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ABSTRACT
Electromyography (EMG) signal is one of the extensively utilised biological signals
for predicting human motor intention, which is an essential element in human-robot
collaboration platforms. Studies on motion intention prediction from EMG
signals have often been concentrated on either classification and regression models of
muscle activity. In this study, we leverage the information from the EMG signals,
to detect the subject’s intentions in generating motion commands for a robot-assisted
upper limb rehabilitation platform. The EMG signals are recorded from ten
healthy subjects’ biceps muscle, and the movements of the upper limb evaluated
are voluntary elbow flexion and extension along the sagittal plane. The signals are
filtered through a fifth-order Butterworth filter. A number of features were extracted
from the filtered signals namely waveform length (WL), mean absolute value
(MAV), root mean square (RMS), standard deviation (SD), minimum (MIN) and
maximum (MAX). Several different classifiers viz. Linear Discriminant Analysis
(LDA), Logistic Regression (LR), Decision Tree (DT), Support Vector Machine
(SVM) and k-Nearest Neighbour (k-NN) were investigated on its efficacy to
accurately classify the pre-intention and intention classes based on the significant
features identified (MIN andMAX) via Extremely Randomised Tree feature selection
technique. It was observed from the present investigation that the DT classifier
yielded an excellent classification with a classification accuracy of 100%, 99% and
99% on training, testing and validation dataset, respectively based on the identified
features. The findings of the present investigation are non-trivial towards facilitating
the rehabilitation phase of patients based on their actual capability and hence,
would eventually yield a more active participation from them.

Subjects Human-Computer Interaction, Data Mining and Machine Learning, Robotics
Keywords EMG, Machine learning, Feature extraction, Movement intention, Classification

INTRODUCTION
Robot-assisted platforms have been introduced over the last two decades in order to
complement the work of physiotherapists and have been shown to provide positive results
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in assisting subjects to regain their activities of daily living (ADL) (Brackenridge et al.,
2016; Chen et al., 2016; Fasoli, 2016). Amongst the advantages of the utilisation of
assist-based robotics therapy, it in its ability to provide autonomous training where
subjects are involved in the repeated exercise of goal-directed tasks that in turn, leads
to improvements in their motor function (Peternel et al., 2016; Taha et al., 2019).
The importance of implementing such robot-assist platform could reduce the burden of
the physiotherapist as well as facilitating active rehabilitation process of the subjects
(Rahman, Ochoa-Luna & Saad, 2015; Huang, Tu & He, 2016).

Even though the use of such robot-assist platforms could significantly facilitate the
rehabilitation process, nonetheless, the key to rehabilitation recovery is often dependent on
the subjects’ natural capability (Rahman et al., 2015; Zimmermann et al., 2015). In order to
provide assistance and keep motivating the subjects in performing the prescribed tasks
programmed on the robotic platform, the selection of a suitable controller is essential.
Several controllers have thus far been applied to the robot-platform to aid the patient in
the movement recovery process (Rahman, Ochoa-Luna & Saad, 2015; Zimmermann et al.,
2015; Proietti et al., 2016). It should be noted that in order to improve the interaction
between the subject and the robotic-assisted platform, the capturing or detection of
physiological motion intention data is non-trivial, as a substantial effort is required by the
patient to complete the prescribed exercise. Through the identification of the motion
intention, a suitable amount of assistive force could be regulated by the controller of the
robotic platform to facilitate the completion of the prescribed task.

To date, different methods have been developed to detect or capture the intent of
subjects. For instance, capturing intention-based triggering is one of the simplest and most
widely used (Marchal-Crespo & Reinkensmeyer, 2009; Proietti et al., 2016; Bi, Feleke &
Guan, 2019). This triggering signal can be either force, velocity, time thresholds, or even
motion intent based on electromyography (EMG) or electroencephalography (EEG)
(Krebs et al., 2003; Colombo et al., 2005; Loureiro et al., 2009; Rechy-Ramirez & Hu, 2015;
Bi, Feleke & Guan, 2019).

