# MICROCONTROLLER BASED SMPS PROTECTION

### KHAIRI BIN KHALIB

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Hons.) (Power System)

Faculty of Electrical & Electronics Engineering Universiti Malaysia Pahang (UMP)

NOVEMBER, 2008

"All the trademark and copyrights use herein are property of their respective owner. References of information from other sources are quoted accordingly; otherwise the information presented in this report is solely work of the author."

Signature : \_\_\_\_\_

Author

: KHAIRI BIN KHALIB

Date

: <u>17 NOVEMBER 2008</u>

To my beloved mother and father, And my friend, "I hereby acknowledge that the scope and quality of this thesis is qualified for the award of the Bachelor Degree of Electrical Engineering (Power Systems)"

| Signature | :                              |
|-----------|--------------------------------|
| Name      | : <u>EN. RAMDAN BIN RAZALI</u> |
| Date      | : <u>17 NOVEMBER 2008</u>      |

## ACKNOWLEDGMENT

Firstly, thank to god through all His Almighty kindness and loveliness for letting me to finish my final year project. Secondly, I wish to hand a million thanks to this final year project supervisor Mr. Ramdan Bin Razali for his encouragement guidance and consistent more support in finishing this project. I am also very thankful to my academic advisor Mr. Ahmad Johari Bin Mohamad, Mr. Mohammad Fadhil Bin Abas and all lectures in UMP for guidance and motivation.

Here, I also to thanks UMP associates that contribute in my project progress either directly or indirectly. Not to forget the kindness of laboratory person in charge, Mr. Latip Bin Hj. Idris and Mr. Mohd Salmizan Bin Mohd Zain because help me to get all component I need for the project.

My fellow colleagues should also be recognized for their continuous support at any occasions. My great thanks to my family especially my beloved father and mother that very concern about my project. Not to forget the kindness friends continues support me during finishing the project. For all of that, I am very thankful to the cooperation and contribution from anyone that has driven me to accomplish of this project. To wrap all this in one, thanks you for everything. May Allah bless you all.

# ABSTRACT

This project have 3 main objectives to achieve, first the project should be able to protect DC load equipment from over voltage from their maximum voltage value or lower voltage from their minimum value. Second it should be able to protect DC load equipment from over current form their maximum current value or lower current from their minimum value. Third the voltage and current protection value are free to set by user. Simple methodology for this project is when the protection circuit detects any high or low voltage and current from power supply output that supplied to the load, it will stop the Pulse-width modulation (PWM) signal output. Sensing circuit will detect any voltage and current alteration output from power supply. Using the PIC microcontroller (PIC 18F4550), it will control the PWM signal output. The PWM output signal can be use for the power supply also will stop. Controlling the PWM signal stops, the operation for the power supply also will stop. Controlling the PWM signal will ensure that we can control the power supply whether want to turn it on or off.

# ABSTRAK

Projek ini mempunyai 3 objektif utama yang perlu dicapai iaitu, pertama projek ni seharusnya dapat berupaya melindungi beban kelengkapan litar terus daripada voltan lebih atau kurang daripada julat voltan yang sesuai. Kedua litar ini berupaya untuk melindungi kelengkapan daripada arus lebih atau kurang daripada julat arus yang sesuai dan ketiga nilai voltan dan arus perlindungan adalah bebas untuk dipiih oleh pengguna. Kaedah mudah untuk projek ini ialah apabila litar pelindung mengesan voltan tinggi atau rendah dan arus tinggi atau rendah daripada pengeluaran bekalan kuasa, ia akan memberhentikan pengeluaran modulasi nadi lebar (PWM). Litar pengesan voltan dan arus akan mengesan sebarang perubahan voltan dan arus keluaran daripada bekalan kuasa. Menggunakan mikropengawal (PIC 18F4550), ia akan menguasai PWM yang berupaya untuk digunakan sebagai litar pensuisan bekalan kuasa. Jika pengeluaran isyarat PWM diberhentikan maka operasi untuk bekalan kuasa juga akan berhenti. Mengawal isyarat PWM akan memastikan bahawa kita boleh mengawal bekalan kuasa jika hendak menjalankan ataupun memberhentikan operasinya.

