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ABSTRACT 

 

 

 

 

Pipeline networks are used extensively in all countries for transportation and 

distribution of natural gas and other light petroleum products for industrial and 

domestic use. However, one of the challenges of operating the pipeline network is 

how the operational procedures can be adjusted to meet the dynamic and future 

demands of customers. Thus, pipeline network simulation is an essential tool for 

control and operations in gas distribution systems because it can be used to stimulate 

and analyse networks behavior under different operating conditions. Analyses of 

pressures and flows are needed whenever significant changes in patterns and 

magnitudes of demand or supplies occur. Apart from that, there are many numerical 

methods that can be used in performing the gas pipeline network analysis. Thus, the 

hypothesis of the method states that the Newton Gauss Elimination method is faster 

and more accurate than the Newton Gauss Seidel method. The objectives of this 

research are to estimate the values of pressure drop of gas pipeline network by using 

Newton Loop method and to determine the accuracy and to compare the iteration number 

between Newton Gauss Elimination and Newton Gauss – Seidel. A case study was 

performed in low pressure and steady state condition. The case study covers the Gebeng 

Industrial Phase I and II only. FORTRAN program is developed to verify the manual 

calculation. Newton Gauss Elimination is more accurate than Newton Gauss – Seidel 

because Newton Gauss Elimination is a direct method while Newton Gauss – Seidel 

is an iterative method. This means Newton Gauss Elimination provides a 

straightforward solution while Newton Gauss – Seidel generates a sequence of 

successive approximation to the exact solution. The result from manual calculation 

and FORTRAN is approximately same. 
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ABSTRAK 

 

 

 

 

 Rangkaian paip digunakan secara menyeluruh di semua negara untuk tujuan 

pengangkutan dan juga pengagihan sumber gas asli dan minyak untuk keperluan 

industri dan domestik. Tetapi, salah satu cabaran untuk mengoperasikan rangkaian 

paip adalah bagaimana kaedah operasi yang boleh disesuaikan untuk memenuhi 

kehendak pengguna. Dengan demikian, simulasi adalah alat penting untuk kawalan 

dan operasi dalam system pengedaran gas kerana ia boleh digunakan dalam keadaan 

pengendalian yang berbeza. Analisis tekanan dan arus adalah diperlukan setiap kali 

ada perubahan pada pola permintaan. Dengan demikian, hipotesis telah dibuat  

dengan menyatakan bahawa Newton Gauss Elimination adalah lebih cepat dan jitu 

daripada kaedah Newton Gauss – Seidel. Objektif kajian ini adalah untuk 

menganggarkan nilai penurunan tekanan rangkaian dengan menggunakan kaedah 

Newton Loop dan membandingkan pengiraan diantara kaedah Newton Gauss Elimination 

dan Newton Gauss – Seidel. Kajian dalam kes ini dijalankan pada tekanan rendah dan 

dalam keadaan stabil dan meliputi kawasan industri Gebeng fasa I dan II sahaja. Program 

FORTRAN dibuat untuk mengesahkan pengiraan manual. Newton Gauss Elimination 

adalah lebih tepat daripada kaedah Newton Gauss – Seidel kerana . Newton Gauss 

Elimination adalah kaedah langsung, sedangkan Newton Gauss - Seidel adalah kaedah 

iteratif. Ini bermakna Newton Eliminasi Gauss memberikan penyelesaian mudah 

sedangkan Newton Gauss - Seidel menghasilkan susunan pendekatan berturut-turut 

untuk penyelesaian yang tepat. Hasil dari perhitungan manual dan FORTRAN sekitar 

sama. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

  Pipeline networks are used extensively in all countries for 

transportation and distribution of natural gas and other light petroleum products for 

industrial and domestic use. As well in Malaysia, many gas pipeline networks have 

been developed. As in January 2004, network of gas pipeline in Malaysia covering a 

total of 1193.9 Kilometers (831.7 kilometers completed) is constantly expanding to 

reach a larger population. (Gas Malaysia). 

