4]. Visual Basic is one of the languages supported by the Advantech DAQ USB-

4716.

Before the USB-DAQ can be communicate with the application software, all

dll(Dynamic Link Library) driver is installed in every applications. The dll driver

acts as reference for VB software. The dll driver is provided in the installation CD.

The software used Microsoft Access database as data storage. To access data

that has been saved, user can directly open Microsoft Access and make any changes

of the data. When user opens the software, VB will automatically convert Microsoft

Access database to dataset. Dataset is an internal database for VB.

To display graph, ZedGraph is used because it is more advance compared to

other VB components. ZedGraph is a set of classes, written in C#, for creating 2D

line and bar graphs of arbitrary datasets. The classes provide a high degree of

flexibility -- almost every aspect of the graph can be user-modified [5].

In order to use ZedGraph class, user must add dll reference and component for VB.

4.2.1 Uncertainty calculation

Uncertainty calculation is calculated using formula:

36

To apply this formula in programming language for loop is used. First, all data is

extracted from database and located in variable form. Then, the formula is applied in

each row. To continue calculate the next row, for loop is used.

For i = 0 To MaxRows - 1

 a = ds.Tables("proto").Rows(inc).Item(3)

 b = ds.Tables("proto").Rows(inc).Item(4)

 c = ds.Tables("proto").Rows(inc).Item(5)

 ave = (a + b + c) / 3

 sig = ((a - ave) * (a - ave)) + ((b - ave) * (b - ave))

+ ((c - ave) * (c - ave))

 sq = Math.Sqrt(0.5)

 std = sq * sig

 stdx(i) = sq * sig

 y = Math.Round(stdx(i), 10)

 inc = inc + 1

Next i

To calculate uncertainty u1, each standard deviation is put in array form, then each

array value is compared with each other. After the comparison complete, the

highhest and the lowest value is located in variable high grade and low grade.

highgrade = stdx(0)

 lowgrade = stdx(0)

 For i = 1 To 5

 If stdx(i) < lowgrade Then

 lowgrade = stdx(i)

 End If

 Next i

 For i = 1 To 5

 If stdx(i) > highgrade Then

 highgrade = stdx(i)

 End If

 Next i

37

4.2.2 Sample rate / Frequency sampling

Sample rate formula is calculate using this formula :

This formula is applied using timer control in VB. A timer is another one of those

useful controls within VB that allows the developer to make things happen after a

certain time, or on a certain event. Time in VB is calculated in mili seconds. Let say

time interval is 500ms. We will divide 1 second over timer interval to get the sample

rate.

In order to get a smooth graph, a higher sample rate or lowest time interval is needed.

4.2.3 Temperature Calibration

Temperature calculation is achieved using formula

y = Temperature in celcius

x = input voltage from daq card

m = gradient

c = intersection at y axis

With this formula we are able to determine the exact temperature value by

calibrating the temperature and the voltage. Voltage value is used rather than current

because DAQ card can only read voltage. To calculate the current value, formula

V=IR is used and as we know from the formula the voltage increase proportional

38

with current. So when the current increase, the voltage also increase. In this

calculation we used a fix 250Ω resistor.

Figure 4.2: Current Vs Voltage

4.2.4 Trigger modes

A trigger is defined as an event that initiates data logging to memory or to a

disk file. Triger event is important as it will determine the frequency sampling. Some

trigger mode might not give a maximum sampling frequency because it will depends

on other factors. Trigger can be divided into 3 parts which is software trigger,

internal pacer trigger and external trigger.

This software use software trigger mode. User can set the sampling frequency

by adjusting the Time interval value and the value is in miliseconds unit.

Timer1.Interval = 500

Software trigger is less accurate to get the sampling frequency. The sampling

frequency will depends on the computer hardware arcitechture and software

environtment. In addition, the sampling frequency may vary due to programming

0

5

10

15

20

25

0 1 2 3 4 5 6

C
u

rr
e

n
t

(m
A

)

Voltage

39

language, code efficiency and CPU utilization. For instance, the sampling frequency

may reduce if the CPU utilization is high while you logging the data. To maximize

the frequency sampling, close all unnessary apllication when logging the data and try

to increase the code efficiency.

 Internal pacer trigger also known as onboard trigger or hardware trigger. This

trigger mode is the most accurate trigger mode to get the maximum sampling

frequency. In hardware trigger mode, the hardware clock and hardware memory will

be used. All dat a will be transferred to software when the hardware memory is full.

USB-4716 DAQ card support to 200k sample per second (200k HZ). This sampling

frequency can only be achieved if hardware trigger mode is used.

 External trigger used an external clock to trigger the events to initiates data

logging to memory. This mode usually used when involving external hardware and

needs a synchronous sampling with the harware.

4.3 Connecting USB-4716 DAQ with computer.

Step 1: Touch the metal part of the surface of your computer to neutralize the

static electricity that might be in your body.

Step 2: Plug the USB modul into the selected USB Port.

Step 3: Goto Advantech Device Manager and see wether the device is

connected or not.

Windows > All Programs > Advantech Automation > Device Manger >

Advantech Device Manager

40

Figure 4.3: Advantech Form

Step 4: Press the test button on Advantech Device Manager. Now you should

have Advantech Device Test window. If the DAQ card is connected with

voltage source, you should see the analog input voltage reading.

Figure 4.4: Advantech Device Test

41

4.4 GUI interface

The GUI user interface has been developed using Microsoft Visual Basic

2008 Express Edition. The GUI has been designed so that it becomes “user

friendly” as shown in figure below. In this GUI, there have four section or tab.

Figure 4.5: Data logging tab

The first tab shows Temperature VS Time graph. If the computer is

connected to the USB DAQ card, the user can view live data from the instrument.

To start viewing the data stream, user must press start button. Before start

logging the data, user must select which reading he likes to record into database,

1
st
, 2

nd
 or 3

rd
 reading. The graph only shows Voltage VS Time data, but the

thermometer panel will show the equivalent value of temperature, for instance

1mV equal 50°C. And the Voltage VS Time graph data is not stored in database

means that the value is not recorded. In order to start recording data from

instrument, user must press record button. User must be alert when he wants to

record the data because once he presses the button he cannot get the previous

data at the specific time he wanted. This happen because, as the time increases,

the temperature also increases. Obviously, we cannot stop the temperature from

42

rising and temperature reading is not stable. If the data is recorded earlier than it

should be, it can still be deleted.

Figure 4.6: Data control & Preview tab

The second tab shows data that has been recorded. If no data has been

recorded yet, the software will be loaded with default data from database. From

this tab, user can scroll through recorded data, add new data, update data or

delete data. After enough data has been recorded, user can calculate the mean,

standard deviation and error. All result will be calculated automatically by the

software.

