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Abstract. This numerical study exclusively focused on developing a diagonally 
multistep block method of order five (2DDM5) to get the approximate solution of 
the third-order Robin boundary value problems directly. The mathematical derivation 
of the developed 2DDM5 method is by approximating the integrand function with 
Lagrange interpolation polynomial. The proposed direct integrator scheme was applied 
to compute numerical solution at two-point concurrently. Shooting technique adapted 
with the Newtons divided difference interpolation method was implemented throughout 
the proposed algorithm. The theoretical characteristics of the developed method 
including the order, consistency, zero-stable and convergence are discussed. The 
method are tested on four Robin boundary value problems. The numerical results 
signify that the computational performances of the proposed method is competitive in 
terms of accuracy and efficiency than the existing method.

1. Introduction
This study was conducted to directly evaluate the solution of the third-order two-point
boundary value problems (BVPs) which was given by:

y′′′(x) = f(x, y, y′, y′′), a1 ≤ x ≤ a3 (1)

associated with three set of boundary conditions:

3∑
i=1

Cj,iy
(3−i)(aj) = Bj , for j = 1, 2, 3, (2)
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where a1 ≤ a2 < a3, Cj,i, aj and βj are real constants. For the case of Cj,i 6= 0, the
boundary conditions in (2) are referred as three sets of Robin boundary conditions.
Otherwise, the boundary conditions in (2) are also referred as mixed boundary
conditions. According to Keller [1] and Modebei et al. [2], the solutions for (1) to
(2) are assumed to satisfy the appropriate existence and uniqueness conditions.

The direct integrator block method has been extensively used to facilitate the solution
for higher-order BVPs as well as initial value problems (IVPs) which has been reported
in many mathematical literatures. Studies conducted by Turki et al. [3] and Adeyeye
and Omar [4] used direct block method for solving third-order IVPs and fourth-order
IVPs, respectively. Meanwhile, solving third-order BVPs directly were considered in
Majid and See [5] and Nasir et al. [6], whilst Ramos and Rufai [7] focused on solving the
fourth-order BVPs directly. The main contribution of all these studies highlighted the
advantages of the direct integrator method as being more efficient in cost computations
and more accurate at tackling some of the setbacks when solving higher-order differential
equations using the conventional approach.

To date, numerous studies have been focusing on solving the third-order BVPs directly
for the Dirichlet and Neumann boundary conditions than the Robin type boundary
conditions. One of the point because the strategy to improvise the missing condition in
handling Dirichlet and Neumann cases is less challenging compared to Robin case. Due
to this reason, this study aims to improve the development of the direct block method
in Nasir et al. [6] by considering a higher-order block method than the previous one.
The main goal of this new development block method is to increase the accuracy of
the numerical results and provide a trustworthy output than the existing BVPs solver
methods.

2. Derivation of the method

Figure 1. Two-point block method with three back values.

This section elaborates on the formulation of the two-point diagonally multistep block 
method to evaluate the third-order BVPs in (1). Two numerical solutions represented as 
yn+1 and yn+2 at xn+1 and xn+2, respectively, were generated concurrently with constant 
step size h as depicted in Figure 1.
Accordingly, the direct integration evaluate equation (1) t times over the limit of 
integration, xn ≤ x ≤ xn+i for i = 1, 2. The initial integration, (t = 1) of (1) yields:∫ xn+i

xn

y′′′(x) dx =

∫ xn+i

xn

f(x, y, y′, y′′) dx, (3)

y′′(xn+i)− y′′(xn) =

∫ xn+i

xn

f(x, y, y′, y′′) dx.
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The second integration, (t = 2) of (1) yields:∫ xn+i

xn

∫ x

xn

y′′′(x) dxdx =

∫ xn+i

xn

∫ x

xn

f(x, y, y′, y′′) dxdx, (4)

y′(xn+i)− y′(xn)− ihy′′(xn) =

∫ xn+i

xn

(x− xn)f(x, y, y′, y′′) dx.