  However, one of the challenges of operating the pipeline network is 

how the operational procedures can be adjusted to meet the dynamic and future 

demands of customers (Brindle et al., 1993). Thus, pipeline network simulation is an 

essential tool for control and operations in gas distribution systems because it can be 

used to simulate and analyse networks behavior under different operating conditions. 

Analyses of pressures and flows are needed whenever significant changes in patterns 

and magnitudes of demand or supplies occur. (Walski et al., 1990). In the absence of 

such analyses, the operational procedures may not be optimal, resulting in 

unnecessarily high operating cost. (Weerapong et al., 1998). Therefore, pipeline 

network simulation is the better way to overcome this problem.  
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 Analysis of gas networks makes use of models of gas flow in pipes that have 

been developed based on the physical laws controlling the processes of flow. 

Analysis allows us to predict the behavior of gas network system under different 

condition. Such prediction can then be used to guide regarding the design and 

operation of the real system. And gas networks can be classified in two different 

types namely tree or looped. (GERG). A tree network is one where the pipes or 

mains are not looped and can be directly solved by using straightforward pressure 

drop calculations in each pipe segment. Meanwhile, a looped network is obviously a 

system and because of the looped nature, gas flow and direction cannot easily be 

calculated. The solution is only either by trial and error method or an iterative 

approach. Fundamental of equation for describing steady state gas flow is derived 

based on Bernoulli's equation, and the equations commonly used in practice. The 

loop and node models are formulated with the help of Kirchhoff's laws. In 

mathematical terms, the steady-state simulation problem of gas networks consists of 

solving a given system of non-linear algebraic equations. The Newton method is 

commonly used for this purpose. 

 

 

 

 

1.2 Problem Statement 

 

 

 Before applying the Newton Loop method in gas pipeline network, several 

factors need to be considered. The factors are first, flow equations for gas flowing in 

pipes, the flow equations for pipeline gas describe the relation among the gas flow 

rate, the pressures at the two pipe  ends, and related gas properties, pipe 

characteristics and operating conditions. Second is the pressure drop, pressure drop is 

a term used to describe the decrease in pressure from one point in a pipe or tube to 

another downstream. And the last one is numerical solution of linear algebraic 

equation. The commonly used numerical methods are Newton Gauss Elimination 

method and Newton Gauss Seidel method. In this study, it helps users to understand 

both numerical methods. 
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1.3 Objectives 

 

 

 The main objective of this study is to estimate the values of pressure and 

flowrate in gas pipeline by using Newton loop method. 

 In addition, the other objective of this study is to determine the accuracy and to 

compare the iteration number between Newton Gauss Elimination and Gauss – 

Seidel Method. 

 

 

 

 

1.4 Scope of Study 

 

 

 In this study, software for gas pipeline network system will be needed, that is 

FORTRAN. This software can be used to simulate the gas distribution network 

systems. 2, 3, 4 loop gas network system will be used to perform this simulation 

program.  

 Next, studies on numerical methods, lacey equation and Kirchhoff‟s Laws will 

be done due to the different numerical methods that will be implemented into the 

simulator software (FORTRAN). 

 Then, the final step is to study the way of performing the network analysis. In 

performing the network analysis, Newton Loop method in steady state condition, low 

pressure and several equations of flow will be used. Network is in a steady state 

when values of the quantities characterizing the flow of gases in the system are 

independent of time and the system is described by a set of nonlinear algebraic 

equations. (Osiadacz, 1987). In steady state analysis, the pressure of the nodes and 

the flow rate in the pipes must satisfy the flow equation and the value of load node 

and source node must fulfill the Kirchhoff‟s Laws. (Lewandowski, 1994).



 

 

 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

  Because of the large scale and the complexity of the network, the 

simulation of a natural gas pipeline network become complicated (Lewandowski). 

