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1.Introduction 
The development of a country depends strongly on 

the efficiency of its power system. Enhancement of 

power system stability is very important in 

maintaining the efficiency of the power system and 

economy of the country. Angle stability improvement 

is an important key to consider in maintaining the 

efficiency of power system as reported in [1−3].  

 

Power systems require very precise control and high 

flexibility to ensure good system performance. This 

issue can be realized with the use of Flexible 

Alternate Current Transmission Systems (FACTS) 

components. Through shunt and network 

compensation, FACTS components are able to 

increase the power network capabilities in terms of 

controllability and stability.  
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Among the commonly used FACTS components are 

static synchronous series compensator (SSSC) [4], 

thyristor-controlled series capacitor (TCSC) [5], 

static synchronous compensator (STATCOM) [6] and 

static VAR compensator (SVC) [7−9]. 

 

In one hand, STATCOM and SVC are FACTS 

devices that provide shunt compensation to 

transmission lines. On the other hand, SSSC and 

TCSC provide series compensation to the reactance 

of the lines that the FACTS components are 

connected. Among FACTS components, SVC is 

often the top choice because it provides high 

accuracy and fast response. This gives SVC the 

ability to better control the steady state and transient 

voltage compared to classic shunt compensation. 

Facts components are also often paired with various 

controllers to facilitate the system stabilization. 

Among them are lead-and-lag (LL) [10−12], 

proportional-and-integral (PI) [13−15] and 
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proportional-and-integral-and-derivative (PID) 

[16−18].  

 

The variables found on the FACTS component and 

controller need to be tuned to produce the best 

stability controls. It is very difficult to find the 

appropriate value if there is more than one variable 

on one FACTS-and-controller unit. Here, 

optimization techniques are introduced to find the 

best tuning for the selected variables. Optimization 

techniques have become increasingly important and 

popular in different engineering applications. Some 

algorithms, such as Gravitational Search Algorithm 

[19], Firefly [20], Whale Optimization Algorithm 

[21, 22], Ant Colony Optimization [23], Flower 

Pollination Algorithm [24, 25], Moth Flame 

Optimization [26, 27], Bat Algorithm [28, 29], 

evolutionary programming [30, 31] and Artificial 

Immune System [32] have gained attention because 

of their efficiency. These algorithms are inspired 

from nature with the characteristic of the investigated 

biological system. These methods are swarm-

intelligence based, making them easier to implement 

and obtain better outcomes. In this paper, swarm-

based optimization technique called Particle Swarm 

Optimization technique [33−35] is chosen. 

 

The objective of this study is to propose a multi-

objective-based swarm intelligence method to 

improve angle stability. During the optimal tuning 

search process using optimization technique, an 

appropriate objective function is selected as standard. 

In this study, the increase in the value of the objective 

function is in line with the increase in tuning towards 

the optimal value and this will result in a more stable 

system. However, the use of one objective function 

only improves performance in one perspective and 

weakens performance in the other. To ensure an 

improvement in more than one performance, multi 

objective functions are introduced.  In this study, two 

objective functions are combined to produce a multi 

objective function (MO).   

 

The remainder of this paper is divided into five 

sections. Section 2 presents the basic calculation of 

single-machine-infinite-bus (SMIB) system. Section 

3 explain the formulation for multi objective 

functions. Section 4 provides the explanation of PSO, 

EP and AIS optimization methods. The results and 

discussions were explained in Section 5. The 

conclusions were presented in Section 6. 

 

2.Single-machine-infinite-bus system 
In this study, SVC was connected with PID controller 

(SVC-PID) to improve stability for single-machine-

infinite-bus (SMIB) system. The for the SMIB-SVC-

PID system is shown in Figure 1 based on Phillips-

Heffron block diagram model.  

 

Inside the SVC-PID block, there are SVC and PID 

elements. Circuit constant, KV and time constant, TV 

are constants that found inside SVC element. 

Meanwhile, there are three PID element involved: 

proportional gain, KP, integral gain, KI and derivative 

gain, KD. 

 

 
Figure 1 The single-machine-infinite-bus system (Phillips-Heffron perspective) 
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From Figure 1, the following equations can be 

derived: 
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3.Multi-objective functions 
The concept of multiple objective functions has been 

introduced in finding the optimal value of a 

parameter in a system using optimization techniques. 

Typically, only a single objective function is used at 

a time. However, this method only focuses on 

improving performance capabilities based on only 

one objective. By using more than one objective 

function, performance improvement will be seen in 

more than one perspective, and this is seen as a more 

comprehensive approach. 

 

In the field of power system stability, performance is 

often measured based on damping ratio and damping 

factor. Both of these indicators have a separate 

impact on the eigenvalue value of a system. In the 

damping ratio approach, the minimum value of all 

damping ratio, called the minimum damping ratio ξmin 

is used as an indicator. This value is obtained based 

on the actual and imaginary parts of each eigenvalue. 