Nevertheless, it is worth noting that triggering signals are rather artificial and does not
reflect the actual intention of the subject. Conversely, the processing of EEG signals is
rather complex. An effective and attractive strategy in acquiring the movement intention is
surface electromyogram (EMG) signals (Bi, Feleke & Guan, 2019; Guidali et al., 2013).
This method could allow the robotic system to be activated prior to the actual motion
of the subject. It has been reported that EMG can provide the information of muscle
activation between 40 ms and 100 ms (Winter, 1990; Lenzi et al., 2012; Kosaki et al., 2017).

In order to use the EMG signals as an input for detecting the motion intention, these
signals need to be extracted first. For instance, AlOmari & Liu (2014) applied several
methods to extract the features such as sample entropy, root mean square (RMS),
myopulse percentage rate (MYOP), and difference absolute standard deviation value in
order to classify the forearm muscle activity. Other researchers have exploited different
time-domain features, namely waveform length (WL), mean absolute value (MAV), zero
crossing (ZC), and slope-sign change (SSC) (Kamavuako, Scheme & Englehart, 2014) to
distinguish the movement of the forearm.
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In terms of the classification of the aforesaid signals, several methods have been
employed. Bhattacharya, Sarkar & Basak (2017) investigated the efficacy of Subspace
Discriminant (SDE) Ensemble apart from k-Nearest Neighbour (k-NN), Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) in classifying
different set of EMG features for hand movement recognition. It was shown from the
study that the SDE classifier could yield the highest classification accuracy of 83.33%
for training dataset. Oskoei & Hu (2008) evaluated the performance of different SVM
models (kernels) in classifying upper limb motions using EMG signals against LDA
and artificial neural networks (ANN). The kernels evaluated in the study were radial-basis,
linear, polynomial and sigmoid. It was shown from the study that the average accuracy for
all kernels was approximately 95.57% followed by LDA and ANN.

To the best of the authors’ knowledge, although there are studies that have employed
different statistical EMG time-domain features, nonetheless limited studies have
highlighted the significance of the features extracted. Therefore, this article aims at
identifying significant EMG time-domain features that could facilitate in the detection of
motion intention from the subject that in turn will provide a seamless assistance for
robotics-based rehabilitation. The remainder of this article is organised as follows:
“Materials and Methods” describes the approach taken for detecting intention via the
EMG signals. “Results” describes the classification methods employed on the EMG signals.
“Discussion” presents the result, and “Conclusions” draws the conclusion of the present
work as well as provide the future direction of the present investigation.

MATERIALS AND METHODS
Participants
Ten healthy subjects (four females and six males) with no neurological or orthopaedic
impairment from the Department of Mechatronics Engineering of International Islamic
University Malaysia (IIUM) participated in the present investigation. The participants
were between the age range of 22 and 26, with a mean and standard deviation of 24.4 years,
and 3.27 years, respectively. In addition, the mean weight and height of the subjects are
68 kg and 167 cm, respectively. The experiment was conducted at a dedicated room at
Biomechatronic Research Laboratory of IIUM. The experiments were conducted with the
approval of the International Islamic University Malaysia Research Ethics Community
(IREC) 659, and all participants gave verbal and written informed consent prior to the
experiment.

Intention recognition system
Figure 1 illustrates the proposed framework for detecting the motion intention of the
subject. The intention recognition system utilised in this present study consists of three
main components, the PC workstation (blue-dashed box), where the main programme
of the overall system is linked with the second component, that is the DAQ system
(red-dashed box). The last component is the collection of sensors namely torque sensor,
potentiometer as well as the EMG electrode (purple-dashed box). The complete robotic
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platform which consists of the aforementioned components that are used in the present
study is depicted in Fig. 2.