Finally, the third integration, (t = 3) of (1) yields:∫ xn+i

xn

∫ x

xn

∫ x

xn

y′′′(x) dxdxdx =

∫ xn+i

xn

∫ x

xn

∫ x

xn

f(x, y, y′, y′′) dxdxdx, (5)

y(xn+i)− y(xn)− hy′(xn)− (ih)2

2!
y′′(xn) =

∫ xn+i

xn

1

2
(x− xn)2f(x, y, y′, y′′) dx.

Since the formulation considers the Adam’s type formulas, hence all the integrand
function of f(x, y, y′, y′′) in (3) to (5) were approximated using the Lagrange interpolation
polynomial, Pk with k is the degree of the polynomial. Firstly, to develop the formulation
for the first corrector formula of yn+1 , the set of points {xn−3, xn−2, xn−1, xn, xn+1} was
interpolated which resulted the Lagrange form as:

P4 =

4∑
j=0

( 4∏
i=0
i6=j

(x− xn−3+i)

(xn−3+j − xn−3+i)

)
fn−3+j . (6)

Meanwhile, the set of points {xn−3, xn−2, xn−1, xn, xn+1, xn+2} was interpolated, thus
deriving the following Langrange form:

P5 =
5∑

j=0

( 5∏
i=0
i6=j

(x− xn−3+i)

(xn−3+j − xn−3+i)

)
fn−3+j (7)

and it was then used to derive the second corrector formula of yn+2.
This study proceeded to incorporate the variable of substitutions, x = xn+i + sh and

dx = hds into the integral part, (3) to (5). Subsequently, the simplified version using
Maple for the first corrector formulas were attained:

y′′n+1 = y′′n +
h

720
[−19fn−3 + 106fn−2 − 264fn−1 + 646fn + 251fn+1], (8)

y′n+1 = y′n + hy′′n +
h2

1440
[−17fn−3 + 96fn−2 − 246fn−1 + 752fn + 135fn+1],

yn+1 = yn + hy′n +
h2

2!
y′′n +

h3

10080
[−33fn−3 + 188fn−2 − 492fn−1 + 1812fn

+ 205fn+1].
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Similar procedure yielded the corrector formulas for yn+2 as follows:

y′′n+2 = y′′n +
h

90
[fn−3 − 6fn−2 + 14fn−1 + 14fn + 129fn+1 + 28fn+2], (9)

y′n+2 = y′n + 2hy′′n +
h2

630
[−2fn−3 + 17fn−2 − 76fn−1 + 566fn + 718fn+1

+ 37fn+2],

yn+2 = yn + 2hy′n +
(2h)2

2!
y′′n +

h3

630
[−4fn−3 + 29fn−2 − 104fn−1 + 556fn

+ 364fn+1 − fn+2].

The simplified version of (8) and (9) are as follows:

y
(3−t)
n+i =

t−1∑
k=0

(ih)ky
(3−t+k)
n

k!
+

ht

(t− 1)!

i∑
j=−3

βti,n+j fn+j , for i = 1, 2 (10)

where

t : refers to the number of times the integral has been evaluated;

β : represent the coefficients of the method.

Following that, this study implemented the same derivation technique for the 
predictor formulas by considering the number of interpolated points being one value 
lesser than the corrector, which satisfies the explicit form. Table 1 and Table 2 presents 
the developed predictor formulas for the coefficients of yn+1 and yn+2, respectively. It

Table 1. Coefficients,β1 of the first point predictor formula.
t βt1,n−3 βt1,n−2 βt1,n−1 βt1,n
1 −9/24 37/24 −59/24 55/24

2 −38/360 159/360 −264/360 323/360

3 −17/720 72/7200 −123/720 188/720

Table 2. Coefficients,β2 of the second point predictor formula.
t βt2,n−3 βt2,n−2 βt2,n−1 βt2,n βt2,n+1

1 29/90 −146/90 294/90 −266/90 269/90

2 5/90 −24/90 42/90 28/90 129/90

3 -5/630 34/630 −114/630 566/630 359/630

is noticeable from the tables that all of the derived first point predictor and corrector
formulas interpolated the total number of points which is one value lesser than the
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respective second point for the predictor and corrector formulas. This signifies that the
first point formulas have lower order than the second point formulas.

