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This numerical study presents the diagonal block method of order four for solving the second-order boundary value problems
(BVPs)withRobin boundary conditions at two-point concurrently using constant step size.The solution is obtaineddirectlywithout
reducing to a system of first-order differential equations using a combination of predictor-corrector mode via shooting technique.
The shootingmethod was adapted with the Newton divided difference interpolation approach as the strategy of seeking for the new
initial estimate. Five numerical examples are included to examine and illustrate the practical usefulness of the proposed method.
Numerical tested problem is also highlighted on the diffusion of heat generated application that imposed the Robin boundary
conditions. The present findings revealed that the proposed method gives an efficient performance in terms of accuracy, total
function calls, and execution time as compared with the existing method.

1. Introduction

This study is focusing on the numerical approach for solving
second-order boundary value problems (BVPs) associated
withRobin boundary conditions. Generally, this type of BVPs
is given as follows:𝑦󸀠󸀠 (𝑥) = 𝑓 (𝑥, 𝑦, 𝑦󸀠) for 𝑎 ≤ 𝑥 ≤ 𝑏 (1)

with 𝑐1𝑦󸀠 (𝑎) + 𝑐2𝑦 (𝑎) = 𝛼,𝑐3𝑦󸀠 (𝑏) + 𝑐4𝑦 (𝑏) = 𝛽 (2)

where 𝑎, 𝑏, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝛼, and 𝛽 are all constants and 𝑐1, 𝑐2, 𝑐3,
and 𝑐4 all nonzero. In the case of Robin type, both functional
value and derivative of the solutions are given in (2). If
only functional value is given, then condition in (2) is

known as Dirichlet type; otherwise BVPs will be subject
to Neumann condition when only derivative values exist.
Robin boundary conditions arise in several branches of
applications such as in electromagnetic problem and heat
transfer problem where these Robin type conditions are
called impedance boundary conditions and the convective
boundary conditions are, respectively, as explained in [1].The
Bernoulli polynomial together with Galerkin approximation
in solving linear and nonlinear Robin boundary condition
problems had been studied by Islam and Shirin [2]. The
eminent scholars including Duan et al. [3] and Rach et al.
[4] had derived the Adomian decomposition methods for
solving BVPs imposing this condition where the approach
involved analytic stage and numeric simulations. Meanwhile,
Bhatta and Sastri [5] and Lang and Xu [6] had transformed
respective BVPs into discretization form and solved them
using symmetric global (continuous) spline and Quintic B-
spline collocation method, respectively.
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Figure 1: Two-point block method.

To optimize the computational cost, the development
of proposed algorithm must at least satisfy the facility to
generate solutions at several points simultaneously as sug-
gested in Fatunla [7]. This implementation has been shown
in the literature discussed by Phang et al. [8], Majid et al. [9],
and Omar and Adeyeye [10]. They obtained the approximate
solution of (1) at two points concurrently. Therefore, the
advantages of outcome from their discussion have motivated
us in this study.

Diagonal block method for solving differential equations
was widely studied in the previous literatures. These include
the discussion on solving first-order differential equations in
[11, 12]. Solving second-order ordinary differential equations
using diagonal block method has been discussed in [13].
The formulation in [12, 13] is based on backward differenti-
ation approach. In [11], the author has derived the diagonal
block method using Lagrange interpolation polynomial for
solving first-order ordinary differential equations. In this
research, we have extended the derivation in [11] to obtain
the formulation of direct integration for solving second-order
differential equations. Then the new formulae obtained have
been implemented to solve the boundary value problems.
The investigation will be focusing on the Newton divided
difference interpolation as an iterative technique in seeking as
well as updating the missing initial guesses while performing
the shooting technique.

The organization of this paper is as follows. Section 2
presents the derivation of the two-point diagonal block
method. Section 3 elaborates on the analysis of the method
including the order, consistency, and stability. Section 4
presents the idea of the procedure of shooting method
together with Newton divided difference interpolation as an
iterative part. For validation and a clear overview, five tested
problems will be discussed in Section 5. Finally, Section 6
concludes the finding from this study.

2. Derivation of the Diagonal Block Method

The interval of 𝑥 ∈ [𝑎, 𝑏] is divided into a series of blocks so
that each block contains two subintervals with equal distance
step size, ℎ, as depicted in Figure 1. Both numerical solutions
of 𝑦𝑛+1 and 𝑦𝑛+2 in these subintervals are simultaneously
generated using the appropriate number of back values.
The approximate solution of 𝑦𝑛+1 at the point 𝑥𝑛+1 will be
computed using three back values at the points, 𝑥𝑛, 𝑥𝑛−1,
and 𝑥𝑛−2. While the approximation of 𝑦𝑛+2 at the point 𝑥𝑛+2
required an additional one back value, 𝑥𝑛+1. The derivation
formulae of 𝑦𝑛+1 and 𝑦𝑛+2 will be obtained by integrate
equation (1) once and twice over the intervals [𝑥𝑛, 𝑥𝑛+1] and[𝑥𝑛, 𝑥𝑛+2], respectively, as follows.

First Point∫𝑥𝑛+1
𝑥𝑛

𝑦󸀠󸀠 (𝑥) 𝑑𝑥 = ∫𝑥𝑛+1
𝑥𝑛

𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥 (3)

𝑦󸀠 (𝑥𝑛+1) = 𝑦󸀠 (𝑥𝑛) + ∫𝑥𝑛+1
𝑥𝑛

𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥 (4)

∫𝑥𝑛+1
𝑥𝑛

∫𝑥
𝑥𝑛

𝑦󸀠󸀠 (𝑥) 𝑑𝑥𝑑𝑥 = ∫𝑥𝑛+1
𝑥𝑛

∫𝑥
𝑥𝑛

𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥𝑑𝑥 (5)𝑦 (𝑥𝑛+1)= 𝑦 (𝑥𝑛) + ℎ𝑦󸀠 (𝑥𝑛)+ ∫𝑥𝑛+1
𝑥𝑛