Data acquisition and processing
The electromyography signal is captured via the g.USBamp signal amplifier (g.tec Medical
Engineering GmbH). This signal is then sent to the PC workstation for processing purpose.
In order to record the EMG signal, each subject was instructed to perform three sets of
flexion movements (from 0° to 45° with an interval of 2 s before further moving from
45° to 90°). These movements transpired in the sagittal plane with the upper arm being
held horizontally (0°) and the subject was asked to maintain as still in the upright sitting
position. During the experimental testing, each subject needs to intentionally move the
robotic arm platform of the robot rehabilitation system. The electromyographic signals
were sampled at 1.2 kHz. The biosignals were recorded using two disposable surface
electrodes placed in a configuration suggested by the manufacturer of the signal amplifier
(one on the biceps, and one on the bone which is acting as a ground) as depicted in Fig. 3.
A bandpass filter was applied to filter the EMG signals between the range of 5–500 Hz.
The angular motion (angle) of the prescribed movements is captured via the potentiometer
that is processed via Humsoftt MF624 at a sampling rate of 0.001 Hz.

Feature extraction
The EMG signals were segmented into two distinct sections, namely pre-intention,
and intention as depicted in Fig. 4. The intention signal is recorded based on the definition
of muscle burst which transpires between 40 ms and 100 ms prior to any muscle activities
(Winter, 1990; Kosaki et al., 2017). The segmentation groups are based on the aforesaid
information. The features of each signal of this segmentation are extracted by using

Figure 1 Block diagram for data acquisition. Full-size DOI: 10.7717/peerj-cs.379/fig-1

Mohd Khairuddin et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.379 4/15

http://dx.doi.org/10.7717/peerj-cs.379/fig-1
http://dx.doi.org/10.7717/peerj-cs.379
https://peerj.com/computer-science/


time-domain (TD) technique as it is obtained from the signals’ amplitude (Veer & Sharma,
2016; Spiewak, 2018) In each, xi is ith sample of EMG signal amplitude and L is the length
of the analysis window for computing the features. The TD techniques applied in this
research is described as follows (Purushothaman & Ray, 2014; Naik, 2015; Rahman,
Ochoa-Luna & Saad, 2015)

Waveform Length: Is the cumulative length of the waveform over the segment. It
specifies a measure of waveform amplitude, frequency, and duration all within a single
parameter

WL ¼
XL�1

i¼1

xiþ1 � xij j (1)

Mean Absolute Value: It signifies the area under the EMG signal once it has been
rectified. The MAV is used as a measure of the amplitude of the EMG signal.

Figure 2 Robotic platform. Full-size DOI: 10.7717/peerj-cs.379/fig-2
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MAV ¼ 1
L

XL
i¼1

xij j (2)

Root Mean Square: The RMS denotes the square root of the average power of the EMG
signal for a given period of time.

Figure 3 Electrode placement. Full-size DOI: 10.7717/peerj-cs.379/fig-3

Figure 4 A sample of the EMG and angular position for a single movement.
Full-size DOI: 10.7717/peerj-cs.379/fig-4
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RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL
i¼1

x2i

vuut (3)

Standard Deviation: The SD of a set of data is the square root of the variance, where m
refers to the mean of the sample.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L� 1

XL
i¼1

xi � mj j2
vuut

m ¼ 1
L

XL
i¼1

xi

(4)

Maximum amplitude: Maximum value of the EMG signal

Max ¼ max xij j (5)

Minimum amplitude: Minimum value of the EMG signal

Min ¼ min xij j (6)

The rationale for utilising the time-domain features is primarily due to its swift
computation as the features do not require any transformation on the raw EMG data
(Spiewak, 2018). Moreover, it is worth noting that the time-domain features have been
widely used in both medical and engineering types of research and practices (Rahman,
Ochoa-Luna & Saad, 2015).

Feature selection
The selection of features is used to reduce the number of features that do not significantly
contribute to the classification of the intention of the subject. In the present study, the
best feature for the classification process is attained by means of an Extremely Randomised
Tree (ERT) technique. The ERT is a tree-based ensemble learning technique that combines
the results of multiple de-correlated decision trees collected (Geurts, Ernst & Wehenkel,
2006). The entropy-based information gain is essentially used as the decision criteria
for the significant features. Figure 5 illustrate the bar graph for each of the extracted
features. It is evident from Fig. 5; the most significant features identified are the MIN and
MAX, respectively.