The gas pipeline network is described as a system of partial differential equation 

which must be solved sufficiently fast to make the solution applicable for real- time 

operation of the gas transmission system. Unfortunately, modeling of gas pipeline 

network consisting of many connected pipeline segment is more complicate. 

Therefore, to perform a Newton Loop method in gas pipeline network, studies on the 

concepts of gas network, Newton Loop method, numerical solution of linear 

algebraic equation and network analysis are needed. 

 

 

 

 

2.2 Gas Network 
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 Generally, the purpose to build the gas network system is for transferring 

natural gas in high capacity, which normal storage tanks cannot fulfill the capacity 

of the gas. 

 Gas distribution network can be classified in two different types that namely 

tree or loop (Steven et al., 1998). Kirchhoff was firstly proposed the concept of the 

tree and loop as mathematical entities in the connection with the definition of 

fundamental circuits used in the analysis of electric circuit. 

 A tree type network is much easier to calculate compare to loop type network. 

Because of the looped nature, gas flow and direction in each pipe cannot be easily 

calculated. A tree type network can be solved directly using straightforward pressure 

drop calculations for each pipe segment. Meanwhile, for the loop type network, the 

solution is only by the trial and error method with the help of some numerical 

solution of linear algebraic equation. 

 

 

 

 

2.3 Common Flow Equations 

 

 

 Common flow equation can be expressed in a general form (Osiadacz, 1987). 

For any pipe k, the pipe flow equation from node i to j can be expressed as 

∅ (𝑄𝑛)𝑘 =  𝐾𝑘  (𝑄𝑛
𝑚1)𝑘                                                                                             (1)          

 Where ∅ (𝑄𝑛)𝑘  = the flow function for pipe k 

              Kk = the pipe constant for pipe k  

          (Qn )k = the flow in pipe k 

             m1 = the flow exponent = 2 for low pressure networks 

= 1.848 for medium pressure networks 

= 1.854 for high pressure networks. 

  For the low pressure version of the flow equation, 

∅ (𝑄𝑛)𝑘 =  𝐾𝑘  (𝑄𝑛
2)𝑘 =  𝑝𝑖 −  𝑝𝑗  =  ∆𝑝𝑘                                                                (2) 

Where; 

∆𝑝𝑘= the pressure drop for pipe k, 
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𝑝𝑖    = the absolute pressure at node i, (i = the sending node of pipe k) 

𝑝𝑗    = the absolute pressure at node j. (j = the receiving node of pipe k) 

For the medium and high pressure version of the flow equation, 

 

∅ (𝑄𝑛)𝑘 =  𝐾𝑘  (𝑄𝑛
𝑚1)𝑘 =  𝑃𝑖 −  𝑃𝑗 =  ∆𝑃𝑘                                                              (3) 

Where 

 𝑃𝑖  = 𝑝𝑖
2 and 𝑃𝑗  = 𝑝𝑗

2 

 The equations for low pressure and for medium and high pressures can be 

rearranged: 

∅ ∆𝑝𝑘 =  (𝑄𝑛)𝑘 = (∆𝑝𝑘/𝐾𝑘)
1
2                                         (2.1) 

∅ ∆𝑃𝑘 =  (𝑄𝑛)𝑘 = (∆𝑃𝑘/𝐾𝑘)
1

𝑚 1                  (2.2) 

 

Equations (2.1) and (2.2) can be rearranged to the form as below after taking 

account of the fact that a change of the flow direction of the gas stream may take 

place in the network. 