(𝑥𝑛+1 − 𝑥) 𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥, (6)

Second Point

∫𝑥𝑛+2
𝑥𝑛

𝑦󸀠󸀠 (𝑥) 𝑑𝑥 = ∫𝑥𝑛+2
𝑥𝑛

𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥 (7)

𝑦󸀠 (𝑥𝑛+2) = 𝑦󸀠 (𝑥𝑛) + ∫𝑥𝑛+2
𝑥𝑛

𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥 (8)

∫𝑥𝑛+2
𝑥𝑛

∫𝑥
𝑥𝑛

𝑦󸀠󸀠 (𝑥) 𝑑𝑥𝑑𝑥 = ∫𝑥𝑛+2
𝑥𝑛

∫𝑥
𝑥𝑛

𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥𝑑𝑥 (9)𝑦 (𝑥𝑛+2)= 𝑦 (𝑥𝑛) + 2ℎ𝑦󸀠 (𝑥𝑛)+ ∫𝑥𝑛+2
𝑥𝑛

(𝑥𝑛+2 − 𝑥) 𝑓 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥. (10)

The function 𝑓(𝑥, 𝑦, 𝑦󸀠) in these equations will be approx-
imated using Lagrange interpolating polynomial, 𝑃(𝑥). By
following the standard mathematical process, replace the𝑓(𝑥, 𝑦, 𝑦󸀠) in (4) and (6) with Lagrange interpolation poly-
nomial that interpolates the set of points{(𝑥𝑛−2, 𝑓𝑛−2) , (𝑥𝑛−1, 𝑓𝑛−1) , (𝑥𝑛, 𝑓𝑛) , (𝑥𝑛+1, 𝑓𝑛+1)} . (11)

Now, introducing the variable substitution 𝑥 = 𝑥𝑛+1 + 𝑠ℎ
and 𝑑𝑥 = ℎ𝑑𝑠 into interpolating polynomial, hence, evaluate
these integrals using MAPLE with the limit of the integration
from −1 to 0. This will generate the corrector formula for
the first point. Similar procedure applied to the 𝑓(𝑥, 𝑦, 𝑦󸀠)
in (8) and (10) with Lagrange interpolation polynomial that
interpolates the set of points{(𝑥𝑛−2, 𝑓𝑛−2) , (𝑥𝑛−1, 𝑓𝑛−1) , (𝑥𝑛, 𝑓𝑛) , (𝑥𝑛+1, 𝑓𝑛+1) ,(𝑥𝑛+2, 𝑓𝑛+2)} . (12)

Next, introduce the variable substitutions 𝑥 = 𝑥𝑛+2 + 𝑠ℎ
and 𝑑𝑥 = ℎ𝑑𝑠 into interpolating polynomial. Again, evaluate
these integrals using MAPLE with the limit of the integration
from −2 to 0. This will generate the corrector formula for
the second point. This two-point one block method is the
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combination of 𝑃𝐸(𝐶𝐸)𝑟 mode where P is the predictor
formula, C is the corrector, and E is the evaluation of the
function, 𝑓. The predictor formulae were derived similarly
as the corrector formulae but with the order being one less.
In this study, we called the proposed predictor-corrector
formula as 2PDD4method.The 2PDD4 formulae were given
as follows.

Predictor𝑦󸀠𝑛+1 = 𝑦󸀠𝑛 + ℎ12 [5𝑓𝑛−2 − 16𝑓𝑛−1 + 23𝑓𝑛]𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦󸀠𝑛 + ℎ224 [3𝑓𝑛−2 − 10𝑓𝑛−1 + 19𝑓𝑛] (13)

𝑦󸀠𝑛+2 = 𝑦󸀠𝑛 + ℎ3 [−𝑓𝑛−2 + 4𝑓𝑛−1 − 5𝑓𝑛 + 8𝑓𝑛+1]𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦󸀠𝑛+ ℎ245 [−2𝑓𝑛−2 + 6𝑓𝑛−1 + 24𝑓𝑛 + 62𝑓𝑛+1] . (14)

Corrector

𝑦󸀠𝑛+1 = 𝑦󸀠𝑛 + ℎ48 [2𝑓𝑛−2 − 10𝑓𝑛−1 + 38𝑓𝑛 + 18𝑓𝑛+1]𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦󸀠𝑛 + ℎ2720 [14𝑓𝑛−2 − 72𝑓𝑛−1 + 342𝑓𝑛+ 76𝑓𝑛+1]
(15)

𝑦󸀠𝑛+2 = 𝑦󸀠𝑛 + ℎ270 [−3𝑓𝑛−2 + 12𝑓𝑛−1 + 72𝑓𝑛 + 372𝑓𝑛+1+ 87𝑓𝑛+2]𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦󸀠𝑛 + ℎ2270 [3𝑓𝑛−2 − 24𝑓𝑛−1 + 234𝑓𝑛+ 312𝑓𝑛+1 + 15𝑓𝑛+2] .
(16)

One-step method will be used at the beginning of the pro-
posed block method in order to get the starting initial points
since multistep method needs more than one previous points
before generating the remaining values over the interval.

3. Analysis of the Method

In this section, the order, consistency, stability, and conver-
gence of the proposed two-point blockmethod are discussed.