43

Figure 4.7: Application tab

In application tab, user can generate several of graphs such as 1
st
 reading VS

MSU, Mean Reading VS MSU and Error VS MSU. The graph can be saved in

several types of format such as gif, jpeg, png, bmp, emf and tif. Zooming option

also included in the graph properties. With this interface also, the displayed graph

can be printed. Uncertainty calculation is generated automatically by this

software when data is loaded, but if certain data is not available for analysis the

software will assume 0 for the data field. For instance, if user still not records the

3
rd

 reading, the software will assume the value for 3
rd

 reading is 0. Data Recorder

function is used to record live data and the recorded data is stored in separate

database. After the data has been saved, the data can be plotted with plotter

function. Converter function is used to convert value from temperature to current

or current to temperature. In addition, this software has the function to export all

data into Microsoft Excel format.

44

Figure 4.8: Setting tab

In setting tab, user can change setting or properties of the software. User can

change how many data to log per second in data logging panel. The higher the

value we choose, the smother the graph will be. The maximum value that can be

recorded by this software is 32 sample/s. User can also set the temperature alarm.

A message will be prompt when the desired temperatures reach. There are points

that can be set by user and each point can be disable depends on the user needs.

Before any experiment can be made, user needs to fill the exact instrument

calibration data in the Instrument Calibration panel. If not, the temperature value

will not be accurate.

Select device panel is necessary for software to connect with hardware and

the scan panel is used to determine the current data from DAQ card in analog and

digital form.

This software is built in with the function to load external database. The

database must be in Microsoft Access format.

45

4.5 General Procedure How to Use the Software

Open The

Software

Goto setting tab

1. Select device

2. Set the Instrument calibration

3. Select simulation or live mode

Goto Data control & Preview tab

1. Set the upper and lower range value

Goto Data Logging tab

1. Choose 1
st
,2

nd
 or 3r reading to record

2. Press start button

3. Pres record button to record data at specific time.

4. Pres reset button to delete previous data

Goto Data control & Preview tab

1. Calculate mean, standard deviation and error.

Goto to application tab

1. You can create graph, calculate

uncertainty and export data to excell

Figure 4.9: General Procedure How to Use the Software

46

CHAPTER 5

RESULT AND ANALYSIS

5.1 Introduction.

The main objective of this project is to develop a software application to help

in student learning process and the software will be used during lab session of

Industrial Instrumentation subject (BEE4523). This software has successfully

developed using Microsoft Visual Basic 2008 Express Edition (VB) and it can be

concluded that VB is a simple programming language to develop a user friendly

application.

5.2 Experiment

5.2.1 Experiment 1: Five point calibration of temperature transmitter

For the Five-point calibration of the instruments, the span of the UUT is

divided into five equal parts with the first point at the low range and the top pint at

the high range. For example the temperature transmitter has the range 50°C -200°C.

Therefore the span is 200-50=150°C. Dividing the span by four we get 37.5°C.

Hence the five equal points are 50, 87.5, 125.0, 162.5 and 200°C based. The desired

output for 4-20mA range is calculated based on the 50 -200°C ranges using below

equation;

47

Where;

X = ith point

URV = Upper range value

LRV = Lower range value

Objectives: Determine the calibration of temperature transmitter.

Figure 5.0 shows the connection for this experiment:

Isotech Jupiter 650B

Thermoco

uple Type

K

Thermoco

upel

Type k

Digital

Thermometer

7563
Temperature

Transmitter

Hart 375

Field

Communicator

P-1

P-5

P-9

P-11

P-23P-24

P-26P-28 P-29 P-30

4-20mA 24V

Yokogawa

Temperature

Transmitter

PT100

2793 Decade Resistance

Box

250Ω

DAQ card

USB-4716

P-32

P-33

P-34 P-35

P-40

P-26

Figure 5.0: Connection for Experiment 1

Procedures:

1) The equipment is connected as shown in Figure 5.0.

2) The desired temperature range is calibrated using Hart Communicator. In this

experiment the lowest value is set to 50°C and the highest value to 200°C.

3) USB DAQ card is connected parallel to decade resistance box. Once the

DAQ card has been connected, the software for this experiment is activated

and the calibration value is inserted in software’s setting.

48

4) To record the desired value using the software, make sure the input is stable.

In order to get a stable input, the Hart 375 Field Communicator must be

removed from the circuit during the experiment. If the input is still not stable,

try to reconnect the DAQ card with decade resistance box.

5) When the desired value has reached, the button is pressed immediately. The

experiment is continued till the maximum value.

6) Three readings are recorded using this software.

7) The mean, standard deviation and error curve is automatically generated by

the software.

Results:

Results for experiment 1 was put in Table 5.1 (a) & (b) and plotted in Figure

5.2.

Table 5.1 (a): Result from experiment

No(%) MSU (°C)
MSU(Output

mA)
1stReading

(°C)
2ndReading

(°C)
3rdReading

(°C)

0 50 4 51.14375 50.00938 49.99062

25 87.5 8 87.50938 89.58125 87.52812

50 125 12 128.03751 128.12187 124.99062

75 162.5 16 162.52812 163.82551 162.57841

100 200 20 201.29952 200.39855 201.55522

Table 5.1 (b): Mean, Standard Deviation and Error

Mean Std Error

50.3812 0.6168 0.7625

88.2062 2.0054 0.8071

127.05 4.5008 1.64

162.9773 0.7639 0.2938

201.0844 0.5221 0.5422

49

Figure 5.1: Temperature VS MSU Applied value

Figure 5.2: Error Curve

Noise

50

Figure 5.3: Mean VS Digital Thermometer Temperature

Figure 5.4: Uncertainty due to Repeatability of the Experiment (U1)

51

Figure 5.5: Uncertainty Contribution due to MSU Error (U2)

Figure 5.6: Uncertainty Due to UUT Resolution (U3)

52

Figure 5.7: Combined Standard Uncertainty (Uc)

Calculation:

1) The error calculation:

2) Mean

53

3) Uncertainty

4) Uncertainty due to Repeatability of the Experiment (u1).

5) Uncertainty Contribution Due to MSU Error (u2).

Accuracy specification for this instrument is

Hence the error in MSU is

54

Degree of freedom is infinity since the manufacturer is expected to provide

the error data after a large number of tests.

6) Uncertainty due to UUT resolution (u3).

From the user manual we can get the maximum resolution for MSU when

using thermocouple is 0.1°C.

Degree of freedom is infinity since the manufacturer is expected to provide

the error data after a large number of tests.

7) Combined Standard Uncertainty (uc).

The effective degrees of freedom ve is given by

55

The confidence limits are obtained by the formula. We choose the coverage

factor k from table. Refer to Appendix A, for a value of v=2 and 95%,

confidence interval k is 4.3

Analysis:

1) From Table 5.1(b) we could see that, the highest standard deviation is 4.5008

and produce an error of 1.68%. Standard deviation shows us how much the

recorded value deviate from desired value. If the standard deviation equal to

0, that means the recorded value is equal to desired value. Thus, no error

produces in the reading.

2) From the formula, we know that if the standard deviation is high, the

uncertainty is also high. This would mean that the reading or the

thermocouple is not properly calibrated. The sample taken “n” should also be

considered in calculation, because if more samples are taken, the lower

uncertainty value will become and if fewer samples are taken, the uncertainty

value will increase. As a conclusion, if the uncertainty value is high, the

thermocouple is not reading the value correctly and it needs to be calibrated

later.