(𝑄𝑛)𝑘 =  𝑆𝑖𝑗  
𝑆𝑖𝑗 (𝑝𝑖− 𝑝𝑗  

𝐾𝑘
 

1
2
                                                                                       (2.3) 

(𝑄𝑛)𝑘 =  𝑆𝑖𝑗  
𝑆𝑖𝑗 (𝑝𝑖− 𝑝𝑗  

𝐾𝑘
 

1
2
                                                                                       (2.4) 

 

Where 𝑆𝑖𝑗 = 1 𝑖𝑓 𝑃𝑖 > 𝑃𝑗  𝑝𝑖 > 𝑝𝑗  , 𝑆𝑖𝑗 =  −1 𝑖𝑓 𝑃𝑖 < 𝑃𝑗  𝑝𝑖 < 𝑝𝑗   

 

 

 

 

2.3.1 Selection of Flow Equations 

 

 

 To calculate the pressure drop in the gas network system, flow equations are 

required. Recently many gas flow equations have been developed and a number 

have been used by the gas industry. Majorities of them are based on the result of gas 

flow experiments. Thus, they are only capable to limited range of flow pipe surface 
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condition. Table 2.1 shows the guideline to the selection to selection of a gas flow 

equation for the distribution calculation system (Wilson, 1982). 

 

Table 2.1: Guidelines to Selection of a flow equation for Distribution System 

Calculation 

 

Type of 

piping 

Predominant 

Type 

Equation Used Range of Capacity 

High 

pressure 

utility supply 

mains 

Partially 

turbulent 

Panhandle A Relatively good, slightly 

optimistic approximation for 

Smooth pipe Flow Law at 

Reynolds number > 30000 

High 

pressure 

utility supply 

mains 

Fully 

turbulent 

Weymouth Good approximation to Fully 

Turbulent Flow Law for 

clears rough commercial pipe 

of 10 to 30 inch diameter 

Medium and 

high pressure 

distribution 

Partially 

turbulent 

Panhandle A Relatively good, slightly 

optimistic approximation for 

Smooth pipe Flow Law at 

Reynolds number > 30000 

Medium and 

high pressure 

distribution 

Partially 

turbulent 

Weymouth Very conservative for pipe of 

less than 20 inch diameter 

Medium and 

high pressure 

distribution 

Partially 

turbulent 

Cox‟s Pressure range > 5 psi, 

Velocity < 20 m/s in all pipes 

Low pressure 

distribution 

Partially 

turbulent 

Pole‟s Good approximation to 

Smooth pipe Flow Law for 

pipe of 4 inch diameter or 

smaller 

  

 There are six equations mainly used in gas distribution system (Piggott et al., 

2002). The equations are, Lacey‟s equation, Pole‟s equation, Cox‟s equation, Polyflo 
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equation, Panhandle „A‟ equation and Weymouth equation (Schroeder et al., 2001). 

 These questions are shown in the table 2.2. For the low pressure network, 

Lacey‟s and Pole‟s equations are used. Cox‟s and Polyflo equation are flow 

equations for medium pressure network. Panhandle „A‟ and Weymouth equation are 

flow equations for high pressure network. For Weymouth, length L and D is in 

meter (m) and pressure P is in Pascal (Pa). 

 

Table 2.2: Flow Equations 

 

Flow 

Equations 
Equation K value Calculation 

Lacey‟s/Pole‟

s 
𝑄 =  7.1 × 10−3 

(𝑝1 −  𝑝2)𝐷5

𝑆𝐿
 𝐾 =  11.7 × 103  

𝐿

𝐷5
 

Cox‟s 𝑄 =  1.69 × 10−3 
(𝑝1

2 −  𝑝2
2)𝐷5

𝑆𝐿
 

𝐾

=  206.2252 × 103  
𝐿

𝐷5
 

Polyflo 𝑄 =  7.57 × 10−4  
𝑇𝑛
𝑃𝑛

 
(𝑝1

2 −  𝑝2
2)𝐷5

𝑓𝑆𝐿𝑇
 𝐾 =  27.24

𝐿

𝐸2𝐷4.848
 

Panhandle 

„A‟ 
𝑄 =  7.57 × 10−4  

𝑇𝑛
𝑃𝑛

 
(𝑝1

2 −  𝑝2
2)𝐷5

𝑓𝑆𝐿𝑇𝑍
 𝐾 = 18.43 

𝐿

𝐸2𝐷4.854
 

Weymouth 

𝑄

= 11854124.6 
𝑇𝑛
𝑃𝑛

𝐷8/3 
(𝑝1

2 −  𝑝2
2)𝐷5

𝑆𝐿𝑇
 

𝐾 = 2590000 
𝐿

𝐷16/3
 

 