3.1. Order of the Method. The main proposed method of
(13)–(16) is classified as a member of the Linear Multistep
Method (LMM) which generally can be represented as

𝑘∑
𝑗=0

𝛼𝑗𝑦𝑛+𝑗 = ℎ 𝑘∑
𝑗=0

𝛽𝑗𝑦󸀠𝑛+𝑗 + ℎ2 𝑘∑
𝑗=0

𝛾𝑗𝑦󸀠󸀠𝑛+𝑗. (17)

The local truncation error (LTE) associated with LMM in (17)
is defined in the form of linear difference operator as

𝐿 [𝑦 (𝑥) , ℎ] = 𝑘∑
𝑗=0

[𝛼𝑗𝑦 (𝑥 + 𝑗ℎ) − ℎ𝛽𝑗𝑦󸀠 (𝑥 + 𝑗ℎ)
− ℎ2𝛾𝑗𝑦󸀠󸀠 (𝑥 + 𝑗ℎ)] . (18)

Assume that𝑦(𝑥) is sufficiently differentiable, so that expand-
ing the terms in (18) usingTaylor’s series about the point𝑥will
give the following expression:

𝑦 (𝑥 + 𝑗ℎ) = 𝑦 (𝑥) + 𝑗ℎ𝑦󸀠 (𝑥) + 𝑗22! ℎ2𝑦󸀠󸀠 (𝑥) + . . .
+ (𝑗ℎ)𝑝𝑝! 𝑦(𝑝) (𝑥) + 𝑂 (ℎ𝑝+2) (19)

ℎ𝑦󸀠 (𝑥 + 𝑗ℎ) = ℎ𝑦󸀠 (𝑥) + 𝑗ℎ2𝑦󸀠󸀠 (𝑥) + 𝑗22! ℎ3𝑦(3) (𝑥)+ . . . + 𝑗𝑝−1(𝑝 − 1)!ℎ𝑝𝑦(𝑝) (𝑥)+ 𝑂 (ℎ𝑝+2)
(20)

ℎ2𝑦󸀠󸀠 (𝑥 + 𝑗ℎ) = ℎ2𝑦󸀠󸀠 (𝑥) + 𝑗ℎ3𝑦󸀠󸀠󸀠 (𝑥)+ 𝑗22! ℎ4𝑦(4) (𝑥) + . . .
+ 𝑗𝑝−2(𝑝 − 2)!ℎ𝑝𝑦(𝑝) (𝑥)+ 𝑂 (ℎ𝑝+2) .

(21)

Substituting (19)–(21) into (18) results in

𝐿 [𝑦 (𝑥) , ℎ] = 𝑘∑
𝑗=0

[𝛼𝑗 (𝑦 (𝑥) + 𝑗ℎ𝑦󸀠 (𝑥) + 𝑗22! ℎ2𝑦󸀠󸀠 (𝑥)
+ . . . + (𝑗ℎ)𝑝𝑝! 𝑦(𝑝) (𝑥)) − 𝛽𝑗 (ℎ𝑦󸀠 (𝑥) + 𝑗ℎ2𝑦󸀠󸀠 (𝑥)
+ 𝑗22! ℎ3𝑦(3) (𝑥) + . . . + 𝑗𝑝−1(𝑝 − 1)!ℎ𝑝𝑦(𝑝) (𝑥))− 𝛾𝑗 (ℎ2𝑦󸀠󸀠 (𝑥) + 𝑗ℎ3𝑦󸀠󸀠󸀠 (𝑥) + 𝑗22! ℎ4𝑦(4) (𝑥) + . . .
+ 𝑗𝑝−2(𝑝 − 2)!ℎ𝑝𝑦(𝑝) (𝑥))] + 𝑂(ℎ𝑝+2) .

(22)

Simplifying this gives

𝐿 [𝑦 (𝑥) , ℎ] = 𝑘∑
𝑗=0

[𝛼𝑗𝑦 (𝑥) + (𝑗𝛼𝑗 − 𝛽𝑗) ℎ𝑦󸀠 (𝑥)
+ (𝑗22! 𝛼𝑗 − 𝑗𝛽𝑗 − 𝛾𝑗)ℎ2𝑦󸀠󸀠 (𝑥)
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+ (𝑗33! 𝛼𝑗 − 𝑗22! 𝛽𝑗 − 𝑗𝛾𝑗)ℎ3𝑦(3) (𝑥) + . . .
+ (𝑗𝑝𝑝!𝛼𝑗 − 𝑗𝑝−1(𝑝 − 1)!𝛽𝑗 − 𝑗𝑝−2(𝑝 − 2)!𝛾𝑗)ℎ𝑝𝑦(𝑝) (𝑥)]+ 𝑂 (ℎ𝑝+2)

(23)

and now we obtained the expression𝐿 [𝑦 (𝑥) , ℎ] = 𝐶0𝑦 (𝑥) + 𝐶1ℎ𝑦󸀠 (𝑥) + . . .+ 𝐶𝑝ℎ𝑝𝑦(𝑝) (𝑥) + 𝐶𝑝+1ℎ𝑝+1𝑦(𝑝+1) (𝑥)+ 𝑂 (ℎ𝑝+2) (24)

where

𝐶0 = 𝑘∑
𝑗=0

𝛼𝑗 = 𝛼0 + 𝛼1 + . . . + 𝛼𝑘
𝐶1 = 𝑘∑
𝑗=0

(𝑗𝛼𝑗 − 𝛽𝑗) = (𝛼1 + 2𝛼2 + . . . + 𝑘𝛼𝑘)− (𝛽0 + 𝛽1 + . . . + 𝛽𝑘) ...𝐶𝑝 = 𝑘∑
𝑗=0

(𝑗𝑝𝑝!𝛼𝑗 − 𝑗𝑝−1(𝑝 − 1)!𝛽𝑗 − 𝑗𝑝−2(𝑝 − 2)!𝛾𝑗) .
(25)

Definition 1. According to Fatunla [7] and Lambert [14], the
method in (17) is said to be of order 𝑝 with error constant𝐶𝑝+2 if 𝐶0 = 𝐶1 = 𝐶2 = . . . = 𝐶𝑝+1 = 0,𝐶𝑝+2 ̸= 0. (26)

This concept was used to calculate the order and error
constant of the proposed formula as stated in (13)–(16). Now,
rewrite the corrector formula in matrix difference form as