Classification
Classification is the last yet essential step employed in order to achieve the objectives of
the present study. In this study, five different models of classification approaches are
utilised on the time-series or time-domain (TD) features extracted, namely Linear
Discriminant Analysis (LDA), Logistic Regression (LR), Decision Tree (DT), k-Nearest
Neighbour (k-NN), and Support Vector Machine (SVM). A total of 45,358 (15%) of the
dataset was used for testing, 211,668 (70%) for training and 45,357 (15%) was used for
independent testing (validation). The five-fold cross-validation technique was used on the
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train the models, that is on the training dataset as this method has been reported to
mitigate the issue of over-fitting (Razman et al., 2019). The development of the models was
carried out via Scikit-learn Python Library on Spyder 4.1.4 IDE. It is worth noting that the
models are developed based on its default hyperparameters as per the utilised library.

Performance matrix
The classifier’s performance is evaluated based on its classification accuracy (CA),
precision, recall, F1-score, as well as the confusion matrix. Figure 6 below demonstrates the
confusion matrix as an evaluation of the predictive models.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� �
� 100 (7)

Precision ¼ TP
TPþ FP

� �
� 100 (8)

Recall ¼ TP
TPþ FN

� �
� 100 (9)

F1 ¼ 2
Precision � Recall
Precisionþ Recall

� �
� 100 (10)

From the equations above, the accuracy is defined as the overall classification rate and on
how well the classifier predicts the classes. The precision evaluates the prediction rate of
correctly predicted classes, conversely recall is the ratio of the positive classes that are
correctly categorised. The F1 is the harmonic mean that is generated between precision
and recall by multiplying the scale by 2. The F1 score provides the quality of the prediction
especially for uneven class distribution as exhibited in the present study.

Figure 5 Bar graph of feature importance. Full-size DOI: 10.7717/peerj-cs.379/fig-5
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RESULTS
Figure 7 illustrates the performance of the evaluated classifier, in terms of classification
accuracy (CA) based on all features, whilst Fig. 8 illustrates the CA based on selected
significant features identified via the ERT algorithm. The details on the other performance
measures are tabulated in Tables 1 and 2, respectively.

Figure 6 Confusion matrix. Full-size DOI: 10.7717/peerj-cs.379/fig-6

Figure 7 Classification accuracy for each model for all features.
Full-size DOI: 10.7717/peerj-cs.379/fig-7
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Figure 8 Classification accuracy for each model for the selected features.
Full-size DOI: 10.7717/peerj-cs.379/fig-8

Table 1 Classifier models performance with all features.

Classifier
model

Training
time (s)

Prediction
time (s)

Train (%) Test (%)

Prec Recall F1 Acc Prec Recall F1 Acc Confusion
matrix

k-NN 0.947 9.121 88 96 92 87 85 93 89 81 34,460 2,590

6,026 2,282

SVM 861.168 290.256 82 100 90 82 82 100 90 82 37,049 1

8,308 0

LDA 0.221 0.006 82 100 90 82 82 100 90 82 37,049 1

8,308 0

DT 3.087 0.051 100 100 100 100 98 98 98 97 36,470 580

569 7,739

LR 2.115 0.007 82 100 90 82 82 100 90 82 37,050 0

8,308 0

Classifier model Validation (%)