ξmin can be calculated using the following equation: 

 

        (   √  
    

 ⁄ )  (7) 

 

Here, ωi and σi are the imaginary and real part of the 

i
th

 eigenvalue, respectively. The correlation of the 

eigenvalue sectors, pre-optimized and post-optimized 

ξmin, on the real-imaginary plane are shown in figure 

below. As for damping factor, the maximum value of 

damping factor, or maximum damping factor σmax is 

used. σmax can be calculated as following: 

 

        (  )     (8) 

 

Figure 3 shows the correlation of the eigenvalue 

sectors, pre-optimized and post-optimized σmax on the 

real-imaginary plane. 

 

Re (σ )

Im (jω )

Pre-optimized Post-optimized
 

Figure 2 Correlation of eigenvalue sectors (pre-

optimized and post-optimized ξmin) 

 

Pre-optimized Post-optimized

Im (jω )

Re (σ )

 
Figure 3 Correlation of eigenvalue sectors (pre-

optimized and post-optimized σmax) 

 
If we compare the position of the eigenvalue before 

and after the implementation of the ξmin in Figure 2, 

the eigenvalue sectors will be found to change place, 

which approaching the real-axis of the real-imaginary 

plane. Meanwhile, in Figure 3, if the eigenvalue 

position is compared before and after σmax 

implementation, the eigenvalue area will be found 
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moving away from the imaginary-axis of the real-

imaginary plane. 

 

With the implementation of multi objective functions 

(MO) based on both ξmin and σmax, eigenvalue sectors 

will approach and move away respectively, from the 

real-axis and the imaginary-axis of the real-imaginary 

plane at the same time. The correlation of the 

eigenvalue sectors, pre-optimized and post-optimized 

MO on the real-imaginary plane is shown in Figure 

4. This eigenvalue scattering pattern for post-

implementation of MO is almost like a wedge-

shaped, tapering from left to right of the complex s-

plane.  

 

Pre-optimized Post-optimized

Re (σ )

Im (jω )

 
Figure 4 Correlation of eigenvalue sectors (pre-

optimized and post-optimized MO) 

 

Jmo (which is referring to MO) is designated as 

follows: 

                      (         )      
     (9) 

K1 and K2 are constants that respectively linked to 

ξmin and σmax. These constants are applied to tune the 

combination of both ξmin and σmax in certain ratio. Jmo 

can be formulated as: 

 

Maximize (Jmo) 

 

Following limitations have to be followed for SMIB 

system attached with SVC-PID: 

KP
max

 ≤ KP ≤ KP
min 

 

KI
max

 ≤ KI ≤ KI
min 

 

KD
max

 ≤ KD ≤ KD
min

 

4.The optimization techniques 
The field of optimization is closely related to science 

and engineering. Optimization of a design is about 

minimizing production costs or maximizing 

production performance. In power systems, the 

optimal evaluation of parameters for FACTS 

components is critical to improving system stability. 

Among the commonly used optimization techniques, 

there are algorithms inspired by animal herds such as 

Moth Flame Optimization, Whale Optimization 

Algorithm and Ant Colony Optimization. This 

concept is characterized by the ability of these 

animals foraging in groups. Meanwhile, Genetic 

Algorithm, Artificial Immune System and 

Evolutionary Programming are among the 

optimization approaches inspired by organic systems. 

The concept adopted by this method is evolution in 

the face of extinction or when fighting disease. In this 

study, Particle Swarm Optimization was selected to 

optimize parameter values on SMIB-SVC-PID. 

 

4.1Particle swarm optimization (PSO)  

R. Eberhart and J. Kennedy were pioneers of PSO 

technique in 1995. Inspired by the concept of 

flocking of birds and herding of fish when looking 

for food, the advantage of PSO is that it has two 

search features: local and global. With the right 

balance of these two features has made the PSO 

successfully find the optimal value at a fast rate. In 

PSO, the velocity vk and position pk for k
th

 particle at 

m
th

 iteration is updated according to the following 

equations: 

                  (
       
       

)     

(
     
       

)            (10) 

 

                   (11) 

 

Here, ω is the inertia weight. d1 and d2 are the 

acceleration coefficients. pbk,m  is the personal best 

position for the k
th

 particle at m
th

 iteration. pgm is the 

global best position at m
th

 iteration. The value of d1 

and d2 are adjusted manually to achieve better 

convergence. In this paper, the value of both d1 and 

d2 are random number between (0,1). The flow chart 

for PSO is illustrated in Figure 5. A complete 

explanation of PSO can be found at [35]. 
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Figure 5 Flowchart for PSO 

 

4.2Evolutionary programming (EP)  

EP was developed by Lawrence J. Fogel in 1960. 