# **TABLE OF CONTENTS**

#### CHAPTER

TITLE

# PAGE

| TITLE PAGE            | i    |
|-----------------------|------|
| DECLARATION           | ii   |
| DEDICATION            | iii  |
| ACKNOWLEDMENT         | iv   |
| ABSTRACT              | V    |
| ABSTRAK               | vi   |
| TABLE ON CONTENTS     | vii  |
| LIST OF TABLE         | X    |
| LIST OF FIGURE        | xi   |
| LIST OF SYMBOLS       | xiii |
| LIST OF ABBREVIATIONS | xiv  |
| LIST OF APPENDICES    | XV   |

# 1 INTRODUCTION

| 1.1 | Introduction         | 1 |
|-----|----------------------|---|
| 1.2 | Objective Of Project | 2 |
| 1.3 | Scope Of Project     | 3 |
| 1.4 | Summary of Project   | 3 |

### 2 THEORY AND LITERATUE REVIEW

| 2.1 | Introduction            | 5 |
|-----|-------------------------|---|
|     | 2.1.1 Fuse (electrical) | 6 |

|     | 2.1.2 Circuit breaker                | 7  |
|-----|--------------------------------------|----|
|     | 2.1.3 Overvoltage Protection IC      | 8  |
| 2.2 | Switched-mode power supply (SMPS)    | 9  |
|     | 2.2.1 SMPS and Linear Power Supply   | 10 |
|     | comparison                           |    |
|     | 2.2.2 Power Supply Control           | 12 |
| 2.3 | Operational Amplifier (Op-Amp)       | 13 |
| 2.4 | Microcontroller                      | 14 |
|     | 2.4.1 PIC 18F4550                    | 16 |
| 2.5 | 16 x 2 Characters LCD                | 18 |
| 2.6 | Passive current to voltage converter | 19 |

# 3 METHODOLOGY

| 3.1 | Introdu | iction                            | 21 |
|-----|---------|-----------------------------------|----|
| 3.2 | Hardw   | are implementation                | 22 |
|     | 3.2.1   | Voltage Sensing                   | 23 |
|     | 3.2.2   | Current Sensing                   | 25 |
|     | 3.2.3   | Voltage Amplifier                 | 25 |
|     | 3.2.4   | Dual polarity power supply        | 27 |
|     | 3.2.5   | 5V power supply                   | 28 |
|     | 3.2.6   | 12V power supply                  | 28 |
|     | 3.2.7   | Protection circuit                | 29 |
|     | 3.2.8   | PIC 18F4550 Microcontroller       | 30 |
|     |         | 3.2.8.1 ADC in PIC 18F4550        | 32 |
|     | 3.2.9   | 16 x 2 Character LCD              | 33 |
|     | 3.2.10  | 7-Segment configuration           | 34 |
|     | 3.2.11  | LED indicator                     | 35 |
|     | 3.2.12  | Buzzer                            | 36 |
| 3.3 | Softwa  | re implementation                 | 37 |
|     | 3.3.1   | Program flow chat                 | 38 |
|     | 3.3.2   | Explanation on Main Program       | 39 |
|     | 3.3.3   | Analog-to-digital converter (ADC) | 41 |

# 4 **RESULT AND ANALYSIS**

| 4.1 | Introduction                | 44 |
|-----|-----------------------------|----|
| 4.2 | Voltage and current sensing |    |
| 4.3 | PWM output                  | 46 |
| 4.4 | Overall result              | 47 |
|     | 4.4.1 LCD display           | 48 |
|     | 4.4.2 LED                   | 48 |
|     | 4.4.3 7-Segment display     | 49 |

# 5 CONCLUSION AND RECOMMENDATION

| 5.1 | Conclusion                    | 50 |
|-----|-------------------------------|----|
| 5.2 | Problems                      | 51 |
| 5.3 | Recommendation                | 52 |
| 5.4 | Costing and Commercialization | 54 |

| REFERENCE             | 57 |
|-----------------------|----|
| APPENDICIES           | 58 |
| BIODATA OF THE AUTHOR | 84 |