[[[[[[
0 0 0 00 0 −1 10 0 0 00 0 −1 0

]]]]]]
[[[[[[
𝑦𝑛−2𝑦𝑛−1𝑦𝑛𝑦𝑛+1

]]]]]] + [[[[[[
0 0 0 00 0 0 00 0 0 01 0 0 0

]]]]]]
[[[[[[
𝑦𝑛+2𝑦𝑛+3𝑦𝑛+4𝑦𝑛+5

]]]]]]
= ℎ[[[[[[

0 0 1 −10 0 1 00 0 1 00 0 2 0
]]]]]]

[[[[[[[
𝑦󸀠𝑛−2𝑦󸀠𝑛−1𝑦󸀠𝑛𝑦󸀠𝑛+1

]]]]]]]

+ ℎ[[[[[[
0 0 0 00 0 0 0−1 0 0 00 0 0 0

]]]]]]
[[[[[[[
𝑦󸀠𝑛+2𝑦󸀠𝑛+3𝑦󸀠𝑛+4𝑦󸀠𝑛+5

]]]]]]]
+ ℎ2

[[[[[[[[[[[[[

248 −1048 3848 184814720 − 72720 342720 76720− 3270 12270 72270 3722703270 − 24270 234270 312270

]]]]]]]]]]]]]
[[[[[[
𝑓𝑛−2𝑓𝑛−1𝑓𝑛𝑓𝑛+1

]]]]]]

+ ℎ2 [[[[[[[[[
0 0 0 00 0 0 087270 0 0 015270 0 0 0

]]]]]]]]]
[[[[[[
𝑓𝑛+2𝑓𝑛+3𝑓𝑛+4𝑓𝑛+5

]]]]]]
(27)

with 𝛼0 = 𝛼1 = 𝛼5 = 𝛼6 = 𝛼7 = 𝛽0 = 𝛽1 = 𝛽5 = 𝛽6 = 𝛽7 =𝛾5 = 𝛾6 = 𝛾7 = [0, 0, 0, 0]𝑇.
By choosing 𝑘 = 7 the calculation gives

𝐶0 = 7∑
𝑗=0

𝛼𝑗 = 𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7
= 10! ([[[[[[

0−10−1
]]]]]] + [[[[[[

0100
]]]]]] + [[[[[[

0001
]]]]]]) = [[[[[[

0000
]]]]]] .

𝐶1 = 7∑
𝑗=0

(𝑗11! 𝛼𝑗 − 𝑗00! 𝛽𝑗) = 11! (2[[[[[[
0−10−1
]]]]]] + 3[[[[[[

0100
]]]]]]

+ 4[[[[[[
0001
]]]]]]) − 10! ([[[[[[

1112
]]]]]] + [[[[[[

−1000
]]]]]] + [[[[[[

00−10
]]]]]])

= [[[[[[
0000
]]]]]] .
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𝐶2 = 7∑
𝑗=0

(𝑗22! 𝛼𝑗 − 𝑗11! 𝛽𝑗 − 𝑗00! 𝛾𝑗) = 12! (22 [[[[[[
0−10−1
]]]]]]

+ 32 [[[[[[
0100
]]]]]] + 42 [[[[[[

0001
]]]]]]) − 11! (2[[[[[[

1112
]]]]]] + 3[[[[[[

−1000
]]]]]]

+ 4[[[[[[
00−10
]]]]]]) − 10! (((

(
[[[[[[[[[[

24814720− 32703270
]]]]]]]]]]

+ [[[[[[[[[[
−1048− 7272012270− 24270

]]]]]]]]]]
+ [[[[[[[[[[

384834272072270234270
]]]]]]]]]]

+ [[[[[[[[[[

184876720372270312270
]]]]]]]]]]

+ [[[[[[[[[
008727015270

]]]]]]]]]
)))
)

= [0, 0, 0, 0]𝑇 .
...𝐶5 = 7∑

𝑗=0

(𝑗55! 𝛼𝑗 − 𝑗44! 𝛽𝑗 − 𝑗33! 𝛾𝑗) = [0, 0, 0, 0]𝑇 .
𝐶6 = 7∑
𝑗=0

(𝑗66! 𝛼𝑗 − 𝑗55! 𝛽𝑗 − 𝑗44! 𝛾𝑗) = [− 19720 ,
− 171440 , 0, 0]𝑇 .

(28)

Thus, the 2PDD4 satisfied order four with the error constant,𝐶𝑝+2 = 𝐶6 = [− 19720 , − 171440 , 0, 0]𝑇 . (29)

3.2. Consistency of the Method

Definition 2. The linear multistep method is said to be
consistent if it has order 𝑝 ≥ 1 according to [14].

Since the order of the proposed method is 𝑝 = 4 ≥ 1, the
method is consistent.

3.3. Stability of the Method

Definition 3. The linear multistep method is zero stable
provided that the root 𝜉𝑗, 𝑗 = 0(1)𝑘 of the first characteristics
polynomial 𝜌(𝜉) specified as 𝜌(𝜉) = det | ∑𝑘𝑗=0 𝐴(𝑗)𝜉(𝑘−𝑗)| = 0

satisfies |𝜉𝑗| ≤ 1 and for those roots with |𝜉𝑗| = 1, the
multiplicity must not exceed two as in Lambert [14] and See
et al. [15].

Rewrite (15) to (16) in matrix form as follows:[[[[[[
1 0 0 00 1 0 00 0 1 00 0 0 1

]]]]]]
[[[[[[
𝑦󸀠𝑛+1𝑦𝑛+1𝑦󸀠𝑛+2𝑦𝑛+2

]]]]]]
= [[[[[[

0 0 1 00 0 0 10 0 1 00 0 0 1
]]]]]]

[[[[[[
𝑦󸀠𝑛−1𝑦𝑛−1𝑦󸀠𝑛𝑦𝑛

]]]]]] + ℎ[[[[[[
0 0 0 00 0 1 00 0 0 00 0 2 0

]]]]]]
[[[[[[
𝑦󸀠𝑛−1𝑦𝑛−1𝑦󸀠𝑛𝑦𝑛

]]]]]]
+ ℎ[[[[[[[[

0 248 −1048 38480 0 0 00 − 3270 12270 722700 0 0 0
]]]]]]]]