With the concept of the life evolution, every 

offspring in the EP will go through mutations and 

selections to find the best offspring among them. The 

process of mutation of parents to produce offspring is 

according to the following equation: 

 

              (
      

  
)  (

      
   

       
   ) (12) 

 

Here, qk,m and Jk,m are the k
th
 offspring and the k

th
 

objective function at m
th

 iteration, respectively. q
max

 

and q
min

 are the maximum and minimum value of 

offspring, respectively. J
m
 is the latest maximum 

value of J. γ which is the search factor, which are 

random number (0,1). The flow chart for EP is 

illustrated in Figure 6. Details of EP are described in 

[31]. 
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Figure 6 Flowchart for EP 
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4.3Artificial immune system (AIS) 

The AIS algorithm is based on the concept of the 

human immune system. The characteristics of AIS 

are almost similar to EP, but there is one difference: 

cloning. The mutation process in AIS is similar to EP 

and also uses equation (12). The flow chart for AIS is 

illustrated in Figure 7. A complete explanation of 

AIS can be found at [32]. 

 

 

Initialization

Fitness Calculation

START

Mutation

Combination & Selection

Converge?
N

Y

Cloning

END
 

Figure 7 Flowchart for AIS 

 

5.Results and discussion 
This section presents the results and discussions of 

the multi-objective approach for oscillation stability 

enhancement in SMIB system using various 

optimization techniques. Three series of cases using 

MO, ξmin and σmax approaches to SMIB system are 

simulated. All cases were conducted with SVC-PID 

controller (SMIB-SVC-PID) in MATLAB 

environment. In this paper, there are seven system 

conditions were compared as follows: 

(a)System tuned with MO PSO (PSO-MO)  

(b)System tuned by MO EP (EP-MO) 

(c)System tuned by EP with ξmin (EP-Zt) 

(d)System tuned by EP with σmax (EP-Sg) 

(e)System tuned with MO AIS (AIS-MO) 

(f)System tuned by AIS with ξmin (AIS-Zt) 

(g)System tuned by AIS with σmax (AIS-Sg).  

 

Three cases (Cases A, B and C) with different 

loading conditions are simulated as tabulated in Table 

1. All parameter values for SMIB-SVC-PID can be 

found in [12]. 

 

Figures 8 (a), 8 (b) and 8 (c) show the speed 

response, angle-speed plane and the eigenvalues 

sectors for Case A, respectively. For speed deviation 

response, PSO-MO shows the smoothest response 

and smallest swing compared to other conditions. 

The system was damped within 2.5 seconds after the 

simulation is started. EP-MO is at the second place 

was followed by EP-Zt, EP-Sg and all three series of 

AIS system. AIS-Sg is at the last position which 

shows the biggest oscillation of all seven techniques. 

Except PSO-MO, other techniques take damping time 

longer than 3 seconds. From this result, for the same 

optimization technique, the result of the system using 

MO as objective function is capable to improve better 

damping capability compared to system with ξmin and 

σmax.  

 

From the result of the phase plane as shown in Figure 

8 (b), all approaches give almost the same number of 

cycles, in the range of 5-6 cycles. Among them, PSO-

MO produces phase plan with half the size of other 

cycle sizes. This result obviously shows that the 

suggested approach is the best technique to tackle the 

damping problem compared to the other seven 

methods.  
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Table 1 Active & reactive power (Case A, B & C) 

Case A B C 

Active power (p.u.) 0.5 0.8 -0.15 

Reactive power (p.u.) -0.35 0.2 0.25 

 

 
(a)Speed response 

 
(b)Angle-speed plane 
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(c)Eigenvalues 

Figure 8 Speed response, angle-speed plane and eigenvalue sectors for Case A 

 

Figure 8 (c) shows the eigenvalues sectors for Case 

A. Overall, all approaches are succeeded to shift the 

eigenvalue location to the left side of phase plan, 

signs that all systems are in stable condition. Here, 

PSO-MO manages to allocate most of the eigenvalue 

location far to the left side compared to the other six 

techniques. Except for PSO-MO, the other five 

techniques mapped one of their eigenvalues at the 

nearest location to the origin. The coordinates, which 

are almost at the same location between -0.5595 to -

0.4748 on real axis, are considered as less stable 

condition, compared to PSO-MO which at -1.2164 on 

real axis. The result of PSO-MO also shows that the 

eigenvalues sector is shifted to the nearest location 

towards the real-axis of the real-imaginary plane. 

Meanwhile, several eigenvalues of all the three AIS 

systems are located at the most far position from the 

real axis, justify that these three techniques are the 

worst among the rest. As a result, PSO-MO is 

verified as the best solution for SMIB system 

stability enhancement. 