# LIST OF TABLE

| TABLE | TITLE                                   | PAGE |
|-------|-----------------------------------------|------|
| 2.1   | SMPS and Linear Power Supply comparison | 10   |
| 2.2   | PIC 18F4550 Features                    | 17   |
| 2.3   | LCD pin configuration                   | 19   |
| 3.1   | Pin connection of PIC 18F4550           | 31   |
| 3.2   | LCD connection configuration            | 33   |
| 3.3   | 7-segment connection configuration      | 35   |
| 3.4   | A/D Port Configuration Control bits     | 43   |
| 4.1   | Voltage and Current result              | 45   |
| 4.2   | PWM output result                       | 47   |
| 4.3   | LED result                              | 49   |
| 4.4   | 7 Segment display                       | 49   |
| 5.1   | Cost for controller                     | 54   |
| 5.2   | Cost cabling and connector              | 55   |
| 5.3   | Cost voltage and current sensing        | 55   |
| 5.4   | Cost power supply                       | 55   |
| 5.5   | Overall cost                            | 56   |

# LIST OF FIGURE

| FIGURE | TITLE                                            | PAGE |
|--------|--------------------------------------------------|------|
| 2.1    | Electronic symbols for a fuse                    | 6    |
| 2.2    | Photo of inside of a circuit breaker             | 7    |
| 2.3    | MAXIM IC                                         | 8    |
| 2.4    | a) Buck converter with feedback b) Control       | 13   |
|        | representation                                   |      |
| 2.5    | Op-Amp Diagram                                   | 14   |
| 2.6    | Physical look and diagram for PIC18F4550         | 17   |
| 2.7    | LCD Block Diagram                                | 18   |
| 2.8    | Current flows through a resistor                 | 20   |
| 3.1    | Block diagram of PIC system                      | 21   |
| 3.2    | Picture of overall project circuit               | 22   |
| 3.3    | Voltage divider                                  | 23   |
| 3.4    | Voltage sensing circuit                          | 24   |
| 3.5    | Current sensing circuit with shunt resistor      | 25   |
| 3.6    | Amplifier circuit using uA741                    | 26   |
| 3.7    | LM7815 and LM7915 physical view                  | 27   |
| 3.8    | Schematic circuit for dual polarity power supply | 27   |
| 3.9    | Schematic circuit for 5V power supply            | 28   |
| 3.10   | Schematic circuit for 12V power supply           | 29   |
| 3.11   | Zener diode physical views                       | 29   |
| 3.12   | Zener diode circuit for protection               | 30   |
| 3.13   | Schematic circuits for PIC18F4550                | 31   |
| 3.14   | LCD Circuit                                      | 33   |
| 3.15   | LCD in normal                                    | 34   |

| 3.16 | LCD in problem           | 34 |
|------|--------------------------|----|
| 3.17 | 7-segment view           | 35 |
| 3.18 | LED Schematic            | 36 |
| 3.19 | Buzzer schematic         | 37 |
| 3.20 | Buzzer physical view     | 37 |
| 3.21 | Program flow chat        | 39 |
| 3.22 | ADCONO register          | 41 |
| 3.23 | ADCON1 register          | 41 |
| 4.1  | Graph Voltage VS Current | 46 |
| 4.2  | PWM output               | 47 |
| 4.3  | LCD in normal            | 48 |
| 4.4  | LCD in problem occurs    | 48 |
| 4.5  | LED view                 | 49 |
|      |                          |    |

# LIST OF SYMBOLS

| S   | = | Second  |
|-----|---|---------|
| V   | = | Voltage |
| GND | = | Ground  |
| Ω   | = | Ohm     |
| F   | = | Farad   |
| А   | = | Ampere  |
|     |   |         |