  Assumptions have been made for all of the six equations above. This is 

to avoid confusions of the users. Table 2.3 shows the limitations and assumptions 

made for all of the flow equations. 

 The fraction factor, f can be calculated using the equations given in the Table 

2.3. There is no fraction factor for Cox‟s and Weymouth, because the value is 

already inserted into the flow equations. In this research, the specific of gas is 

assumed to be 0.589 and the compressibility factor, Z is assumed 0.95. These two 

values are subjected to change, depend on the type of natural gas (natural gas 
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properties) and the type of pipe used. The temperature and pressure is assumed as 

standard temperature and standard pressure, normally used by international gas users 

in solving network analysis. The efficiency factor normally varies between 0.8 and 1 

for most gas pipes (Aylmer, 1980). The actual flow in a pipe will be 80% of the flow 

predicted (Osiadacz, 1987). So, the efficiency factor, E in this research is assumed to 

be 0.8. 

 

Table 2.3: Limitations and Assumptions Made for the Flow Equation 

 

Flow 

Equations 

Pressure Range (bar 

gauge) 

Assumption Made 

Fraction factor. F 

Specific gravity of gas, S 

Temperature, T and Normal 

Temperature, Tn 

Normal Pressure, Pn 

Compressibility factor, Z 

Efficiency factor, E 

Lacey‟s/Pole‟s 0 – 0.075 
𝑓 = 0.0044  1 +

12

0.276𝐷
  

𝑆 = 0.589 

Cox‟s 0.75-7  

𝑆 = 0.589 

 

Polyflo 0.75-7 

 
1

𝑓
= 11.98 × 𝐸  

𝑆𝑄

𝐷
 

0.076

 

𝑆 = 0.589 

𝑇 = 288𝐾 

Panhanle‟A‟ >7 

 
1

𝑓
= 14.94 × 𝐸  

𝑆𝑄

𝐷
 

0.073

 

𝑆 = 0.589 

𝑇𝑛 = 𝑇 = 288𝐾, 𝑃𝑛 = 1.01325 𝑏𝑎𝑟 
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Weymouth >7 𝑆 = 0.589 

𝑇𝑛 = 𝑇 = 288𝐾, 𝑃𝑛 = 1.01325 𝑘𝑃𝑎 

 

 

 

 

2.3.2 Kirchhoff’s First Law 

 

 

 Kirchhoff‟s first law states that the algebraic sum of the flows at any node is 

zero (Osiadacz, 1987). This means that the load at any node is equal to the sum of 

brunch flows into and out of the node. 

𝑄1 + 𝑄2 + 𝑄3 … + 𝑄𝑛 = 𝐿𝑜𝑎𝑑 

𝐿𝑜𝑎𝑑 − 𝑄 = 0 

𝐿𝑜𝑎𝑑 = 𝑄             

(2.5) 

Where, Q1 + Q2 + Q3 … + Qn = Q 

 Q        = total flow in the branches, depend on the flow direction 

Load = demand in the load nodes, 

The nodal equation, equation (2.5) can be expressed in matrix form: 

L = A1Q             

(2.6) 

Where:  L = vector of loads at the nodes, 

Q = vector of flows in the branches, 

A1 = reduced branch-nodal incidence matrix. 