3) The data must be recorded in noise free environment, if not the error

percentage will increase and the data is not valid for calculation. The noise

occurs when connecting to Hart Communicator parallel with temperature

transmitter. This causes, the current produced by temperature transmitter

56

diverted to 2 junctions. Thus, decreasing the actual current value. When the

current changed, the voltage is also changed according to ohm’s law. And

this causes the instability to the system. To remove the noise, simply remove

the Hart Communicator and reconnect the DAQ card with decade resistance

box.

Temperature

Transmitter

Hart 375

Field

Communicator

P-1

P-5

P-26P-28 P-29 P-30

4-20mA 24V

Yokogawa

Temperature

Transmitter

PT100

2793 Decade Resistance

Box

250Ω

DAQ card

USB-4716

P-34 P-35

P-40

P-26

4mA

0.5mA

3.5mA

Temperature

Transmitter

P-26P-28 P-29 P-30

4-20mA 24V

Yokogawa

Temperature

Transmitter

PT100

2793 Decade Resistance

Box

250Ω

DAQ card

USB-4716
P-40

P-26

4mA

4mA

0.875V

1V

Figure 5.8: Removing Noise

57

4) Another potential error rises from thermocouple cold junction. The signal

produced by a thermocouple is a function of the difference in temperature

between the probe tip (hot junction) and the other end of the thermocouple

wire (cold junction). The room temperature can affect the cold junction

temperature and thus change the voltage output. This error is cannot be 100%

eliminated but can be reduced. To minimize the cold junction error, we must

perform thermocouple calibration a few minutes after the measuring

instrument is powered up, allowing the cold junction to stabilize after warm

up.

Figure 5.9: Thermocouple cold juntion

5.2.2 Experiment 2: Isotech Jupiter Heat up and Cool down process.

This experiment is conducted to determine the temperature increase rate and

decrease rate of Isotech Jupiter. Data recorder function is used in this experiment to

record data and plot the data with plotter function. The recorded data is compared

with theoretical value as in Figure 3.08.

Objectives: Determine the time for Isotech Jupiter to heat up and cool down.

Procedures:

1) The equipment is connected as shown in Figure 5.0.

2) The desired temperature range is calibrated using Hart Communicator. In

this experiment the lowest value is set to 0°C and the highest value to

600°C.

58

3) USB DAQ card is connected parallel to decade resistance box. Once the

DAQ card has been connected, the software for this experiment is

activated and the calibration value is inserted in software’s setting.

4) To record the desired value using the software, make sure the input is

stable. In order to get a stable input, the Hart 375 Field Communicator

must be removed from the circuit during the experiment. If the input is

still not stable, try to reconnect the DAQ card with decade resistance box.

5) Record the temperature data using data recorder function.

6) Increase the Isotech Jupiter temperature to 600°C.

7) Stop recording when the temperature reaches 600°C and press the save

button. The graph temperature vs time can be generated automatically

using the generate button. Then, save the graph.

8) Decrease the Isotech Jupiter temperature to 0°C.

9) Press the record button.

10) Stop the recording when temperature reaches 50°C and press the save

button.

11) Generate the temperature vs time graph and save the graph.

Results:

Figure 5.10: Temperature increase rate

59

Figure 5.11: Temperature decrease rate

Calculation:

1) Temperature increase rate.

From the graph 5.2, we get

By using the calibration value, the current is converted to

temperature.

60

Temperature increase rate is calculated using the formula:

2) Temperature decrease rate.

From the graph 5.2, we get

By using the calibration value, the current is converted to

temperature.

61

Temperature decrease rate is calculated using the formula:

Analysis:

1) From the calculation, we could say that temperature increase linearly but

decrease in quadratic form. Thus, it is hard to calculate the exact temperature

decrease rate.

2) From the graph 5.2 we can conclude that the temperature increase rapidly but

it takes time to cool down. Theoretical value from Figure 3.08 shows that it

will take about 20 minutes for temperature to decrease from 400°C-100°C.

But by experiment, it takes about 4000s = 66.6 minute to cool down from

400°C to 100°C.

3) To gain a precise data, the temperature must be increase step by step. For

instance, if student want to record 50°C, the temperature must be set to 100°C

first. When the temperature has already pass the desired point (50°C),

increase the temperature to 150°C. This process is done to ensure that the

temperature do not increase rapidly and to give time to the temperature to

stabilize.

62

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Summary of the Work

The objective of this project has been achieved and successfully completed.

This point leads to the idea of using the Data Acquisition card that reacts as a

connection between the instrument hardware and computer. Since the computer can

be used in various ways, such as act as real time oscilloscope, data collection,

database, data analysis and manipulation etc. It is beneficial if the computer is fully

utilized for this purpose.

Studying the noise characteristic is very important in this project because it

will determine the efficiency of the system and reduce the error percentage. Various

noise patterns can be detected by using this system for instance electromagnetic

noise and electrostatic noise. To reduce this noise or completely eliminate this noise,

a proper step must be taken.

As a conclusion, it is concluded that Visual Basic is a good platform to

develop user friendly software to calculate and analyze the temperature data. Beside

that, the systems offer a new learning experience for student. In addition, student can

save a lot of time using this software instead of using manual calculation.

63

6.2 Recommendations For the Future Work

For the future development and enhancement, there are some suggestions that

seem can be implemented to improve the system. Here is some enhancement of this

project that should be added in future:-

1. This software application is too complex so, in order to reduce the CPU

utilization, the code efficiency must be maximize and hardware trigger mode

must be used if we want to get maximum sampling frequency.

2. Upgrade the program for more function and not limited for analysis the data

only. Use the software as a controller to control an actuator such as heater.

Various controllers can be implemented such as discontinuous controller or

continues controller mode. For instance, P, PD and PID controller can be

used to control plant temperature.

3. Upgrade the system including save function. The output from the temperature

analysis can be saved in various formats such as doc and txt.

4. Write the programming using other language such as LabView, C and C++.

This can allow the program can be executed in other platform instead

Microsoft Windows.

5. Build a fully automatic temperature calibration system. By implementing this

system it could save a lot of time in calibrating the thermocouple and in

addition it will reduce cost.

64

6.3 Costing & Commercialization

 This software application is suitable for commercialization especially to

student and industrial application. Most of the application in this software has been

build to replace manual calculation. Manual calculation requires a lot of time,

concentration and focus. Thus, by using this software student, lecturer and engineer

personnel can minimize their time in doing analysis instead of using manual

calculation which require more times. In addition, this software can increase

productivity of works and make job easier.

65

REFERENCES

1. Clarence W. de Silva (2007). Sensors and Actuators – Control System

Instrumentation. CRC Press

2. Frederick F. Driscoll, Robert F. Coughlin and Robert S. Villanucci (2000).

Data Acquisition and Process Control with the MC68HC11 Microcontroller.