# LIST OF ABBREVIATIONS

| LCD | = | Liquid Crystal Display      |
|-----|---|-----------------------------|
| I/O | = | Input or Output             |
| ADC | = | Analog-To-Digital Converter |
| OSC | = | Oscillator                  |
| PWM | = | Pulse Width Modulation      |
| DC  | = | Direct Current              |
| LED | = | Light-Emitting Diode        |
| IC  | = | Integrated Circuit          |
|     |   |                             |

# LIST OF APPENDICES

| APPENDIX | TITLE                                 | PAGE |
|----------|---------------------------------------|------|
| А        | Programming on PIC 18F4550 for        | 58   |
|          | microcontroller based SMPS protection |      |
| В        | Overall circuit project               | 66   |
| С        | Datasheets                            | 70   |
| D        | Project Photo                         | 83   |

# **CHAPTER 1**

### **INTRODUCTION**

### 1.1 Introduction

In new technology today, we already have many innovation and research to afford any benefit to human life. Most of task or problems are easy to solve because we already have various technology equipment to help people in their life. Main objective the equipment designed is to make sure all of matter can be solve efficient and perfect. Some of the design and innovation also can be made people life more easy and fast.

With the increasing use of sophisticated electronic equipment, users have become more aware of common problems caused by the imperfection of main power supply. These problems include over voltage, spikes, over current and even complete main failure, some or all of which can cause the malfunctioning of on line electronics equipment.

In some situation, if over voltage or over current occur, the internal fuse that already built in the equipment will blow and need to be replace. For the worst case, some part in the electronic equipment will burn or damage. This project is to design and implement microcontroller based system protection for the dc equipment supplied by DC-DC converter power supply like electronic equipment or others DC equipments from over voltage and over current by using the PIC microcontroller based. This design will sense the output voltage and current supply from the power supply and make sure that the output voltage and current do not exceed the user setting.

### **1.2** Objective of Project

The overall of this project is to sense the output voltage and current that supply from the DC power supply and to ensure that the output voltage and current are not exceed from the user setting limit depend the program upload to the PIC microcontroller. This circuit is acting as the voltage and current protection circuit for load. The objective of this project is to;

- i. The project should be able to protect DC load equipment from over voltage from their maximum voltage range.
- ii. Should be able to protect DC load equipment from over current form their maximum current range.
- iii. The voltage and current protection value are free to set by user.

#### **1.3** Scope of Project

They are several scopes that need to be proposed for the project;

- i. This project will design the protection system from over voltage and over current circuit based on microcontroller.
- ii. This protection circuit will detect the over current and voltage from user setting limit depend the program upload to the PIC microcontroller.
- iii. This project do not include the DC-DC converter power supply design but this protection circuit can be attached to the others DC-DC converter power supply. This protection circuit will control the Pulse-width modulation (PWM) switching from the existing DC-DC converter power supply.

#### 1.4 Summary of Project

This project is to design and implement microcontroller (PIC 18F4550) based system for protection the dc equipment supplied by switch mode power supply (SMPS) or variable DC-DC converter. Once it attached to the SMPS, it will protect and ensure the voltage or current supply to the dc equipment is not exceeding the maximum value or lowers the minimum value. The sensing circuit is used to sense the output voltage and current value that supplied to the equipment. The shunt resister with low resistance is used to sense the current and voltage divider is use to sense the voltage. The 8-bit PIC 18F4550 analog-to-digital converter (ADC) used to read the value from sensing circuit by converting the sensing value from analog to digital. The reference values voltage and current for protection set by PIC. Based on the reference values, PIC compares the measured voltage and current flow to the equipment. If the measured voltage or current exceeding or lower from the reference values, the PIC will disable the PWM signal, at the same time the buzzer will trigger.

PIC will enable back the PWM signal and buzzer stop trigger if the value is back to the normal range. The PIC is used as a central controller to display the measured voltage and current on a 16 x 2 character LCD, control the buzzer, LED and 7 segment as the indicator to alert the user if voltage or current value out of range from normal value.