[[[[[[
𝑓𝑛−3𝑓𝑛−2𝑓𝑛−1𝑓𝑛

]]]]]]
+ ℎ[[[[[[[[

1848 0 0 00 0 0 0372270 87270 0 00 0 0 0
]]]]]]]]

[[[[[[
𝑓𝑛+1𝑓𝑛+2𝑓𝑛+3𝑓𝑛+4

]]]]]]
+ ℎ2 [[[[[[[[[

0 0 0 00 14720 − 72720 3427200 0 0 00 3270 − 24270 234270
]]]]]]]]]

[[[[[[
𝑓𝑛−3𝑓𝑛−2𝑓𝑛−1𝑓𝑛

]]]]]]
+ ℎ2 [[[[[[[[[

0 0 0 076720 0 0 00 0 0 0312270 15270 0 0
]]]]]]]]]

[[[[[[
𝑓𝑛+1𝑓𝑛+2𝑓𝑛+3𝑓𝑛+4

]]]]]] .

(30)

From (30), the first characteristic polynomial 𝑝(𝜉) =
det |𝜉𝐴0 − 𝐴1| = 0, where

𝐴0 = [[[[[[
1 0 0 00 1 0 00 0 1 00 0 0 1

]]]]]] ,
𝐴1 = [[[[[[

0 0 1 00 0 0 10 0 1 00 0 0 1
]]]]]]
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𝑝 (𝜉) = det
[[[[[[
𝜉 0 −1 00 𝜉 0 −10 0 𝜉 − 1 00 0 0 𝜉 − 1

]]]]]]0 = 𝜉2 (𝜉 − 1)2 , 𝜉 = 0, 0, 1, 1.
(31)

According to Definition 3 and (31), the diagonal two-point
one block method is zero stable.

The test equation used in order to obtain the stability
polynomial of the two-point block follows the idea from [11]
as follows: 𝑦󸀠󸀠 = 𝑓 = 𝜃𝑦󸀠 + 𝜆𝑦. (32)
The stability polynomial obtained is as follows:𝑡8 (1 + 177732400𝐻1𝐻2 − 29180𝐻2 − 251360𝐻1+ 193240𝐻22 + 29240𝐻12) + 𝑡7 (−2 − 21732025𝐻1𝐻2− 33190 𝐻2 − 131360𝐻1 − 22573240𝐻22 − 12731080𝐻12)+ 𝑡6 (1 − 29180𝐻2 + 5972𝐻1 − 1360𝐻22− 58635400𝐻1𝐻2 + 163180𝐻12) + 𝑡5 ( 29120𝐻1+ 173240𝐻22 − 1482025𝐻1𝐻2 + 1172𝐻12)+ 𝑡4 (− 2332400𝐻1𝐻2 − 11620𝐻22 − 12160𝐻12)

(33)

where𝐻1 = ℎ𝜃 and 𝐻2 = ℎ2𝜆.
The boundary of the absolute stability region in 𝐻1 −𝐻2 plane is determined by substituting 𝑡 in the stability

polynomial with 1, −1 and 𝑒𝑖𝜃 for 0 ≤ 𝜃 ≤ 2𝜋. Figure 2
illustrates the regions of the absolute stability for the block
method.

The stability region shows that the proposed numerical
method will be able to produce reasonable results with the
given values of the time steps.

3.4. Convergence of the Method

Definition 4. The linear multistep method is convergent if
and only if it is consistent and zero stable [14].

Since the consistency and zero stability of the method
have been achieved, in conclusion, the proposed two-point
block method is convergent.

4. Implementation of the Method

In this study, shooting technique will be adapted through-
out the solution process where the calculation starts with

H1

H2

Figure 2: Stability region of the two-point diagonal block method.

deciding a set of initial guesses. The behaviour of shooting
method is ‘hit or miss’ the target. Due to that, we attempt to
obtain the result as close as possible to the required solution
with less number of guessing values. Therefore, choosing the
right initial guesses and implementing the best method for
refining the guessing value are two important elements in
this shooting procedure. Initial values of 𝑦 and 𝑦󸀠 need to
be guessed for the case of Robin type since none of them
are given in (2). Starting with the initial guess, 𝑠1 for 𝑦(𝑎),
then the initial guess of 𝑦󸀠(𝑎) is given explicitly from the first
boundary condition as follows:𝑦󸀠󸀠 = 𝑓 (𝑥, 𝑦, 𝑦󸀠) , with 𝑎 ≤ 𝑥 ≤ 𝑏𝑦1 (𝑎) = 𝑠1,𝑦󸀠1 (𝑎) = 𝑉1 − 𝐶1𝑦1 (𝑎) (34)

where 𝑉1 = 𝛼/𝑐1 and 𝐶1 = 𝑐2/𝑐1. Compute the approximate
solutions using the formula in (13) to (16). We obtained the
first stopping condition as󵄨󵄨󵄨󵄨󵄨ℎ (𝑦1 (𝑏) , 𝑦󸀠1 (𝑏)) − 𝛽󵄨󵄨󵄨󵄨󵄨 ≤ 𝑇𝑂𝐿, (35)

where ℎ(𝑦(𝑏), 𝑦󸀠(𝑏)) = 𝑦󸀠(𝑏) +𝐶2𝑦(𝑏), with 𝐶2 = 𝑐4/𝑐3. If this
is sufficiently close to the condition in (35), then the BVPs are
solved. Otherwise, update the new set of guessing values and
the process continues as described in the following algorithm.

Algorithm of 2PDD4

Step 1. Set TOL and 𝑦1(𝑎) = 𝑠1, 𝑦󸀠1(𝑎) = 𝑉1 − 𝐶1𝑦1(𝑎).
Step 2. Set 𝑥𝑛 = 𝑥0+𝑛ℎ and calculate the approximate values,𝑦𝑛+1 and 𝑦𝑛+2, using the formula in (13) to (16) with 𝑃𝐸(𝐶𝐸)𝑟
where 𝑟 = 1, 2, . . . and 𝑟 depend on the test of convergence at
each iteration.