Prentice Hall, Inc

3. Curtis d. Jonson. Process Control Instrumentation Technology. Pearson

International Technology

4. Deitel, T.R Neito. Visual Bsic 6 – How to Program. Prentice Hall, 1999

5. H.Narushima*, H.Ogura, M.Izuchi, M.Arai.Evaluation of the Freezing Point

of Zinc for Pt/Pd. Fukui University, Japan. August 4-6.2003

http://ieeexplore.ieee.org/iel5/9240/29302/01324246.pdf?arnumber=1324246

6. Mark D. Bethea and Bruce N. Rosenthal. An Automated Thermocouple

Calibration System. NASA Lewis Research Center, Cleveland.April 6, 1992.

http://ieeexplore.ieee.org/iel1/19/4476/00177346.pdf?arnumber=177346

7. Jeffrey R. Payne Bradford A. Menz et al.High Speed PC-based Data

Acquisition Systems. 1995 IEEE

http://ieeexplore.ieee.org/iel3/4010/11527/00530575.pdf

8. Zedgraph

http://zedgraph.org/wiki/index.php?title=Main_Page

9. Wikipedia

http://en.wikipedia.com

http://ieeexplore.ieee.org/iel5/9240/29302/01324246.pdf?arnumber=1324246
http://ieeexplore.ieee.org/iel1/19/4476/00177346.pdf?arnumber=177346
http://ieeexplore.ieee.org/iel3/4010/11527/00530575.pdf
http://zedgraph.org/wiki/index.php?title=Main_Page
http://en.wikipedia.com/

66

10. Microsoft Visual Basic URL

http://www.devdos.com/vb/wanttobe.shtml

http://www.devdos.com/vb/wanttobe.shtml

67

APPENDICES

68

APPENDIX A

Program Design

Imports System.Data

Imports ZedGraph

Imports System.Drawing.Drawing2D

Imports System.Data.OleDb

Public Class Form1

 Dim inc As Integer

 Dim MaxRows As Integer

 Dim con As New OleDb.OleDbConnection

 Dim sql As String

 Dim tickStart As Integer = 0

 Dim x As Integer

 Dim paint1 As Integer

 Dim tempIns As Double

 Dim volt As Double

 Dim incr As Integer

 Dim alrm1 As Integer

 Dim alrm2 As Integer

 Dim alrm3 As Integer

 Dim alrm4 As Integer

 Dim alrm5 As Integer

 Const DATA_FILE_EXTENSION As String = ".mdb"

 Private da As OleDbDataAdapter

 Private ds As New DataSet()

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 timer()

 btnRecord.Enabled = False

 btnReset.Enabled = False

 btnStop.Enabled = False

 btnRecord2.Enabled = False

 btnReset2.Enabled = False

 database()

 End Sub

 Private Sub Load_Excel_Details()

 'Extracting from database

 Dim filename As String

 Try

 'ds.Reset()

 da.Fill(ds, "proto")

 If ds.Tables.Count < 0 Or ds.Tables(0).Rows.Count <= 0

Then

 Exit Sub

 End If

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 Dim Excel As Object = CreateObject("Excel.Application")

 If Excel Is Nothing Then

69

 MsgBox("It appears that Excel is not installed on this

machine. This operation requires MS Excel to be installed on this

machine.", MsgBoxStyle.Critical)

 Return

 End If

 'Export to Excel process

 Try

 With Excel

 .SheetsInNewWorkbook = 1

 .Workbooks.Add()

 .Worksheets(1).Select()

 Dim i As Integer = 1

 For col = 0 To ds.Tables(0).Columns.Count - 1

 .cells(1, i).value =

ds.Tables(0).Columns(col).ColumnName

 .cells(1, i).EntireRow.Font.Bold = True

 i += 1

 Next

 i = 2

 Dim k As Integer = 1

 For col = 0 To ds.Tables(0).Columns.Count - 1

 i = 2

 For row = 0 To ds.Tables(0).Rows.Count - 1

 .Cells(i, k).Value =

ds.Tables(0).Rows(row).ItemArray(col)

 i += 1

 Next

 k += 1

 Next

 filename = txtPath.Text & "\" & Format(Now(), "dd-

MM-yyyy_hh-mm-ss") & ".xls"

 .ActiveCell.Worksheet.SaveAs(filename)

 End With

System.Runtime.InteropServices.Marshal.ReleaseComObject(Excel)

 Excel = Nothing

 MsgBox("Data's are exported to Excel Succesfully in '" &

filename & "'", MsgBoxStyle.Information)

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 Dim pro() As Process =

System.Diagnostics.Process.GetProcessesByName("EXCEL")

 For Each i As Process In pro

 i.Kill()

 Next

 End Sub

 Private Sub timer()

 Dim myPane As GraphPane = ZedGraphControl1.GraphPane

 myPane.Title.Text = "Voltage VS Time" & Chr(10) & _

 "(After 25 seconds the graph scrolls)"

 myPane.XAxis.Title.Text = "Time, Seconds"

 myPane.YAxis.Title.Text = "Sample Potential, Volts"

70

 Dim list As New RollingPointPairList(1200)

 Dim curve As LineItem = myPane.AddCurve("Voltage", list,

Color.Blue, SymbolType.None)

 Timer1.Interval = 50

 myPane.XAxis.Scale.Min = 0

 myPane.XAxis.Scale.Max = 30

 myPane.YAxis.Scale.Min = 0

 myPane.YAxis.Scale.Max = 6

 myPane.XAxis.Scale.MinorStep = 1

 myPane.XAxis.Scale.MajorStep = 5

 myPane.Chart.Fill = New Fill(Color.White,

Color.LightGoldenrodYellow, 45.0F)

 myPane.Fill = New Fill(Color.White, Color.FromArgb(220, 220,

255), 45.0F)

 myPane.XAxis.MajorGrid.IsVisible = True

 myPane.YAxis.MajorGrid.IsVisible = True

 ZedGraphControl1.AxisChange()

 tickStart = Environment.TickCount

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

 Dim y As Double

 inc = 0

 y = 0

 For i = 0 To MaxRows - 1

 y = y + ds.Tables("proto").Rows(inc).Item(2)

 inc = inc + 1

 Next i

 MsgBox(y)

 End Sub

 Private Sub Button9_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button9.Click

 If CheckBox1.Checked Then

 Graph1.Visible = True

 End If

 If CheckBox2.Checked Then

 Graph2.Visible = True

 End If

 If CheckBox3.Checked Then

 Graph3.Visible = True

 End If

 If CheckBox4.Checked Then

 Graph4.Visible = True

 End If

 If CheckBox5.Checked Then

 Graph5.Visible = True

 End If

 If CheckBox6.Checked Then

71

 Graph6.Visible = True

 End If

 End Sub

 Private _drawInsidePanel As Boolean

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Timer1.Tick

 Dim textA1 As Integer

 Dim textA2 As Integer

 Dim textA3 As Integer

 Dim textA4 As Integer

 Dim textA5 As Integer

 If ZedGraphControl1.GraphPane.CurveList.Count <= 0 Then

Return

 Dim curve As LineItem =

ZedGraphControl1.GraphPane.CurveList(0)