# **CHAPTER 2**

## THEORY AND LITERATUE REVIEW

### 2.1 Introduction

It is a common requirement for electronic circuits to have to withstand some degree of overvoltage and over current from the power-supply lines. Any overvoltage protection circuit will be required to do some basic things. The first is to prevent voltages greater than the maximum allowable. A trip voltage value (the powersupply voltage above which the protection circuit will activate) is therefore required that will allow the system to function with normal power-supply voltages. The second task is for the protection circuit not to intrude on the normal function of the circuit. At the present, types of circuit existing in various kind and method protection from over voltage and current. Below is some example device that we already used as the protection device.

#### 2.1.1 Fuse (electrical)

In electronics and electrical engineering a fuse (short for *fusible link*), is a type of over current protection device. Its essential component is a metal wire or strip that melts when too much current flows, which breaks the circuit in which it is connected, thus protecting the circuit's other components from damage due to excessive current.

A practical fuse was one of the essential features of Thomas Edison's electrical power distribution system. An early fuse was said to have successfully protected an Edison installation from tampering by a rival gas-lighting concern. Fuses (and other over current devices) are an essential part of a power distribution system to prevent fire or damage. When too much current flows through a wire, it may overheat and be damaged or even start a fire. Wiring regulations give the maximum rating of a fuse for protection of a particular circuit. Local authorities will incorporate national wiring regulations as part of law. Fuses are selected to allow passage of normal currents, but to quickly interrupt a short circuit or overload condition. [7]

Fuses are often characterized as "fast-blow", "slow-blow" or "time-delay", according to the time they take to respond to an over current condition. The selection of the characteristic depends on what equipment is being protected. Semiconductor devices may need a fast or ultrafast fuse for protection since semiconductors may have little capacity to withstand even a momentary overload. Fuses applied on motor circuits may have a time-delay characteristic, since the surge of current required at motor start soon decreases and is harmless to wiring and the motor.

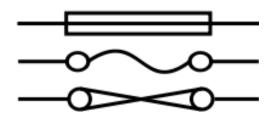



Figure 2.1 Electronic symbols for a fuse

#### 2.1.2 Circuit breaker

A circuit breaker is an automatically-operated electrical switch designed to protect an electrical circuit from damage caused by overload or short circuit. Unlike a fuse, which operates once and then has to be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation. Circuit breakers are made in varying sizes, from small devices that protect an individual household appliance up to large switchgear designed to protect high voltage circuits feeding an entire city.

All circuit breakers have common features in their operation, although details vary substantially depending on the voltage class, current rating and type of the circuit breaker. The circuit breaker must detect a fault condition; in low-voltage circuit breakers this is usually done within the breaker enclosure. Large high-voltage circuit breakers have separate devices to sense an over current or other faults. Once a fault is detected, contacts within the circuit breaker must open to interrupt the circuit; some mechanically stored energy within the breaker is used to separate the contacts, although some of the energy required may be obtained from the fault current itself. When a current is interrupted, an arc is generated - this arc must be contained, cooled, and extinguished in a controlled way, so that the gap between the contacts can again withstand the voltage in the circuit. Finally, once the fault condition has been cleared, the contacts must again be reclosed to restore power to the interrupted circuit.



Figure 2.2 Photo of inside of a circuit breaker

#### 2.1.3 Overvoltage Protection IC

Now, some of the big manufacture IC company already design their IC acted as the over voltage protection. For example, MAXIM Company designs the MAX4864L/MAX4865L/MAX4866L/MAX4867/MAX4865/MAX4866 overvoltage protection controller IC. These IC controllers will protect low-voltage systems against high-voltage faults up to +28V, and negative voltages down to -28V. These devices drive a low-cost complementary MOSFET. If the input voltage exceeds the overvoltage threshold, these devices turn off the n-channel MOSFET to prevent damage to the protected components. If the input voltage drops below ground, the devices turn off the p-channel MOSFET to prevent damage to the protected components. An internal charge pump eliminates the need for external capacitors and drives the MOSFET GATEN for a simple, robust solution. [8]