Step 3. If 𝑥𝑛 < 𝑏, then repeat Step 2. If 𝑥𝑛 = 𝑏, then go to
Step 4.
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Step 4. If the following stopping condition is fulfilled:|ℎ(𝑦𝑗(𝑏), 𝑦󸀠𝑗(𝑏)) − 𝛽| ≤ 𝑇𝑂𝐿, then go to Step 6.
Else, continue to Step 5.

Step 5. Generate the new guessing values, 𝑦𝑗(𝑎) = 𝑠𝑗 and𝑦󸀠𝑗(𝑎) = 𝑉1 − 𝐶1𝑦𝑗(𝑎) for 𝑗 = 2, 3, . . . 𝑁 based on the previous
guess usingNewton divided difference interpolation formula.
Repeat Step 2.

Step 6. Complete.

The first two estimates were decided to be 𝑠1 = 0 and 𝑠2 =1 based on the consideration in Roberts [16]. The calculation
for the corrector part involved the test for convergence. The
formulae for the calculation of error and convergence test are
defined as follows.

Error 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑦𝑖)𝑡 − (𝑦 (𝑥𝑖))𝑡𝐴 + 𝐵 (𝑦𝑖)𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (36)

Convergence Test󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑦𝑛+1,𝑟)𝑡 − (𝑦𝑛+1,𝑟−1)𝑡𝐴 + 𝐵 (𝑦𝑛+1,𝑟)𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 0.1 × 𝑇𝑂𝐿 (37)

where r is the number of iterations and (𝑦)𝑡 is the 𝑡th
component of the approximation. 𝐴 = 1, 𝐵 = 0 result in
absolute error test,𝐴 = 1, 𝐵 = 1 result inmixed error test, and𝐴 = 0, 𝐵 = 1 result in relative error test. All the calculations
were done using the C programing code.

5. Numerical Results

In this section, we have applied the algorithm of 2PDD4 to
five numerical tested problems to illustrate its accuracy and
efficiency. Problem 1 used mixed error test and Problem 2
applied the relative error test whereas Problems 3, 4, and
5 used absolute error test throughout the calculation for
obtaining the required result. The following notations are
used in the following result.

MAXE: Maximum absolute error as stated with ∗
AVE: Average absolute errorℎ: Step size
TOL: Tolerance
TS: Total steps at last iteration
FCN: Total function call
ITN: Total iteration of guess
TIME: Time computation in seconds
2PDD4: Direct two-point diagonal block method of
order four proposed in this study
2PDAM4: Direct two-step Adams Moulton method
of order four as in Phang et al. [17]

DAM4: Direct Adams Moulton method of order four
as in Majid et al. [18]
BP5: Bernoulli polynomials of degree five proposed
by Islam and Shirin [2].

Problem 1. One has linear second-order differential equation𝑦󸀠󸀠 = 𝑦 − 2 cos (𝑥) , 𝜋2 ≤ 𝑥 ≤ 𝜋 (38)

with 𝑦󸀠(𝜋/2) + 3𝑦(𝜋/2) = −1 and 𝑦󸀠(𝜋) + 4𝑦(𝜋) = −4.
Exact solution: 𝑦(𝑥) = cos(𝑥).
Source: Islam and Shirin [2].

Problem 2. One has nonlinear second-order differential
equation 𝑦󸀠󸀠 = 12𝑒−𝑥 (𝑦2 + (𝑦󸀠)2) , 0 ≤ 𝑥 ≤ 1 (39)

with −𝑦󸀠(0) + 𝑦(0) = 0 and 𝑦󸀠(1) + 𝑦(1) = 2𝑒.
Exact solution: 𝑦(𝑥) = 𝑒𝑥.
Source: Duan et al. [3].

Problem 3. One has nonlinear second-order differential
equation 𝑦󸀠󸀠 = −18 (𝑒−2𝑦 + 4 (𝑦󸀠)2) , 0 ≤ 𝑥 ≤ 1 (40)

with −2𝑦󸀠(0) + 𝑦(0) = −1 and 2𝑦󸀠(1) + 𝑦(1) = 2/3 + log(3/2).
Exact solution: 𝑦(𝑥) = log((2 + 𝑥)/2).
Source: Duan et al. [3].

Problem 4. One has nonlinear second-order differential
equation 𝑦󸀠󸀠 = − exp (−2𝑦) , 0 ≤ 𝑥 ≤ 1 (41)

with 𝑦󸀠(0) − 𝑦(0) = 1 and 𝑦󸀠(1) + 𝑦(1) = 0.5 + ln(2).
Exact solution: 𝑦(𝑥) = ln(1+𝑥). Source: Bhatta and Sastri

[5].

Problem 5. One has nonlinear second-order differential
equation 𝑦󸀠󸀠 (𝑥) = 𝜋2𝑒𝑦(𝑥), 0 ≤ 𝑥 ≤ 1 (42)

with 2𝑦󸀠(0) + 𝑦(0) = −2𝜋 and −𝑦󸀠(1) + 2𝑦(1) = −𝜋.
Exact solution: 𝑦(𝑥) = −2 ln(cos((𝜋/2)𝑥 − 𝜋/4)) − ln(2).
Source: Lang and Xu [6].
The general equation of Problem 5 given as follows:𝑦󸀠󸀠 (𝑥) = 𝑏𝑒𝑎𝑦(𝑥), with 𝑦 (0) = 𝑦 (1) = 0, (43)

arises in applications involving the diffusion of heat generated
by positive temperature-dependent sources. According to
discussion in Agarwal and O’Regan [19], p.295, if 𝑎 = 1, the
diffusion of heat arises in the two different analyses as Joule
losses either in electrically conducting solids or in frictional
heating. For the first analysis, 𝑏 represents the square of
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Table 1: Comparison of the numerical result for solving Problem 1.𝑥 Error at ℎ = 0.1 Error at ℎ = 0.01
2PDD4 2PDAM4 DAM4 2PDD4 2PDAM4 DAM4 BP5