 If curve Is Nothing Then Return

 Dim list As IPointListEdit = curve.Points

 If list Is Nothing Then Return

 Dim time As Double = (Environment.TickCount - tickStart) /

1000.0

 If rbtnSimulation.Checked Then

 ' 3 seconds per cycle

 ' Produce dummy data range 1-5V

 volt = (Math.Sin(2 * Math.PI * time / 3.0)) * 2 + 3

 'volt = (Math.Sin(0.1 * Math.PI * time / 3.0)) * 2 + 3

 Else

 'volt = Math.Round(AxAdvAI1.DataAnalog, 2)

 volt = AxAdvAI1.DataAnalog

 End If

 list.Add(time, volt)

 Dim xScale As Scale = ZedGraphControl1.GraphPane.XAxis.Scale

 If time > xScale.Max - xScale.MajorStep Then

 xScale.Max = time + xScale.MajorStep

 xScale.Min = xScale.Max - 30.0

 End If

 ZedGraphControl1.AxisChange()

 ZedGraphControl1.Invalidate()

 InstrumentCalibration()

 txtDataTime.Text = Math.Round(time, 1) & "s"

 txtDataTemp.Text = Math.Round(tempIns, 3) & "°C"

 txtDataVolt.Text = Math.Round(volt, 4) & "V"

 txtDataCurrent.Text = Math.Round(((volt / 250) * 10 ^ (3)),

3) & "mA"

 textA1 = txtA1.Text

 textA2 = txtA2.Text

 textA3 = txtA3.Text

 textA4 = txtA4.Text

 textA5 = txtA5.Text

72

 If Math.Round(textA1, 0) > Math.Round(tempIns, 0) And

cmbA1.SelectedItem = "Enable" And alrm1 = 1 Then

 alrm1 = 0

 MsgBox("Temperature is recorded in database.")

 ElseIf Math.Round(textA2, 0) > Math.Round(tempIns, 0) And

cmbA2.SelectedItem = "Enable" And alrm2 = 1 Then

 alrm2 = 0

 MsgBox("Temperature is recorded in database.")

 ElseIf Math.Round(textA3, 0) > Math.Round(tempIns, 0) And

cmbA3.SelectedItem = "Enable" And alrm3 = 1 Then

 alrm3 = 0

 MsgBox("Temperature is recorded in database.")

 ElseIf Math.Round(textA4, 0) > Math.Round(tempIns, 0) And

cmbA4.SelectedItem = "Enable" And alrm4 = 1 Then

 alrm4 = 0

 MsgBox("Temperature is recorded in database.")

 ElseIf Math.Round(textA5, 0) > Math.Round(tempIns, 0) And

cmbA5.SelectedItem = "Enable" And alrm5 = 1 Then

 alrm5 = 0

 MsgBox("Temperature is recorded in database.")

 End If

 paint1 = Math.Round(time, 0)

 _drawInsidePanel = True

 Panel1.Invalidate() ' force to redraw the Panel1

 End Sub

 Private Sub Panel1_Paint(ByVal sender As System.Object, ByVal e

As System.Windows.Forms.PaintEventArgs) Handles Panel1.Paint

 Dim g As Graphics = e.Graphics

 Dim rect As New Rectangle

 Dim y As Integer

 y = 85 * volt - 85

 g.FillRectangle(Brushes.Red, 0, 0, 20, 340)

 If _drawInsidePanel Then

 ' Draw inside the panel

 rect = New Rectangle(0, 0, 80, 340 - y)

 g.FillRectangle(Brushes.AliceBlue, 0, 0, 80, 340 - y)

 End If

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnStart.Click

 'ZedGraphControl1.GraphPane.CurveList.Clear()

 Timer1.Enabled = True

 Timer1.Start()

 RadioButton1.Enabled = False

 RadioButton2.Enabled = False

 RadioButton3.Enabled = False

 btnRecord.Enabled = True

 btnReset.Enabled = True

 btnStart.Enabled = False

 btnStop.Enabled = True

 btnRecord2.Enabled = True

73

 btnReset2.Enabled = True

 My.Forms.Voltage.Timer1.Enabled = True

 My.Forms.Voltage.Timer1.Start()

 incr = 1

 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnStop.Click

 Timer1.Enabled = False

 Timer1.Stop()

 RadioButton1.Enabled = True

 RadioButton2.Enabled = True

 RadioButton3.Enabled = True

 btnRecord.Enabled = False

 btnReset.Enabled = False

 btnStart.Enabled = True

 btnStop.Enabled = False

 btnRecord2.Enabled = False

 btnReset2.Enabled = False

 My.Forms.Voltage.Timer1.Enabled = False

 My.Forms.Voltage.Timer1.Stop()

 incr = 1

 End Sub

 Private Sub Button10_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button10.Click

 Form2.ShowDialog()

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnRecord.Click

 MaxRows = ds.Tables("proto").Rows.Count

 InstrumentCalibration()

 If RadioButton1.Checked And MaxRows <> incr Then

 ds.Tables("proto").Rows(incr).Item(4) =

Math.Round(tempIns, 3)

 MsgBox("Data " & incr & " is recorded in 1st sample")

 incr = incr + 1

 ElseIf RadioButton2.Checked And MaxRows <> incr Then

 ds.Tables("proto").Rows(incr).Item(5) =

Math.Round(tempIns, 3)

 MsgBox("Data " & incr & " is recorded in 2nd sample")

 incr = incr + 1

 ElseIf RadioButton3.Checked And MaxRows <> incr Then

 ds.Tables("proto").Rows(incr).Item(6) =

Math.Round(tempIns, 3)

 MsgBox("Data " & incr & " is recorded in 3rd sample")