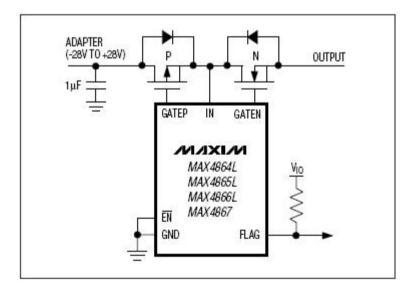



Figure 2.3 MAXIM IC

### 2.2 Switched-mode power supply (SMPS)

A switched-mode power supply, switching-mode power supply or SMPS, is an electronic power supply unit (PSU) that incorporates a switching regulator. While a linear regulator maintains the desired output voltage by dissipating excess power in a "pass" power transistor, the SMPS rapidly switches a power transistor between saturation (full on) and cutoff (completely off) with a variable duty cycle whose average is the desired output voltage. The resulting rectangular waveform is low-pass filtered with an inductor and capacitor. The main advantage of this method is greater efficiency because the switching transistor dissipates little power in the saturated state and the off state compared to the semiconducting state (active region). Other advantages include smaller size and lighter weight (from the elimination of low frequency transformers which have a high weight) and lower heat generation from the higher efficiency. Disadvantages include greater complexity, the generation of high amplitude, high frequency energy that the low-pass filter must block to avoid EMI, and a ripple voltage at the switching frequency and the harmonic frequencies thereof.

SMPS can be classified into four types according to the input and output waveforms, as follows.

- AC in, DC out: rectifier, off-line converter input stage.
- DC in, DC out: voltage converter, or current converter, or DC to DC converter
- AC in, AC out: frequency changer, cycloconverter.
- DC in, AC out: inverter

# 2.2.1 SMPS and Linear Power Supply comparison

|                   | Linear power supply               | Switching power supply             |
|-------------------|-----------------------------------|------------------------------------|
| Size and weight   | Huge due to low operating         | Smaller due to higher operating    |
|                   | frequency (mains power            | frequency (typically 50 kHz -      |
|                   | frequency is at 50 or 60 Hz)      | 1 MHz)                             |
| Output voltage    | Output can only produce a         | Output is able to produce a        |
|                   | positive/negative voltage         | voltage lower, higher or even      |
|                   | which varies depending on         | negative to the input voltage      |
|                   | loading.                          | with superior regulation.          |
| Efficiency, heat, | Output voltage is regulated by    | Output is regulated using duty     |
| and power         | expending excess power as         | cycle control, which draws only    |
| dissipation       | heat, which is inefficient.       | the power required by the load.    |
|                   |                                   | In all SMPS topologies, the        |
|                   |                                   | transistors are always switched    |
|                   |                                   | fully on or fully off.             |
| Complexity        | Consists of a voltage             | Consists of a controller IC, one   |
|                   | regulating IC or discrete circuit | or several power transistors and   |
|                   | and a noise filtering capacitor.  | diodes as well as a power          |
|                   |                                   | transformer, inductors, and filter |
|                   |                                   | capacitors.                        |
| Radio frequency   | No interference produced,         | EMI/RFI produced due to the        |
| interference      | except possibility of mains       | current being switched on and      |
|                   | hum induction into unshielded     | off sharply. Therefore, EMI        |
|                   | cables.                           | filters and RF shielding are       |
|                   |                                   | needed to reduce the disruptive    |
|                   |                                   | interference.                      |
| Electronic noise  | Unregulated PSUs may have a       | Noisier due to the switching       |
| at the output     | small amount of AC "riding        | frequency of the SMPS. An          |
| terminals         | on" the DC component at twice     | unfiltered output may cause        |
|                   | the main frequency (100-120       | glitches in digital circuits or    |