1.5708 4.64e-07 2.60e-07 1.49e-06 2.05e-10 2.05e-10 2.05e-10 0.00e+00
1.7279 6.76e-07 5.81e-07 2.37e-07 1.70e-10 1.71e-10 1.71e-10 2.74e-06
1.8850 8.47e-07∗ 8.32e-07∗ 7.10e-07 1.56e-10 1.63e-10 1.63e-10 8.52e-06
2.0420 6.32e-07 7.43e-07 1.11e-06 1.49e-10 1.66e-10 1.69e-10 6.63e-06
2.1991 5.36e-07 6.73e-07 1.39e-06 1.48e-10 1.78e-10 1.91e-10 4.21e-06
2.3562 3.68e-07 6.25e-07 1.56e-06 1.52e-10 2.00e-10 2.29e-10 1.10e-05∗
2.5133 3.43e-07 5.78e-07 1.62e-06∗ 1.60e-10 2.31e-10 2.86e-10 5.35e-06
2.6704 1.94e-07 5.28e-07 1.59e-06 1.73e-10 2.72e-10 3.65e-10 6.10e-06
2.8274 2.06e-07 4.72e-07 1.45e-06 1.91e-10 3.25e-10 4.68e-10 9.42e-06
2.9845 6.27e-08 3.96e-07 1.18e-06 2.16e-10 3.92e-10 6.03e-10 2.45e-06
3.1416 9.16e-08 3.05e-07 7.81e-07 2.47e-10∗ 4.76e-10∗ 7.76e-10∗ 0.00e+00
AVE 4.42e-07 5.99e-07 1.31e-06 1.75e-10 2.46e-10 3.16e-10 6.27e-06
TS 6 6 10 51 51 100 -
FCN 96 144 96 114 212 114 -
ITN 3 3 3 1 1 1 -
TIME 0.0030 0.0150 0.0310 0.0150 0.0470 0.0470 -

Table 2: Comparison of the numerical result for solving Problem 2.𝑥 Error at ℎ = 0.1 Error at ℎ = 0.01
2PDD4 2PDAM4 DAM4 2PDD4 2PDAM4 DAM4

0.00 4.90e-07∗ 3.05e-05 1.84e-07 0.00e+00 0.00e+00 0.00e+00
0.10 2.61e-07 3.04e-05 4.17e-07 5.32e-12 2.79e-11 8.54e-12
0.20 2.63e-08 3.06e-05 6.61e-07 5.87e-12 1.35e-10 2.23e-11
0.30 2.58e-08 3.13e-05 6.76e-07 6.69e-12 3.24e-10 4.57e-11
0.40 9.67e-09 3.21e-05∗ 6.78e-07∗ 7.76e-12 5.88e-10 7.80e-11
0.50 1.30e-08 3.19e-05 6.68e-07 9.08e-12 9.22e-10 1.19e-10
0.60 7.25e-11 3.15e-05 6.46e-07 1.06e-11 1.32e-09 1.68e-10
0.70 6.15e-09 2.99e-05 6.14e-07 1.24e-11 1.79e-09 2.24e-10
0.80 4.33e-09 2.81e-05 5.73e-07 1.44e-11 2.32e-09 2.88e-10
0.90 3.91e-09 2.47e-05 5.22e-07 1.66e-11 2.91e-09 3.59e-10
1.00 4.63e-09 2.11e-05 4.62e-07 1.90e-11∗ 3.56e-09∗ 4.38e-10∗
AVE 8.44e-08 3.22e-05 6.10e-07 1.01e-11 1.22e-09 1.55e-10
TS 6 6 10 51 51 100
FCN 120 212 88 228 424 228
ITN 4 4 3 2 2 2
TIME 0.015 0.031 0.015 0.031 0.047 0.046

the constant current and 𝑒𝑦(𝑥) the temperature-dependent
resistance. Meanwhile, for the second part, 𝑏 represents the
square of the constant shear stress and 𝑒𝑦(𝑥) the temperature-
dependent fluidity. In addition, if 𝑎𝑏 = 0 and 𝑎𝑏 > 0, then
problem in (43) has a unique solution.

Data in Tables 1–4 summarized the result obtained for
all tested problems at ℎ = 0.1 and ℎ = 0.01 with𝑇𝑂𝐿 = 10−6. In addition, the values ending with ∗ in Tables
1–4 denote the maximum error for those particular results.
In order to investigate the competency of this proposed
method, 2PDD4 has been compared with 2PDAM4 and

DAM4. These two existing methods have the same order as
2PDD4 and will solve the BVP problems directly. The same
shooting procedure has been implemented in the algorithm
as explained in Section 4.

In Table 1, the maximum error of 2PDD4 is comparable
with 2PDAM4 and DAM4 but better than BP5. The total
function calls and execution times for 2PDD4 are less com-
pared to 2PDAM4 and DAM4. As can be seen in Table 2, the
total function calls and number of initial guessing for 2PDD4
are greater than DAM4 at ℎ = 0.1 but comparable in terms of
computation time. Besides that, 2PDD4 achieved an excellent
accuracy result compared to 2PDAM4. In detail, 2PDD4 has
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Table 3: Comparison of the numerical result for solving Problem 3.𝑥 Error at ℎ = 0.1 Error at ℎ = 0.01
2PDD4 2PDAM4 DAM4 2PDD4 2PDAM4 DAM4