It should be noted that the proposed method in this study, specifically known as
the direct two-point diagonally multistep block method of order five (2DDM5), is not a
self-starting method. Therefore, 2DDM5 used the one-step method at the early stage of
the algorithm to initiate the computation process for the multistep part. Additionally,
the proposed numerical scheme was designed using the combination of PE(CE)r mode.
In this scheme, P , C and E corresponded to the evaluation of predictor, corrector and
the function, f(x, y, y′, y′′), respectively, whilst r was the total iterations acquired in test
for convergence.

3. Analysis of the block method
This section is devoted to discuss on the properties of the 2DDM5 method by
providing the analysis in terms of the order, error constant, consistency, zero-stable
and convergence.

The 2DDM5 formulas can be specified as a member of general linear multistep method
(LMM) using the following formula:

m∑
j=0

αjyn+j = h
m∑
j=0

δjy
′
n+j + h2

m∑
j=0

γjy
′′
n+j + h3

m∑
j=0

σjf(xn+j , yn+j , y
′
n+j , y

′′
n+j). (11)

The linear difference operator associated with (11) are given as follows:

L[y(xn), h] =

m∑
j=0

(
αjy(xn + jh)− hδjy′(xn + jh)− h2γy′′(xn + jh) (12)

− h3σjy′′′(xn + jh)

)
with y(xn) an arbitrary function continuously differentiable on [a1, a3]. Upon expanding
the function y(xn+jh) and its derivative about the xn using Taylor’s series, the following
simplified version of (12) can be attained:

L[y(xn), h] = C0y(xn) + C1hy
′(xn) + . . .+ Cph

py(p)(xn) + . . . (13)

and Cp’s are constant coefficients defined as follows:

Cp =
1

p!

[ m∑
j=0

(
jpαj − pjp−1δj − p(p− 1)jp−2γj − p(p− 1)(p− 2)jp−3σj

)]
(14)

for p = 0, 1, 2 . . .

3.1. Order, error constant and consistency
Definition 1 According to [8], the LMM have an order p if C0 = C1 = . . . = Cp+1 =
Cp+2 = 0 and Cp+3 6= 0, then the method is consistent whenever p ≥ 1.
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The order and error constant of 2DDM5 method were calculated based on the main
corrector formulas in (8) and (9) associated with (11). By letting m = 5 in (12), this
implied the matrix form as follows:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 1




ym
ym+1

ym+2

ym+3

ym+4

ym+5

 = h


0 0 0 0 0 0
0 0 0 1 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 −1
0 0 0 2 0 0




y′m
y′m+1

y′m+2

y′m+3

y′m+4

y′m+5

 (15)

+ h2


0 0 0 1 −1 0
0 0 0 1 0 0
0 0 0 1/2 0 0
0 0 0 1 0 −1
0 0 0 2 0 0
0 0 0 2 0 0




y′′m
y′′m+1

y′′m+2

y′′m+3

y′′m+4

y′′m+5



+ h3



-19/720 106/720 -264/720 646/720 251/720 0

-17/1440 96/1440 -246/1440 752/1440 135/1440 0

-33/10080 188/10080 -492/10080 1812/10080 205/10080 0

1/90 -6/90 14/90 14/90 129/90 28/90

-2/630 17/630 -76/630 566/630 718/630 37/630

-4/630 29/630 -104/630 556/630 364/630 -1/630





fm

fm+1

fm+2

fm+3

fm+4

fm+5


where m = n − 3. Then, by simplifying the set of coefficients from (14), the following
was obtained:

C0 = C1 = . . . = C7 = [0 0 0 0 0 0]T (16)

with the vector of error constant given by:

C8 =
1

8!

5∑
j=0

(
j8αj − 8j7δj − 56j6γj − 336j5σj

)
(17)

=

[
− 3/160 − 41/5040 − 89/40320 0 0 0

]T
.

This gives the order of the block method to be of order five, p = 5. Therefore, 2DDM5
method is consistent since the method possesses an order of at least one.