Prec Recall F1 Acc Confusion matrix

k-NN 85 93 89 81 34,460 2,589

6,031 2,277

SVM 82 100 90 82 37,049 0

8,308 0

LDA 82 100 90 82 37,049 0

8,308 0

DT 98 99 99 98 36,519 530

576 7,732

LR 82 100 90 82 37,049 0

8,308 0
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DISCUSSION
Tables 1 and 2 recorded the classification performance for the different classifiers evaluated
with respect to all features and selected. As tabulated in Table 1, it could be seen that
the DT classifier model provides the highest accuracy during training with a CA of 100% in
comparison to other classifier models evaluated. Nonetheless, in the event that a new
dataset is applied to this model, that is the test dataset, the classification accuracy of the
model demonstrated that the model provides desirable qualities with the classification
accuracy of 97%. It worth noting that, when an independent testing data is applied, the DT
classifier provides a high classification accuracy of 98%. The k-NN provide the second
highest training classification accuracy with 87% and a testing accuracy of 81%
recorded and 81% for the independent testing (validation). Meanwhile, for other
classifier models that is SVM, LDA, and LR provide the same accuracy for both training
and testing demonstrated that the classifiers have reached its saturation stage with the
default hyperparameters of the models. It worth noting that, even though the training
time and prediction time of LDA model is fastest among others classifier, the training

Table 2 Classifier models performance with selected features.

Classifier
model

Training
time (s)

Prediction
time (s)

Train (%) Test (%)

Prec Recall F1 Acc Prec Recall F1 Acc Confusion
matrix

k-NN 0.289 5.798 99 99 99 99 99 99 99 98 36,634 416

434 7,874

SVM 385.365 233.06 82 100 90 82 82 100 90 82 37,050 0

8,308 0

LDA 0.09 0.008 82 100 90 82 82 100 90 82 37,050 0

8,308 0

DT 0.585 0.053 100 100 100 100 99 99 99 99 36,864 186

199 8,109

LR 0.686 0.004 82 100 90 82 82 100 90 82 37,050 0

8,308 0

Classifier model Validation (%)

Prec Recall F1 Acc Confusion matrix

k-NN 99 99 99 98 36,676 373

414 7,894

SVM 82 100 90 82 37,049 0

8,308 0

LDA 82 100 90 82 37,049 0

8,308 0

DT 99 99 99 99 36,863 186

188 8,120

LR 82 100 90 82 37,049 0

8,308 0
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accuracy for this model is low compare to the DT model. Figure 7 depicts the classification
accuracies across all models developed.

A similar observation could be seen in Table 2, in which only the significant features
identified by ERT, that is MIN and MAX are used. It is apparent that a comparable
performance is illustrated, however, it is worth noting that the training time, as well as
the prediction speed of the classifier, has been improved. It is apparent from Fig. 8 that
the DT and k-NN model demonstrated desirable qualities with better classification
accuracies for training, testing and validation. The reduction of the features is non-trivial
especially for real-time implementation as the computational expense could be
significantly reduced.

The present findings have demonstrated that through selected significant features, a
comparable classification accuracy is attainable. It should be noted that a better CA is
reported in the present study in comparison to a similar investigation carried out by
Gandolla et al. (2017). The authors employed Artificial Neural Network in classifying
different motions extracted from EMG signals. The study reported an average testing CA of
76% was obtained in correctly predicting healthy subjects’ motion intention. In addition,
an EMG-based motion intention classification of different reaching movement was
investigated by Cesqui et al. (2013). It was shown from the study that the SVM architecture
utilised of significant features identified could only yield a classification accuracy of
97.5%. Therefore, it could be clearly shown that the proposed technique employed in the
present investigation could yield a reasonably well CA of motion intention.

CONCLUSIONS
This article presented an approach to detect and capture the subject’s intention through
the EMG signal. From the EMG signal processed a number of features were extracted for
the classification purpose, namely WL, MAV, RMS, SD, MIN and MAX. Then a feature
selection method was introduced in this study in order to get the significant features
by means of Extremely Randomised Tree technique. The features extracted upon
investigating the feature importance, are MAX andMIN, respectively. It was demonstrated
from the present investigation that the DT classifier yielded an excellent classification
with a classification accuracy of 100%, 99% and 99% on training, testing and validation
dataset. Future works will focus on developing a controller for a rehabilitation robot based
on the output of the classifier from the EMG signal taken from the subject.
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