The pressure drop in the branches can be related to the nodal pressures. The nodal 

pressure drop equation can be expressed in matrix form: 

∆𝑃 = - A
T
P                        

(2.7) 

Where:  ∆𝑃 = vector of pressure drops in the branch, 

P = vector of nodal pressures, 

                A
T
= transpose of branch-nodal incidence matrix. 

From equation (2.2), 
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𝑄 = ∅′ ∆𝑃                    (2.8) 

Where ∅′ ∆𝑃  = vector of pressure drop functions. 

Substituting for ∆𝑃 from equation (2.7), equation (2.8) becomes 

𝑄 = ∅′ −𝐴𝑇𝑃                   (2.9) 

Substituting for Q from equation (2.9), equation (2.6) becomes 

𝐿 = 𝐴1 ∅
′ −𝐴𝑇𝑃                             (2.10) 

 

 

 

 

2.3.3 Kirchoff’s Second Law 

 

 

 Kirchhoff‟s second law states that the pressure drop around any closed loop is 

zero (Osiadacz, 1987). This means that there is no pressure drop around the loop 

since the closed loop starts and finishes at the same node. 

∆𝑃1 + ∆𝑃2 + ∆𝑃3 + ⋯ + ∆𝑃𝑛 = 0  

∆𝑃𝑇 = 0                 (2.11) 

Where, ∆𝑃1 + ∆𝑃2 + ∆𝑃3 + ⋯ + ∆𝑃𝑛 = ∆𝑃𝑇 

∆𝑃𝑇= pressure drop in the branches, depend on the loop direction 

The loop equation, equation (2.11) can be expressed in matrix form:  

𝐵∆𝑃 = 0                 (2.12) 

Where: ∆𝑃 = vector of pressure drops in the branches, 

 B = branch loop incidence matrix 

Rearrange equation (2.8), give 

∆𝑃 = ∅′ 𝑄                             (2.13) 

Where, ∅′ 𝑄  = vector of flow functions. 

Substituting for ∆𝑃 from equation (2.13), equation (2.12) become 

𝐵 ∅ 𝑄  = 0                            (2.14) 
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2.3.4 Newton Loop Method 

 

 

 The set of loop equations that describes a gas network is shown as below 

(Hoeven, 1992). 

𝐵 ∅′ 𝑄  = 0                (2.15) 

Where: B = branch loop incidence matrix, 

0= zero vector, of dimension k, 

∆𝑃 = vector of pressure drop in the branches, of dimension m,  

∅′ 𝑄  = vector of flow functions, of dimension m. 

 

 Equation (2.15) is a mathematical representation of Kirchhoff‟s second Law 

which states that the sum of the pressure drops around any loop is zero. The loop 

method requires that a set of loops in the network be defined. An initial 

approximation is made to the branch flows ensuring that a flow balance exists at 

each node. Since the branch flows are approximations to their true values, a loop 

flow is introduced. This loop flow is the flow correction to be added to the branch 

flow approximations to yield the true values. In general, the branch flows are a 

function of the initial approximations and of all the loops flows, given like equation 

below. 

Q = Q
0
 + B

T
 q                (2.16) 

Where q = vector of loop flows of dimension k, (k is the number of loops) 

Q = the branch flows,  

Q
0
 = initial branch flow approximations. 

In the loop method, the iteration the left hand side of equation (2.14) will not be 

zero. The branch flows are only approximations of their true values and the pressure 

drops calculated from these flows will not summate to zero around each loop. This 

introduces a loop error into each loop which is a function of all loop flows and is 

denoted as f (q). There is a loop error for each loop and this set of errors is 

represented by: 
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𝐹 𝑞 =  

𝑓1 𝑞1,𝑞2, …𝑞𝑘 

𝑓2 𝑞1,𝑞2, …𝑞𝑘 
… . …………… . .
𝑓𝑘 𝑞1,𝑞2, …𝑞𝑘 

  

Where F denotes as a vector of functions. 