3.2. Zero-stability of the block method
Definition 2 According to [8], the LMM is said to be zero-stable provided that the first

characteristic polynomial, ρ(ξ) specified as ρ(ξ) = det
∣∣∣∑k

j=0 A
(j)ξ(k−j)

∣∣∣ = 0 having roots
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such that |ξj | ≤ 1 and if |ξj | = 1, the multiplicity must not exceed three. The roots are
defined as ξj for j = 1, . . . , k.

Therefore, to analyze the zero-stability for the 2DDM5 method, the roots of the first
characteristic polynomial can be specified as:

ρ(ξ) = det
(
ξA0 −A1

)
(18)

= det


ξ 0 0 −1 0 0
0 ξ 0 0 −1 0
0 0 ξ 0 0 −1
0 0 0 ξ − 1 0 0
0 0 0 0 ξ − 1 0
0 0 0 0 0 ξ − 1


= ξ3(ξ − 1)3

with A0 is an identity matrix with dimension 6 × 6. From (18), ρ(ξ) > 0 yields roots
of ξ = {0, 0, 0, 1, 1, 1}. Hence, it is concluded that 2DDM5 is zero-stable since ρ(ξ) has
roots satisfying |ξj | ≤ 1.

3.3. Convergence of the block method
Theorem 1 The LMM associated with (11) is convergent iff it is consistent and
zero-stable [9].

Since the consistency and zero-stable of the method have been fulfilled, it is concluded
that the proposed 2DDM5 is convergent.

4. Implementation
In order to implement 2DDM5 method on solving the considered problems in (1), the
constructing algorithm involves the shooting technique via Newton’s divided difference
interpolation method. Our developed BVPs solver takes

y1(a1) = G1 and y2(a1) = G2

where G1 = 0 and G2 = 1 as first and second guesses, respectively. The guessing criteria
have a sole strategy of imposing suitable starting values to initiate the shooting process
based on the consideration in [10].

In this study, the underlying iterative strategy throughout the numerical experiments
was adopted from [6]. The first iterative process was stopped once the stopping condition
had been met using∣∣F (y1(a3, G1), y

′
1(a3, G1), y

′′
1(a3, G1))−B3

∣∣ ≤ TOL
where

F (y1(a3, G1), y
′
1(a3, G1), y

′′
1(a3, G1)) = C3,1y

′′(a3, G1) + C3,2y
′(a3, G1) + C3,3y(a3, G1).
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Algorithm: The 2DDM5 method
Step 1: INPUT

Total number of subintervals: N ;
Initial and terminal value of integration:[x0, xN ];
Tolerance: TOL=10(−5);
End boundary value:B3.

Step 2: For i = 1, set the initial guess, Gj .
Step 3: For k = 1 to 3, set xk = x0 + kh.

Evaluate y
(j)
k , j = 0, 1, 2 and fk.

Step 4: For j = 1 to 2, set xj+3 = x3 + jh.
Evaluate yj+3, y

′
j+3, y

′′
j+3 and fj+3 using 2DDM5 method.

Step 5: At xN , verify the stopping condition. If fulfilled, then go to Step 7.
Else, continue Step 6.

Step 6: Set i = i+ 1. Generate new Gj . Go to Step 3.
Step 7: OUTPUT

Numerical values of the problems in (1) at specified grid points. Complete.

If vice-versa, then the guessing value was revised and continued with the next shooting
process. Details of the proposed algorithm is outlined as follows.
Several essential formulas were also involved throughout the development of the
algorithm including calculation of numerical error using∣∣∣∣ (y(xi))− (yi)

A+B (y(xi))

∣∣∣∣ , (19)

with yi and y(xi) are numerical results and exact solution, respectively. Meanwhile, for
a better accuracy result, a convergence test as given by∣∣∣∣∣

(
yrn+1

)
−
(
yr−1n+1

)
A+B

(
yrn+1

) ∣∣∣∣∣ < 0.1× TOL (20)

was set at the corrector part of 2DDM5 method. The values of A = B = 1 had been
assigned in (19) and (20) which was denoted as mixed test. The complete C source code
for our computational procedure were computed using Code::Blocks 16.01 platform.