 

Table 2 tabulates the PID parameters for SMIB-SVC-

PID which tuned by all seven conditions for Case A.  

 

The speed response, angle-speed plane and the 

eigenvalues sectors for Case B are shown in Figure 9 

(a), 9 (b) and 9 (c), respectively. The PSO-MO 

system shows the best performance in terms of give 

the fastest damping and the smallest swing among 

seven conditions. EP-MO and AIS-MO are at the 

second and the third place, respectively. In this case, 

EP-Sg system shows the worst performance as the 

speed deviation is not damped completely even the 

simulation time exceeds 3 seconds. 

 

 

Table 2 Comparison of PSO, EP & AIS (Case A) 

Type 
SVC-PID Parameters 

KP KI KD 

PSO-MO 0.9091 -0.0091 0.2859 

EP-MO 0.7312 0.0092 0.2911 

EP-Zt 0.6312 0.0292 0.2875 

EP-Sg 0.6010 0.0170 0.3112 

AIS-MO 0.6524 0.0119 0.2934 

AIS-Zt 0.5524 0.0190 0.2928 

AIS-Sg 0.5043 0.0028 0.2931 
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(a) Speed response 

 
(b) Angle-speed plane 
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(c) Eigenvalues 

Figure 9 Speed response, angle-speed plane and eigenvalue sectors for Case B 

 

For the phase plane response for Case B as shown in 

Figure 9 (b), PSO-MO, EP-MO and AIS-MO system 

stopped oscillate in just 2 cycles, with PSO-MO gives 

the smallest circle size compared to other approach. 

In other hand, both EP-Sg and AIS-Sg system 

oscillate over more than 5 cycles.  

 

Figure 9 (c) shows the eigenvalues sectors for Case 

B. From the result, the eigenvalues location of the 

proposed system is located at the most far to the left-

hand side, and at the nearest positions towards the 

real axis of the plane. It follows by EP-MO and AIS-

MO for second and third best eigenvalue region. 

Compared to other systems, the eigenvalue location 

of EP-Sg and AIS-Sg are scattered at the nearest 

position from the imaginary-axis of the plane. This 

indicates that all three MO based approaches are 

more capable in improving the stability condition of 

SMIB system compared to ξmin and σmax based 

systems. Table 3 tabulates the PID parameters that 

optimized by all seven systems for Case B. 

 

The results of Case C are shown in Figure 10. In 

Case C, almost similar results to Case A and Case B 

are received. All three cases approve that all three 

MO based systems outperformed ξmin and σmax system 

in terms improving the stability of SMIB system with 

the smallest oscillation and the fastest damping. 

Among MO based approaches, PSO-MO shows the 

most prominent results compared to EP-MO and 

AIS-MO.  

 

Table 4 tabulates the value of optimized PID 

parameters for SVC-PID by all seven systems for 

Case C. 

 

 

Table 3 Comparison of PSO, EP & AIS (Case B) 

Type 
SVC-PID Parameters 

KP KI KD 

PSO-MO 0.7450 -0.1091 0.2350 

EP-MO 0.6154 -0.0829 0.2564 

EP-Zt 0.5312 -0.0692 0.2911 

EP-Sg 0.4910 -0.0421 0.2931 

AIS-MO 0.5946 -0.0752 0.2759 

AIS-Zt 0.5429 -0.0589 0.2934 

AIS-Sg 0.5533 -0.0511 0.3010 
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(a)Speed response 

 
(b)Angle-speed plane 
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(c)Eigenvalues 

Figure 10 Speed response, angle-speed plane and eigenvalue sectors for Case C 

 

Table 4 Comparison of PSO, EP & AIS (Case C) 

Type 
SVC-PID Parameters 

KP KI KD 

PSO-MO 0.7946 -0.0875 0.3759 

EP-MO 0.8062 -0.1388 0.1986 

EP-Zt 0.6053 -0.1006 0.1999 

EP-Sg 0.8143 -0.0915 0.2109 

AIS-MO 0.4489 -0.1325 0.1906 

AIS-Zt 0.5524 -0.0588 0.2913 

AIS-Sg 0.5643 -0.0439 0.3123 

 

6.Conclusion and future work 
This study proposes a multi-objective (MO) based 

swarm intelligence technique to improve angle 

stability. This multi-objective function is able to 

provide better performance beyond the optimization 

capabilities of one objective function. The weakness 

of single indicator (either ξmin or σmax) as objective 

function compared to MO is proved in all three cases 

tested in MATLAB. Also form the cases simulated, 

PSO-MO technique is more prominent in searching 

the preferable PID parameters compared to EP and 

AIS method that use either MO or ξmin or σmax 

approach. For future studies, this proposed technique 

can be introduced to multi-machine systems to 

determine the impact on the stability of the power 

system. 
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