 

 

 

 

2.4 Numerical Solution of Linear Algebraic Equation 

 

 

 Numerical methods for solving systems of linear equations fall into two 

general classes; they are the direct methods and the iterative methods. Direct 

methods lead to an exact solution in a finite number of steps if a round of error is not 

involved. Iterative method leads to an approximation that is acceptably close to the 

exact solution by performing an infinite number of arithmetic operations.  

 

 

 

 

2.4.1 Gauss Elimination Method 

 

 

 This method is one of the earliest methods for solving simultaneous equations 

and it remains among the most important algorithms in use today. It is the basic for 

linear equation solving a many popular software packages. Its advantage is having a 

higher precision but the disadvantage is possible division by zero. The Gaussian 

elimination procedure is as follow. Assume a linear system of 3x3 equations as 

shown as the matrix form below. 

 

 

𝑎11 𝑎12 𝑎13

𝑏21 𝑏22 𝑏23

𝑐31 𝑐32 𝑐33

  
𝑋1

𝑋2

𝑋3

 =  
𝐶1

𝐶2

𝐶3

                                                                                 (2.17) 
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The first step is to eliminate one of the unknowns from the equations. This step is 

called Forward elimination. The result of this elimination step is the forming of one 

equation with one unknown. While the second step is solving the equation directly 

and the result back substituted into one of the original equations to solve the 

remaining unknown. The advantage of this method is it having a higher precision 

and disadvantage is possible division by zero (Ferziger, 1981). Assuming equations 

(2. 17) has initial values as below. 

 

   
3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10

  
𝑋1

𝑋2

𝑋3

  =  
7.85
−19.3
71.4

  

 

Separate the above equations into three equations. 

 

3X1 – 0.1X2 – 0.2X3 = 7.85               (2.18) 

0.1 X1 + 7 X2 – 0.3 X3 = -19.3              (2.19) 

0.3 X1 – 0.2 X2 +10 X3 = 71.4                (2.20)

  

Use the Gauss elimination method to solve the equations (2.18) to (2.20). 

1) Forward elimination 

 

 The procedure is multiply equation (2. 32) by 0.1/3 and subtracts the result 

from equation (2.19) to get 

7.00333 X2 - 0.293333 X3 = 19.5617  

 

 Then multiply equation (2.32) by 0.3/3 and subtracts the result form equation 

(2. 20) to eliminate X1. After these operations, the set of equations is 

 

3X1 –0.1X2-0.2X3 = 7.85               (2.21) 

7.00333 X2 - 0.293333 X3 = -19.5617              (2.22) 

-0.190000X2 + 10.0200X3 = 70.6150             (2.23) 
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 Remove X2 from equation (2.23). To accomplish this, multiply equation (2. 

22) by -0.190000/7.0033 and subtract the result from equation (2. 23). An upper 

triangular is formed after X2 from the equation (2.23). 

 

3 X1- 0.1 X2 - 0.2 X3 = 7.85                (2.24) 

7.00333 X2 - 0.293333 X3 = -19.5617              (2.25) 

10.0200 X3 = 70.0843                (2.26) 

 

2) Back substitution 

 

Equation (2. 26) can be solved by solving the X3. 

 

X3 = 
70.0843

10.0200
 = 7.00003               (2.27) 

 

Use equation 2.27 to solve equation 2.25  

 

X2 = 
−19.5617 + 0.293333 (7.00003 )

7.00333
 = -2.500                       (2.28) 

 

Finally, solve X1 by subtract equation (2. 27) and equation (2. 28) into equation 

(2.24). 

 

X1 = 
7.85+ 0.1 −2.500 +0.2(7.00003 )

3
 = 3.00 

 

 

 

 

2.4.2 Gauss Seidel Method 

 

 

 This method is the most generally used iterative methods. Assume the 

equation (2.17) is given. If the diagonal elements are all nonzero, the first equation 

can be solved for X1, the second for X2 and the third for X3 to yield 