 incr = incr + 1

 End If

 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

ComboBox1.SelectedIndexChanged

 Dim myPane As GraphPane = ZedGraphControl1.GraphPane

 myPane.XAxis.MajorGrid.IsVisible = ComboBox1.Text

 End Sub

74

 Private Sub ComboBox2_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

ComboBox2.SelectedIndexChanged

 Dim myPane As GraphPane = ZedGraphControl1.GraphPane

 myPane.YAxis.MajorGrid.IsVisible = ComboBox2.Text

 End Sub

 Private Sub ComboBox3_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

cmbA1.SelectedIndexChanged

 If cmbA1.SelectedIndex = 1 Then

 txtA1.Enabled = False

 alrm1 = 1

 Else

 txtA1.Enabled = True

 End If

 End Sub

 Private Sub cmbA2_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

cmbA2.SelectedIndexChanged

 If cmbA2.SelectedIndex = 1 Then

 txtA2.Enabled = False

 alrm2 = 1

 Else

 txtA2.Enabled = True

 End If

 End Sub

 Private Sub cmbA3_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

cmbA3.SelectedIndexChanged

 If cmbA3.SelectedIndex = 1 Then

 txtA3.Enabled = False

 alrm3 = 1

 Else

 txtA3.Enabled = True

 End If

 End Sub

 Private Sub cmbA4_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

cmbA4.SelectedIndexChanged

 If cmbA4.SelectedIndex = 1 Then

 txtA4.Enabled = False

 alrm4 = 1

 Else

 txtA4.Enabled = True

 End If

 End Sub

 Private Sub cmbA5_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

cmbA5.SelectedIndexChanged

 If cmbA5.SelectedIndex = 1 Then

 txtA5.Enabled = False

 alrm5 = 1

 Else

 txtA5.Enabled = True

 End If

 End Sub

75

 Private Sub cmbSample_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

cmbSample.SelectedIndexChanged

 If cmbSample.SelectedItem = "1" Then

 Timer1.Interval = 1000

 ElseIf cmbSample.SelectedItem = "2" Then

 Timer1.Interval = 500

 ElseIf cmbSample.SelectedItem = "4" Then

 Timer1.Interval = 250

 ElseIf cmbSample.SelectedItem = "8" Then

 Timer1.Interval = 125

 ElseIf cmbSample.SelectedItem = "16" Then

 Timer1.Interval = 62.5

 ElseIf cmbSample.SelectedItem = "32" Then

 Timer1.Interval = 31.25

 End If

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnExport.Click

 Load_Excel_Details()

 End Sub

 Private Sub cmdSelectDevice_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles cmdSelectDevice.Click

 AxAdvAI1.SelectDevice()

 txtDeviceNumber.Text = AxAdvAI1.DeviceNumber

 txtDeviceName.Text = AxAdvAI1.DeviceName

 End Sub

 Private Sub cmdRead_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles cmdRead.Click

 txtDataDigital.Text = Hex(AxAdvAI1.DataDigital)

 txtDataAnalog.Text = Format(AxAdvAI1.DataAnalog,

"0.######0")

 End Sub

 Private Sub InstrumentCalibration()

 Dim y1 As Double

 Dim y2 As Double

 Dim x1 As Double

 Dim x2 As Double

 Dim m As Double

 Dim c As Double

 Dim yIns As Double

 y1 = txtTempLR.Text

 y2 = txtTempUR.Text

 x1 = (txtTcLR.Text) * (1 * 10 ^ (-3))

 x2 = (txtTcUR.Text) * (1 * 10 ^ (-3))

 m = (y2 - y1) / (x2 - x1)

 c = y2 - (x2 * m)

 yIns = m * (volt / 250) + c

 tempIns = yIns

 End Sub

76

 Private Sub btnMean_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnMean.Click

 Dim y As Double

 Dim a As Double

 Dim b As Double

 Dim c As Double

 Dim obj As Object

 Dim obj2 As Object

 Dim obj3 As Object

 Dim g As Integer

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)

 obj2 = ds.Tables("proto").Rows(i).Item(5)

 obj3 = ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or IsDBNull(obj3)

Then

 g = 1

 Else

 a = ds.Tables("proto").Rows(i).Item(4)

 b = ds.Tables("proto").Rows(i).Item(5)

 c = ds.Tables("proto").Rows(i).Item(6)

 y = (a + b + c) / 3

 ds.Tables("proto").Rows(i).Item(7) = Math.Round(y,

4)

 End If

 If g = 1 And i = MaxRows - 1 Then

 MsgBox("Not Enough Data")

 End If

 Next i

 End Sub

 Private Sub btnStd_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnStd.Click

 Dim avg As Double

 Dim a As Double

 Dim b As Double

 Dim c As Double

 Dim sum As Double

 Dim obj As Object

 Dim obj2 As Object

 Dim obj3 As Object

 Dim g As Integer

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)

 obj2 = ds.Tables("proto").Rows(i).Item(5)

 obj3 = ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or IsDBNull(obj3)

Then

 g = 1

 Else

77

 a = ds.Tables("proto").Rows(i).Item(4)

 b = ds.Tables("proto").Rows(i).Item(5)

 c = ds.Tables("proto").Rows(i).Item(6)

 avg = (a + b + c) / 3

 sum = Math.Sqrt(0.5) * ((a - avg) ^ 2 + (b - avg) ^

2 + (c - avg) ^ 2)

 ds.Tables("proto").Rows(i).Item(8) = Math.Round(sum,

4)

 End If

 If g = 1 And i = MaxRows - 1 Then

 MsgBox("Not Enough Data")

 End If

 Next i

 End Sub

 Private Sub btnError_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnError.Click

 Dim avg As Double

 Dim a As Double

 Dim b As Double

 Dim c As Double

 Dim x As Double

 Dim sum As Double

 Dim obj As Object

 Dim obj2 As Object

 Dim obj3 As Object

 Dim obj4 As Object

 Dim g As Integer

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)

 obj2 = ds.Tables("proto").Rows(i).Item(5)

 obj3 = ds.Tables("proto").Rows(i).Item(6)

 obj4 = ds.Tables("proto").Rows(i).Item(2)

 If IsDBNull(obj) Or IsDBNull(obj2) Or IsDBNull(obj3) Or

IsDBNull(obj4) Then

 g = 1

 Else

 a = ds.Tables("proto").Rows(i).Item(4)

 b = ds.Tables("proto").Rows(i).Item(5)

 c = ds.Tables("proto").Rows(i).Item(6)

 x = ds.Tables("proto").Rows(i).Item(2)

 avg = (a + b + c) / 3

 If x > avg Then

 sum = ((avg - x) / x) * 100

 ds.Tables("proto").Rows(i).Item(9) =

Math.Round(sum, 4)

 ElseIf avg > x Then

 sum = ((avg - x) / x) * 100

 ds.Tables("proto").Rows(i).Item(9) =

Math.Round(sum, 4)

 ElseIf x = avg Then

 sum = 0

 ds.Tables("proto").Rows(i).Item(9) =

Math.Round(sum, 4)

 End If

78

 End If

 If g = 1 And i = MaxRows - 1 Then

 MsgBox("Not Enough Data")

 End If

 Next i

 End Sub

 Private Sub btnReset_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnReset.Click

 If RadioButton1.Checked And incr <> 1 Then

 incr = incr - 1

 ds.Tables("proto").Rows(incr).Item(4) = 0

 MsgBox("Data " & incr & " is deleted from 1st sample")

 ElseIf RadioButton2.Checked And incr <> 1 Then

 incr = incr - 1

 ds.Tables("proto").Rows(incr).Item(5) = 0

 MsgBox("Data " & incr & " is deleted from 1st sample")

 ElseIf RadioButton3.Checked And incr <> 1 Then

 incr = incr - 1

 ds.Tables("proto").Rows(incr).Item(6) = 0

 MsgBox("Data " & incr & " is deleted from 1st sample")

 End If

 End Sub

 Private Sub btnAlarmSave_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnAlarmSave.Click