0.00 0.00e+00 0.00e+00 1.28e-06 0.00e+00 0.00e+00 0.00e+00
0.10 1.68e-08 1.68e-08 1.33e-06 3.72e-13 1.29e-10 3.30e-13
0.20 3.03e-08 3.03e-08 1.38e-06 4.26e-13 7.01e-10 7.56e-14
0.30 4.47e-08∗ 2.36e-08 1.43e-06 5.04e-13 1.64e-09 3.62e-13
0.40 3.12e-08 2.16e-08 1.45e-06 5.99e-13 2.86e-09 9.31e-13
0.50 3.55e-08 2.82e-08 1.46e-06∗ 7.05e-13 4.32e-09 1.59e-12
0.60 2.34e-08 3.73e-08 1.45e-06 8.18e-13 5.96e-09 2.32e-12
0.70 2.23e-08 5.12e-08 1.43e-06 9.36e-13 7.74e-09 3.09e-12
0.80 1.12e-08 6.63e-08 1.40e-06 1.06e-12 9.64e-09 3.90e-12
0.90 7.25e-09 8.41e-08 1.36e-06 1.18e-12 1.16e-08 4.73e-12
1.00 2.96e-09 1.03e-07∗ 1.33e-06 1.31e-12∗ 1.37e-08∗ 5.57e-12∗
AVE 2.26e-08 4.62e-08 1.53e-06 7.46e-13 5.20e-09 2.05e-12
TS 6 6 10 51 51 100
FCN 32 80 32 114 604 114
ITN 1 1 3 1 1 1
TIME 0.0040 0.0470 0.0470 0.0400 0.0620 0.0780

Table 4: Comparison of the numerical result for solving Problem 4.𝑥 Error at ℎ = 0.1 Error at ℎ = 0.01
2PDD4 2PDAM4 DAM4 2PDD4 2PDAM4 DAM4

0.00 0.00e+00 2.07e-06 1.18e-05 0.00e+00 0.00e+00 0.00e+00
0.10 5.30e-07 1.77e-06 1.25e-05 1.27e-11 2.41e-11 9.41e-11
0.20 9.48e-07 1.62e-06 1.36e-05 1.20e-11 8.26e-11 3.66e-10
0.30 1.66e-06∗ 2.03e-06 1.46e-05 1.01e-11 1.71e-10 7.57e-10
0.40 1.33e-06 2.36e-06 1.47e-05∗ 7.54e-12 2.79e-10 1.23e-09
0.50 1.53e-06 2.39e-06 1.44e-05 4.68e-12 4.00e-10 1.75e-09
0.60 1.34e-06 2.39e-06∗ 1.37e-05 1.61e-12 5.33e-10 2.33e-09
0.70 1.38e-06 2.29e-06 1.29e-05 1.62e-12 6.74e-10 2.93e-09
0.80 1.25e-06 2.18e-06 1.20e-05 4.97e-12 8.23e-10 3.58e-09
0.90 1.23e-06 2.03e-06 1.10e-05 8.42e-12 9.80e-10 4.25e-09
1.00 1.14e-06 1.88e-06 1.01e-05 1.20e-11∗ 1.14e-09∗ 4.96e-09∗
AVE 1.23e-06 2.30e-06 1.41e-05 7.55e-12 4.59e-10 2.00e-09
TS 6 6 10 51 51 100
FCN 32 48 32 114 212 114
ITN 1 4 4 1 1 1
TIME 0.0030 0.0150 0.0150 0.0050 0.0310 0.0460

less three- or two-decimal accuracy than 2PDAM4 for solving
Problem 2 with ℎ = 0.1 and ℎ = 0.01, respectively. Method
2PDD4 needs less total function call and obtained smallest
maximum error compared to other methods as displayed in
Table 3. Table 4 has shown that 2PDD4 required only one
initial guessing as compared to 2PDAM4 and DAM4 for
solving Problem 4 at ℎ = 0.1. Due to this efficient iterative
performance, 2PDD4 gives a superiority result in terms of
execution times and total function calls.

Overall, a similar number of total steps are observed from
all the data generated by 2PDD4 and 2PDAM4 as presented

in Tables 1–4. These results justify that both methods have
potential to reduce the total step approximately by half when
computing the results at two-point simultaneously.

Finally, Table 5 describes the comparison of maximum
error obtained in Lang and Xu [6] using the Quintic b-spline
collocation method of order four with 2PDD4 method. The
first three results demonstrate that the maximum error for
both methods is comparable. However, at ℎ = 0.025 andℎ = 0.0125, the results showed that 2PDD4are able to achieve
smaller maximum error than the method in [6]. Figures 3,
4, 5, and 6 display clear information about the comparison
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Table 5: Comparison of MAXE for solving Problem 5.𝑛 ℎ = 1/𝑛 MAXE
Lang and Xu[6] MAXE of 2PDD4

5 0.2 5.085000E-03 1.929712E-02
10 0.1 3.405000E-04 5.903279E-04
20 0.05 2.154000E-05 2.478867E-05
40 0.025 1.348000E-06 1.042691E-07
80 0.0125 8.425000E-08 6.295665E-09

−6

−7

−8

−9

M
A

XE
 (l

og
10

)

100 120 140 160 180 200

FCN

2PDD4
2PDAM4
DAM4

(a) Comparison of FCN and MAXE

−6

−7

−8

−9

M
A

XE
 (l

og
10

)

2PDD4
2PDAM4
DAM4

0.01 0.02 0.03 0.04

Time

(b) Comparison of TIME and MAXE

Figure 3: Graph of numerical result for solving Problem 1.
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Figure 4: Graph of numerical result for solving Problem 2.
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Figure 5: Graph of numerical result for solving Problem 3.
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Figure 6: Graph of numerical result for solving Problem 4.

of the maximum errors versus the total function call as well
as time for the numerical results summarized in Tables 1–4.
Comparison result for Problem 5 is as depicted in Figure 7.

6. Conclusion

This study has presented a diagonal two-point block method
formula of order four to solve directly the linear and

nonlinear second-order Robin boundary conditions.
Overview from the results showed a significant finding that
the proposed diagonal block method manages to give faster
execution time and less number of total function calls in all
tested problems. The proposed method is able to achieve
good accuracy when solving the problems. Future work
should be devoted to solving third- and fourth-order Robin
boundary value problems.
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