Dorsal hand vein image enhancement using fusion of clahe and fuzzy adaptive gamma

Marlina, Yakno and Junita, Mohamad-Saleh and M. Z., Ibrahim (2021) Dorsal hand vein image enhancement using fusion of clahe and fuzzy adaptive gamma. Sensors, 21 (19). pp. 1-18. ISSN 1424-8220. (Published)

Dorsal hand vein image enhancement using fusion of CLAHE.pdf

Download (6MB) | Preview


Enhancement of captured hand vein images is essential for a number of purposes, such as accurate biometric identification and ease of medical intravenous access. This paper presents an improved hand vein image enhancement technique based on weighted average fusion of contrast limited adaptive histogram equalization (CLAHE) and fuzzy adaptive gamma (FAG). The proposed technique is applied using three stages. Firstly, grey level intensities with CLAHE are locally applied to image pixels for contrast enhancement. Secondly, the grey level intensities are then globally transformed into membership planes and modified with FAG operator for the same purposes. Finally, the resultant images from CLAHE and FAG are fused using improved weighted averaging methods for clearer vein patterns. Then, matched filter with first-order derivative Gaussian (MF-FODG) is employed to segment vein patterns. The proposed technique was tested on self-acquired dorsal hand vein images as well as images from the SUAS databases. The performance of the proposed technique is compared with various other image enhancement techniques based on mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measurement (SSIM). The proposed enhancement technique’s impact on the segmentation process has also been evaluated using sensitivity, accuracy, and dice coefficient. The experimental results show that the proposed enhancement technique can significantly enhance the hand vein patterns and improve the detection of dorsal hand veins.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Image enhancement; Image fusion; Near-infrared image; Vein detection
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Faculty/Division: Faculty of Electrical and Electronic Engineering Technology
Depositing User: Mrs Norsaini Abdul Samat
Date Deposited: 08 Nov 2021 08:38
Last Modified: 08 Nov 2021 08:38
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item