5. Numerical results and discussion
This section discussed the performances of 2DDM5 block method by considering the
four numerical tested problems. The accuracy and efficiency of 2DDM5 method
were assessed by comparing it with the existing methods including bvp5c, 2P3BVS,
2DDM4 and BVM3 methods. Below are the indicated notations used in the tables.
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h : Step size.
MAXE : Maximum error.
AVE : Average error.
TS : Total steps at the last iteration.
FCN : Total function calls.
TG : Total iteration of guesses.
TIME : Time computation in second.
bvp5c : Matlab solver with fifth order collocation method.
2P3BVS : Fourth order block method proposed in [11].
BVM3 : Boundary value methods of order four in [8].
2DDM4 : Direct two-point diagonally multistep block method of order four in [6]
2DDM5 : Direct two-point diagonally multistep block method of order five

proposed in this study.

Problem 1 Consider the third-order linear differential equation in [12]

y′′′(x) = xy(x) + (x3 − 2x2 − 5x− 3) exp(x) (21)

with Robin boundary conditions

y′′(0)− y′(0)− y(0) = −1, y′′(0)− y(0) = 0, y′′(10) + y′(10) + y(10) = −329 exp(10).

Exact solution : y(x) = x(1− x) exp(x).

Problem 2 Consider the third-order nonlinear differential equation in [6]

y′′′(x) = − exp(−2y(x))
(
y′(x) + xy′′(x)− 2x(y′(x))2

)
(22)

with Robin boundary conditions

y′′(1) + y′(1) + y(1) = 0, y′′(1) + y(1) = −1, y′′(2) + y′(2) + y(2) = ln(2) +
1

4
.

Exact solution: y(x) = ln(x).

Problem 3 Consider the third-order nonlinear differential equation in [13]

y′′′(x) = −2 exp(−3y(x)) + 4(1 + x)−3 (23)

with Robin boundary conditions

y′′(0)− y′(0)− y(0) = −2, y′′(0) + y(0) = −1, y′′(1) + y′(1) + y(1) = ln(2) +
1

4
.

Exact solution : y(x) = ln(1 + x).
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Problem 4 Consider the third-order linear differential equation in [8]

y′′′(x) =
1√

1 + x
y′(x)− 2y(x) + 3− 3x2

2
√

1 + x
+ x3 (24)

with mixed boundary conditions

y(0) = y′(0) = 0, 3y(1)− y′(1) = 0.

Exact solution : y(x) = 1
2x

3.

Table 3. Comparison of the numerical results for solving Problem 1.
Method h MAXE AVE TS FCN TG TIME

bvp5c
1.0 1.88E-06 7.77E-07 10 1100 - 0.0287
0.1 2.17E-07 9.30E-09 100 1788 - 0.2034
0.01 1.34E-11 9.91E-14 1000 17988 - 0.5374

2P3BVS
1.0 2.91E-03 9.04E-04 7 826 5 0.0360
0.1 5.76E-06 5.21E-07 52 1016 4 0.1225
0.01 1.14E-10 1.28E-11 502 6150 3 0.4700

2DDM4
1.0 9.49E-03 2.61E-03 6 525 5 0.0265
0.1 8.92E-06 8.83E-07 51 561 3 0.1130
0.01 1.16E-10 1.29E-11 501 4563 3 0.4290

2DDM5
1.0 4.84E-03 1.45E-03 7 513 4 0.0275
0.1 9.24E-07 8.84E-08 52 615 3 0.1165
0.01 2.45E-12 2.96E-13 502 4653 3 0.4350
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Figure 2. Performance graphs of numerical results for Problem 1
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Table 4. Comparison of the numerical results for solving Problem 2.
Method h MAXE AVE TS FCN TG TIME

bvp5c
0.1 5.60E-09 3.69E-09 10 388 - 0.0549
0.01 1.87E-10 1.83E-10 100 5358 - 0.0766
0.001 3.69E-12 2.33E-12 1000 53958 - 0.5156

2P3BVS
0.1 5.56E-04 2.24E-04 7 288 4 0.0175
0.01 9.14E-06 6.13E-06 52 1000 4 0.1090
0.001 3.58E-08 1.13E-08 502 2050 1 0.2815