# Table 2.1 SMPS and Linear Power Supply comparison

|                  | Hz). This can cause an audible   | noise in audio circuits.          |
|------------------|----------------------------------|-----------------------------------|
|                  | mains hum in audio equipment     |                                   |
|                  | or unexpected brightness         |                                   |
|                  | ripples or other banded          |                                   |
|                  | distortions in analog security   |                                   |
|                  | cameras.                         |                                   |
|                  |                                  | Very low cost SMDS may            |
| Electronic noise | Causes harmonic distortion to    | Very low cost SMPS may            |
| at the input     | the input AC, but no high        | couple electrical switching noise |
| terminals        | frequency noise.                 | back onto the mains power line,   |
|                  |                                  | causing interference with A/V     |
|                  |                                  | equipment connected to the        |
|                  |                                  | same phase. Non power-factor-     |
|                  |                                  | corrected SMPSs also cause        |
|                  |                                  | harmonic distortion.              |
|                  | Faint, usually inaudible mains   | Inaudible to humans, unless they  |
|                  | hum, usually due to vibration    | have a fan or are                 |
| Acoustic noise   | of windings in the transformer   | unloaded/malfunctioning.          |
|                  | and/or magnetostriction.         |                                   |
|                  |                                  |                                   |
| Power factor     | Low because current is drawn     | Ranging from low to medium        |
|                  | from the mains at the peaks of   | since a simple SMPS without       |
|                  | the voltage sinusoid.            | PFC draws current spikes at the   |
|                  |                                  | peaks of the AC sinusoid.         |
| Risk of electric | Limited to either the full mains | Common rail of equipment          |
| shock            | voltage or the secondary         | (including casing) is energised   |
|                  | terminals in contact with the    | to half mains voltage unless      |
|                  | body.                            | equipment is earthed/grounded     |
|                  |                                  | or doesn't contain EMI/RFI        |
|                  |                                  | filtering at the input terminals. |
| Risk of          | Very low, unless a short occurs  | Capable of destroying input       |
| equipment        | between the primary and          | stages in amplifiers due to the   |
| destruction      | secondary windings or the        | floating voltage being above the  |
|                  | regulator fails by shorting      | base-emitter breakdown voltage    |
|                  |                                  |                                   |

| internally. | of the transistor, causing the |
|-------------|--------------------------------|
|             | transistor's gain to drop and  |
|             | noise levels to increase.      |

[9]

2.2.2 Power Supply Control

In switching DC-DC converter, the output voltage is a function of the input voltage and duty ratio. In real circuit with non ideal components, the output is also a function of the load current. A power supply output is regulated by modulating the duty ratio to compensate for variations in the input or load. A feedback control system for power supply control compares output voltage to a reference and converts the error to a duty ratio.

The buck converter operating in the continuous-current mode is used to illustrate the basics of power supply control. Figure shows the converter and feedback loop consisting of

- The switch, including the diode and drive circuit
- The output filter
- A compensated error amplifier
- A pulse-width modulating circuit, which convert the output of the compensated error amplifier to a duty ratio to drive the switch.

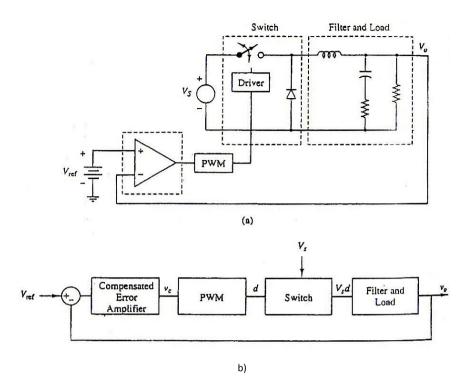



Figure 2.4 a) Buck converter with feedback b) Control representation

### 2.3 **Operational Amplifier (Op-Amp)**

An operational amplifier or Op-Amp is a very high gain differential amplifier with high input impedance and low output impedance. Typical uses of the operational amplifier are to provide voltage amplitude changes (amplitude and polarity), oscillator, filter circuit, and many types of instrument circuit. An Op-Amp contains number of different amplifier stages to achieve a very high gain voltage gain. [10]

Figure below show the basic op-amp with two and one output as would result using a differential amplifier input stage. Each input result in either the same or an opposite polarity (or phase) output, depending on whether the signal is applied to the plus (+) or the minus (-) input, resistively. [10]