Investigation of indentation size effect and R-curve behaviour of Li_2O-SiO_2 and $Li_2O-2SiO_2$ glass ceramics

Abdur-Rasheed Alao^a, Mohd Azmir Mohd Azhari^b

^a Mechanical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi, Brunei, Gadong, BE1410, Brunei Darussalam

^b Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia

ABSTRACT

Indentation size effect (ISE) and R-curve behaviour of Li₂O–SiO₂ and Li₂O–2SiO₂ glass ceramics are investigated using micro-indentation and indentation-strength (IS) techniques, respectively. Vickers micro-indentations were applied on both materials at the load of 0.10-19.6 N to determine the load influence on the measured hardness. For the ISmeasured fracture toughness, the load ranged from 1.96 to 19.6 N. The hardness decreased with increasing load by 20% and 18% on Li₂O–SiO₂ and Li₂O–2SiO₂ glass ceramics, respectively, indicating the ISE behaviour on both materials. The fracture toughness increased with the load by 27% and 59% on Li₂O-SiO₂ and Li₂O-2SiO₂ glass ceramics, respectively, signifying the R-curve behaviour. The ISE behaviour of both materials was analysed using the Meyer's, Hays–Kendall (HK), proportional specimen resistance (PSR), Nix–Gao (NG), modified PSR (MPSR) and elastic plastic deformation (EPD) models while the R-curve behaviour was analysed by the fractional power law. The Meyer's index of both materials was less than 2, strongly confirming the ISE existence. The HK, PSR and NG models were only suitable to determine intrinsic Vickers hardness for Li₂O-2SiO₂ glass ceramic while the MPSR and EPD models were successful for both materials. The fractional power law gave higher Rcurve steepness for Li₂O–2SiO₂ than Li₂O–SiO₂ glass ceramics. Also, material and brittleness indices predicted, respectively, higher quasi-plasticity and better machinability for Li₂O- $2SiO_2$ than Li_2O –SiO₂ glass ceramics indicating superior performance in the former to the latter. Finally, this study presents a new significant insight into the micro-mechanisms of fracture tolerance behaviour of these glass ceramics which is critical to their functional performance as structural ceramics.

KEYWORDS

Indentation size effect; Indentation techniques; Li₂O–SiO₂/Li₂O–2SiO₂ glass ceramics; Mechanical properties; R-curve behaviour

ACKNOWLEDGMENTS

The funding support by the Universit Teknologi Brunei (UTB) Internal Research Grant (UTB/GSR/2/2021(11)) is greatly acknowledged.