2DDM4
0.1 1.64E-06 7.44E-07 6 39 1 0.0015
0.01 1.18E-10 4.25E-11 51 171 1 0.0315
0.001 1.18E-15 3.03E-16 501 1521 1 0.2355

2DDM5
0.1 5.15E-07 1.40E-07 7 66 1 0.0155
0.01 3.13E-12 1.02E-12 52 201 1 0.0465
0.001 3.67E-16 1.64E-16 502 1551 1 0.2385
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Figure 3. Performance graphs of numerical results for Problem 2.

Table 5. Comparison of the numerical results for solving Problem 3.
Method h MAXE AVE TS FCN TG TIME

bvp5c
0.1 2.82E-09 1.17E-09 10 396 - 0.0220
0.01 1.84E-12 5.83E-13 100 4191 - 0.0998
0.001 9.74E-11 3.80E-11 1000 42171 - 0.3924

2P3BVS
0.1 8.74E-07 4.63E-07 7 218 3 0.0200
0.01 6.85E-11 2.14E-11 52 250 1 0.0340
0.001 1.26E-15 4.23E-16 502 2050 1 0.3120

2DDM4
0.1 2.24E-06 1.46E-06 6 126 3 0.0115
0.01 3.20E-11 1.46E-11 51 171 1 0.0285
0.001 9.86E-16 3.45E-16 501 1521 1 0.2340

2DDM5
0.1 4.88E-07 1.22E-07 7 66 1 0.0165
0.01 4.47E-12 1.44E-12 52 201 1 0.0300
0.001 4.65E-16 2.01E-16 502 1551 1 0.2500
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Figure 4. Performance graphs of numerical results for Problem 3.

Table 6. Comparison between BVM3, 2DDM4 and 2DDM5 for Problem 4.

N
BVM3 2DDM4 2DDM5

MAXE FCN MAXE FCN MAXE FCN
10 1.388E-15 30 3.9328E-07 36 3.9662E-09 66
20 4.441E-16 60 1.5860E-08 51 6.2766E-11 81
40 2.887E-14 120 5.5247E-10 81 9.9743E-13 111
80 6.856E-14 240 1.8164E-11 141 1.5932E-14 171
160 2.449E-14 480 5.8181E-13 261 2.1649E-15 291
320 5.228E-14 960 1.8404E-14 501 4.2744E-15 531

The computational performances of 2DDM5 for solving Problem 1 to Problem 3 were
compared with bvp5c and 2P3BVS methods of order 5 as well as 2DDM4 method of
order 4. Table 3 demonstrates that the accuracy acquired by the 2DDM5 method is
comparable with bvp5c but superior to 2P3BVS and 2DDM4 methods as the step size
decreases.

Table 4 and Table 5 present the computational comparison of all methods for solving
nonlinear problems. The tabulated data clearly highlight the numerical results acquired
by 2DDM5 to have closer true value than other methods which reflects the smallest
errors attained by 2DDM5 method. The respective data also signify that 2DDM5 are less
expensive in terms of total function calls and faster in timing than bvp5c and 2P3BVS. In
contrast, 2DDM5 acquired extra computational cost in both elements than the 2DDM4
method due to the behavior of the higher order method. These efficient performances
demonstrated by 2DDM5 are visualized in Figure 2 to Figure 4.

In Problem 4, we tested a mixed boundary conditions involving Dirichlet, Neumann
and Robin conditions. This problem were also solved using BVM3 and 2DDM4 methods.
From Table 6, it is observed that 2DDM5 dominated other methods in terms of accuracy
as the N increase. Meanwhile, 2DDM5 cost lesser for its function calls than the to BVP3.
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6. Conclusion
This study remarks that the proposed two-point diagonally multistep block method of
order five with constant step size manage efficiently to solve numerical tested problems at
economic in computational cost. The 2DDM5 is also reliable in measuring approximate
solutions for the third-order boundary value problems associated with two-point Robin
boundary conditions as it able to solve these problems directly.
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