 Dim lowRange As Double

 Dim highRange As Double

 lowRange = txtTempLR.Text

 highRange = txtTempUR.Text

 If cmbA1.SelectedItem = "Enable" Then

 alrm1 = 1

 ElseIf cmbA1.SelectedItem = "Disable" Then

 alrm1 = 0

 End If

 If cmbA2.SelectedItem = "Enable" Then

 alrm2 = 1

 ElseIf cmbA2.SelectedItem = "Disable" Then

 alrm2 = 0

 End If

 If cmbA3.SelectedItem = "Enable" Then

 alrm3 = 1

 ElseIf cmbA3.SelectedItem = "Disable" Then

 alrm3 = 0

 End If

 If cmbA4.SelectedItem = "Enable" Then

 alrm4 = 1

 ElseIf cmbA4.SelectedItem = "Disable" Then

 alrm4 = 0

 End If

 If cmbA5.SelectedItem = "Enable" Then

 alrm5 = 1

79

 ElseIf cmbA5.SelectedItem = "Disable" Then

 alrm5 = 0

 End If

 If txtA1.Text < lowRange Or txtA1.Text > highRange Then

 MsgBox("Out of range.The range is between " & lowRange &

"°C" & " to " & highRange & "°C")

 txtA1.Text = lowRange

 alrm1 = 0

 End If

 If txtA2.Text < lowRange Or txtA2.Text > highRange Then

 MsgBox("Out of range.The range is between " & lowRange &

"°C" & " to " & highRange & "°C")

 txtA2.Text = lowRange

 alrm2 = 0

 End If

 If txtA3.Text < lowRange Or txtA3.Text > highRange Then

 MsgBox("Out of range.The range is between " & lowRange &

"°C" & " to " & highRange & "°C")

 txtA3.Text = lowRange

 alrm3 = 0

 End If

 If txtA4.Text < lowRange Or txtA4.Text > highRange Then

 MsgBox("Out of range.The range is between " & lowRange &

"°C" & " to " & highRange & "°C")

 txtA4.Text = lowRange

 alrm4 = 0

 End If

 If txtA5.Text < lowRange Or txtA5.Text > highRange Then

 MsgBox("Out of range.The range is between " & lowRange &

"°C" & " to " & highRange & "°C")

 txtA5.Text = lowRange

 alrm5 = 0

 End If

 End Sub

 Private Sub Button5_Click_1(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button5.Click

 Voltage.Visible = True

 End Sub

 Private Sub btnBrowse_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnBrowse.Click

 Dim objFolderDialog As New FolderBrowserDialog()

 txtPath.Text = GetNetworkFolders(objFolderDialog)

 End Sub

 Public Shared Function GetNetworkFolders(ByVal

oFolderBrowserDialog _

 As FolderBrowserDialog) As String

 If oFolderBrowserDialog.ShowDialog() = DialogResult.OK Then

80

 Return oFolderBrowserDialog.SelectedPath

 Else

 Return ""

 End If

 End Function

 Private Sub txtTempLR_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtTempLR.TextChanged

 End Sub

 Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSave.Click

 Dim command_builder As New OleDbCommandBuilder(da)

 da.Update(ds, "proto")

 MsgBox("Data has been saved")

 End Sub

 Private Sub Button7_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button7.Click

 vCurrent.Visible = True

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button6.Click

 vTemperature.Visible = True

 End Sub

 Private Sub btnRecord2_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnRecord2.Click

 MaxRows = ds.Tables("proto").Rows.Count

 If RadioButton1.Checked And MaxRows <> incr Then

 ds.Tables("proto").Rows(incr).Item(4) = Math.Round(volt

/ 0.25, 5)

 MsgBox("Data " & incr & " is recorded in 1st sample")

 incr = incr + 1

 ElseIf RadioButton2.Checked And MaxRows <> incr Then

 ds.Tables("proto").Rows(incr).Item(5) = Math.Round(volt

/ 0.25, 5)

 MsgBox("Data " & incr & " is recorded in 2nd sample")

 incr = incr + 1

 ElseIf RadioButton3.Checked And MaxRows <> incr Then

 ds.Tables("proto").Rows(incr).Item(6) = Math.Round(volt

/ 0.25, 5)

 MsgBox("Data " & incr & " is recorded in 3rd sample")

 incr = incr + 1

 End If

 End Sub

 Private Sub btnReset2_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnReset2.Click

 If RadioButton1.Checked And incr <> 1 Then

 incr = incr - 1

 ds.Tables("proto").Rows(incr).Item(4) = 0

 MsgBox("Data " & incr & " is deleted from 1st sample")

 ElseIf RadioButton2.Checked And incr <> 1 Then

 incr = incr - 1

 ds.Tables("proto").Rows(incr).Item(5) = 0

 MsgBox("Data " & incr & " is deleted from 1st sample")

81

 ElseIf RadioButton3.Checked And incr <> 1 Then

 incr = incr - 1

 ds.Tables("proto").Rows(incr).Item(6) = 0

 MsgBox("Data " & incr & " is deleted from 1st sample")

 End If

 End Sub

 Private Sub btnConvert_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnConvert.Click

 Dim y1 As Double

 Dim y2 As Double

 Dim x1 As Double

 Dim x2 As Double

 Dim m As Double

 Dim c As Double

 Dim x As Double

 Dim y As Double

 If txtMinTemp.Text = "" Or txtMaxTemp.Text = "" Or

txtMaxCur.Text = "" Or txtMinCur.Text = "" Then

 MsgBox("Please fill in the required value")

 ElseIf rbCurtoTemp.Checked And txtValCur.Text = "" Or

rbTemptoCur.Checked And txtValTemp.Text = "" Then

 MsgBox("Please fill in the required value")

 Else

 y1 = txtMinTemp.Text

 y2 = txtMaxTemp.Text

 x1 = (txtMinCur.Text)

 x2 = (txtMaxCur.Text)

 m = (y2 - y1) / (x2 - x1)

 c = y2 - (x2 * m)

 If rbCurtoTemp.Checked Then

 x = txtValCur.Text

 y = m * x + c

 txtValTemp.Text = Math.Round(y, 5)

 ElseIf rbTemptoCur.Checked Then

 y = txtValTemp.Text

 x = (y - c) / m

 txtValCur.Text = Math.Round(x, 5)

 End If

 End If

 End Sub

 Private Sub rbCurtoTemp_CheckedChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

rbCurtoTemp.CheckedChanged

 If rbCurtoTemp.Checked Then

 txtValTemp.ReadOnly = True

 txtValCur.ReadOnly = False

 ElseIf rbTemptoCur.Checked Then

 txtValTemp.ReadOnly = False

 txtValCur.ReadOnly = True

 End If

 End Sub

 Private Sub btnGenerate_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnGenerate.Click

 Dim command_builder As New OleDbCommandBuilder(da)

82

 Dim x As Integer

 Dim percent As Single

 Dim a As Single

 Dim incrx As Integer

 Dim temp As Single

 Dim upper As Single

 Dim lower As Single

 Dim uppCur As Single

 Dim lowCur As Single

 Dim current As Single

 Dim more As Integer

 Dim less As Integer

 If txtUpperVal.Text = "" Or txtLowerVal.Text = "" Then

 MsgBox("Please enter a correct value")

 Else

 upper = txtUpperVal.Text

 lower = txtLowerVal.Text

 uppCur = txtTcUR.Text

 lowCur = txtTcLR.Text

 x = txtPoint.Text - 1

 percent = 100 / x

 MaxRows = ds.Tables("proto").Rows.Count

 If txtPoint.Text > (MaxRows - 1) Then

 more = txtPoint.Text - (MaxRows - 1)

 For i = 1 To more

 ds.Tables("proto").Rows.Add()

 da.Update(ds, "proto")

 Next i

 ElseIf txtPoint.Text < (MaxRows - 1) Then

 less = (MaxRows - 1) - txtPoint.Text

 For i = 1 To less

 MaxRows = ds.Tables("proto").Rows.Count

 ds.Tables("proto").Rows(MaxRows - 1).Delete()

 da.Update(ds, "proto")

 Next i

 End If

 MaxRows = ds.Tables("proto").Rows.Count

 a = 0

 For i = 1 To MaxRows - 1

 incrx = incrx + 1

 ds.Tables("proto").Rows(incrx).Item(1) = a

 temp = (a / 100) * (upper - lower) + lower

 ds.Tables("proto").Rows(incrx).Item(2) = temp

 current = (a / 100) * (uppCur - lowCur) + lowCur

 ds.Tables("proto").Rows(incrx).Item(3) = current

 a = a + percent

 Next i

 End If

 End Sub

 Private Sub btnDel_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

83

 Dim command_builder As New OleDbCommandBuilder(da)

 'Dim dsNewRow As DataRow

 MaxRows = ds.Tables("proto").Rows.Count

 ds.Tables("proto").Rows(MaxRows - 1).Delete()

 'da.Update(ds, "proto")

 End Sub

 Private Sub btnSaveData_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnSaveData.Click

 Data_Recorder.Visible = True

 End Sub

 Private Sub btnPlotter_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnPlotter.Click

 OpenFileDialog1.Filter = DATA_FILE_EXTENSION & _

 " files (*" & DATA_FILE_EXTENSION & "|*" &

DATA_FILE_EXTENSION

 OpenFileDialog1.FilterIndex = 1

 OpenFileDialog1.RestoreDirectory = True

 OpenFileDialog1.ShowDialog()

 End Sub

 Private Sub OpenFileDialog1_FileOk(ByVal sender As

System.Object, ByVal e As System.ComponentModel.CancelEventArgs)

Handles OpenFileDialog1.FileOk

 Plotter.Visible = True

 End Sub

 Private Sub btnBrowseDatabse_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

btnBrowseDatabse.Click

 OpenFileDialog2.Filter = DATA_FILE_EXTENSION & _

 " files (*" & DATA_FILE_EXTENSION & "|*" &

DATA_FILE_EXTENSION

 OpenFileDialog2.FilterIndex = 1

 OpenFileDialog2.RestoreDirectory = True

 OpenFileDialog2.ShowDialog()

 End Sub

 Private Sub OpenFileDialog2_FileOk(ByVal sender As

System.Object, ByVal e As System.ComponentModel.CancelEventArgs)

Handles OpenFileDialog2.FileOk

 txtDatabase.Text = OpenFileDialog2.FileName

 database()

 End Sub

 Private Sub database()

 con.ConnectionString =

"PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source =" & txtDatabase.Text

 con.Open()

 sql = " select*from tblContacts"

 da = New OleDb.OleDbDataAdapter(sql, con)

 da.Fill(ds, "proto")

 con.Close()

 MaxRows = ds.Tables("proto").Rows.Count

 inc = -1

 'NavigateRecords()

84

 x = 0

 Try

 ds.Reset()

 da.Fill(ds, "proto")

 DataGridView1.DataSource = ds.Tables(0)

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 End Sub

 Private Sub RadioButton5_CheckedChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs)

 Dim y As Double

 Dim a As Double

 Dim b As Double

 Dim c As Double

 Dim obj As Object

 Dim obj2 As Object

 Dim obj3 As Object

 Dim g As Integer

 Dim y1 As Double

 Dim y2 As Double

 Dim x1 As Double

 Dim x2 As Double

 Dim m As Double

 Dim co As Double

 Dim x As Double

 Dim yo As Double

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)

 obj2 = ds.Tables("proto").Rows(i).Item(5)

 obj3 = ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or IsDBNull(obj3)

Then

 g = 1

 Else

 a = ds.Tables("proto").Rows(i).Item(4)

 b = ds.Tables("proto").Rows(i).Item(5)

 c = ds.Tables("proto").Rows(i).Item(6)

 y = (a + b + c) / 3

 y1 = txtTempLR.Text

 y2 = txtTempUR.Text

 x1 = (txtTcLR.Text)

 x2 = (txtTcUR.Text)

 m = (y2 - y1) / (x2 - x1)

 co = y2 - (x2 * m)

 yo = m * a + co

 ds.Tables("proto").Rows(i).Item(4) = yo

 End If

 If g = 1 And i = MaxRows - 1 Then

 MsgBox("Not Enough Data")

 End If

85

 Next i

 End Sub

 Private Sub RadioButton4_CheckedChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs)

 Dim y As Double

 Dim a As Double

 Dim b As Double

 Dim c As Double

 Dim obj As Object

 Dim obj2 As Object

 Dim obj3 As Object

 Dim g As Integer

 Dim y1 As Double

 Dim y2 As Double

 Dim x1 As Double

 Dim x2 As Double

 Dim m As Double

 Dim co As Double

 Dim x As Double

 Dim yo As Double

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)

 obj2 = ds.Tables("proto").Rows(i).Item(5)

 obj3 = ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or IsDBNull(obj3)

Then

 g = 1

 Else

 a = ds.Tables("proto").Rows(i).Item(4)

 b = ds.Tables("proto").Rows(i).Item(5)

 c = ds.Tables("proto").Rows(i).Item(6)

 y = (a + b + c) / 3

 y1 = txtTempLR.Text

 y2 = txtTempUR.Text

 x1 = (txtTcLR.Text)

 x2 = (txtTcUR.Text)

 m = (y2 - y1) / (x2 - x1)

 co = y2 - (x2 * m)

 yo = a

 x = (yo - co) / m

 ds.Tables("proto").Rows(i).Item(4) = x

 yo = b

 x = (yo - co) / m

 ds.Tables("proto").Rows(i).Item(5) = x

 yo = c

 x = (yo - co) / m

 ds.Tables("proto").Rows(i).Item(6) = x

 End If

 If g = 1 And i = MaxRows - 1 Then

86

 MsgBox("Not Enough Data")

 End If

 Next i

 End Sub

 Private Sub btnSaveINst_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnSaveINst.Click

 If txtTempLR.Text = "" Or txtTempUR.Text = "" Or

txtTcLR.Text = "" Or txtTcUR.Text = "" Then

 MsgBox("Please insert the value")

 txtTempLR.Text = 0

 txtTempUR.Text = 200

 txtTcLR.Text = 4

 txtTcUR.Text = 20

 End If

 End Sub

 Private Sub AxAdvAO1_OnTimeOut(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles AxAdvAO1.OnTimeOut

 End Sub

End Class

87

APPENDIX B

