
RESEARCH ARTICLE

A static analysis approach for Android

permission-based malware detection systems

Juliza Mohamad ArifID, Mohd Faizal Ab Razak*, Suryanti Awang, Sharfah Ratibah Tuan

Mat, Nor Syahidatul Nadiah Ismail, Ahmad Firdaus

Faculty of Computing, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

* faizalrazak@ump.edu.my

Abstract

The evolution of malware is causing mobile devices to crash with increasing frequency.

Therefore, adequate security evaluations that detect Android malware are crucial. Two tech-

niques can be used in this regard: Static analysis, which meticulously examines the full

codes of applications, and dynamic analysis, which monitors malware behaviour. While

both perform security evaluations successfully, there is still room for improvement. The goal

of this research is to examine the effectiveness of static analysis to detect Android malware

by using permission-based features. This study proposes machine learning with different

sets of classifiers was used to evaluate Android malware detection. The feature selection

method in this study was applied to determine which features were most capable of distin-

guishing malware. A total of 5,000 Drebin malware samples and 5,000 Androzoo benign

samples were utilised. The performances of the different sets of classifiers were then com-

pared. The results indicated that with a TPR value of 91.6%, the Random Forest algorithm

achieved the highest level of accuracy in malware detection.

Introduction

The use of mobile devices has rapidly increased throughout the world in recent decades, with

most people now owning mobile device. The convenience of mobile devices enables many

online activities to be performed, for instance, the online streaming of information, social net-

working, video viewing, and online banking. This proliferation of technology has also pro-

vided opportunities for the deployment of malware codes designed to target mobile devices.

Malware is malicious software that attacks the files or programmes that are stored within

mobile devices. Malware can be classified according to the mechanism by which it gains access

to a system: worms, backdoors, trojans, rootkits, spyware, and adware [1]. The McAfee Report

[2] noted that malware such as backdoors, crypto mining, fake applications, and banking tro-

jans increased substantially in the latter half of 2019. Hidden applications and adware were

noted to be the most common form of mobile threats in the Android operating system. The

McAfee report also indicated that the incidence of malware attacks is increasing every year,

with over 30 million mobile malware attacks detected in 2018.

Among the various mobile devices available, Android mobiles are the most commonly tar-

geted by malware. The International Data Corporation (IDC) report on worldwide shipments

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Arif JM, Ab Razak MF, Awang S, Tuan

Mat SR, Nadiah Ismail NS, Firdaus A (2021) A

static analysis approach for Android permission-

based malware detection systems. PLoS ONE

16(9): e0257968. https://doi.org/10.1371/journal.

pone.0257968

Editor: A. Pravin, Sathyabama Institute of Science

and Technology, INDIA

Received: May 18, 2021

Accepted: September 14, 2021

Published: September 30, 2021

Copyright: © 2021 Arif et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research was funded by the

Malaysian Ministry of Higher Education via the

Fundamental Research Grant Scheme awarded to

(RACER/1/2019/ICT02/UMP//1(RDU192601) to N.

I. and the grant (PGRS200392) awarded to M.R.

The funders had no role in study design, data

collection, and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0001-9187-1458
https://doi.org/10.1371/journal.pone.0257968
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257968&domain=pdf&date_stamp=2021-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257968&domain=pdf&date_stamp=2021-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257968&domain=pdf&date_stamp=2021-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257968&domain=pdf&date_stamp=2021-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257968&domain=pdf&date_stamp=2021-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257968&domain=pdf&date_stamp=2021-09-30
https://doi.org/10.1371/journal.pone.0257968
https://doi.org/10.1371/journal.pone.0257968
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


stated that Android mobiles are leading the market, with an increase from 85.1% in 2018 to

87.0% in 2019. In 2020, despite showing a slight decline, Android still led the market at 84.1%

compared to iOS 15.9% and others 0% [3]. However, the popularity of Android mobiles has

produced more security concerns because it raises the prospect of more threats from attackers

who spread the malware, which causes the application to act maliciously. Android devices

have been identified as the most highly targeted systems, with the highest percentage of mal-

ware infections at 47.15%. Malware typically works initially by sending fraudulent messages to

users. When users become interested in these messages, they are charged for fake services.

Other systems tend to suffer less threats: In 2018, the threat rate for Windows/PCs was

35.82%, the Internet of Things (IoT) was 16.17%, and iPhones had a threat rate of 0.85% [4].

Fig 1 shows the percentage of malware attacks on various mobile device in 2018.

A G DATA Cyber Defence analysis showed that a total of 3.2 million new malware were

detected in the third quarter of 2018 in contrast to the third quarter of 2017, in which

2,258,357 malware were detected [2]. The use of Android malware has risen to an extraordi-

nary level. Fig 2 shows the drastic increase in new Android malware samples from 2012 to

2018.

Fig 1. Malware attacks in 2018 by mobile device.

https://doi.org/10.1371/journal.pone.0257968.g001

Fig 2. New Android malware samples 2012–2018.

https://doi.org/10.1371/journal.pone.0257968.g002

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 2 / 23

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0257968.g001
https://doi.org/10.1371/journal.pone.0257968.g002
https://doi.org/10.1371/journal.pone.0257968


In the first half of 2019, it was observed that the number of Android malware attacks was

1.85 million and increased to 4.18 million by the end of 2019 [3]. These malware attacks tend

to be surreptitious and creep insidiously into the mobile system. To avoid malware attacks,

mobile users need to take several steps: Avoid installing applications from unknown sources,

avoid downloading applications from unregistered websites, and foster the habit of using anti-

virus software [4]. Antivirus software offers a system for detecting and preventing malware.

However, the weakness of the existing commercial tools is that they only provide protection

against known malware, and unknown or new malware remains undetected [5]. Any mobile

device that is monitored by antivirus software needs frequent signature updates to detect new

malware. Usually, antivirus software prompts the user to install an update to maintain the

security of the device. However, these processes degrade the memory and power consumption

performance of devices [6].

Existing Android security, such as Bouncer, scans and blocks permission requests from var-

ious applications automatically [7]. It is available for download via the Google Play Store.

However, users are at risk of malware attacks if the application is downloaded from a third-

party source. The Android operating system does not govern third-party sources, and users

should exercise caution when agreeing to unreasonable permission requests during the appli-

cation installation process [8]. Android applications that request more permissions than

needed can transform the application’s origin from benign to malicious [9].

Additionally, for Android security, another approach is a permission-based system that acts

as a firewall, filtering out all applications that require permission and preventing Android

applications from accessing personal data [10]. When the application is installed on Android,

the user is notified of the permission request, which should be handled carefully. Even so,

when users grant permissions without fully comprehending the risks, they expose themselves

to unsafe conditions and malicious attacks. An unscrupulous programmer may take advantage

of the user to perform various malicious actions without the user’s consent. Another security

mechanism that protects users from malware attacks is an intrusion detection system (IDS).

Usually, an IDS monitors the network or system to detect intrusions and analyse data traffic

[11]. IDS is widely used in different fields as one of the security mechanisms. It is also used in

the CAN Bus system, where researchers propose CANintelligentIDS to enhance security fea-

tures to prevent malware threats [12, 13] review the IDS on clone node attacks in a static wire-

less sensor network. The IDS protects mobile devices against known or unknown malware; it

also ensures that user data are confidential [10]. Nonetheless, the proliferation of Android mal-

ware demonstrates that there is still room for research into the most effective methods for

countering malware attacks.

Previous research has presented various approaches in mobile malware detection for

Android mobile users [7, 14, 15]. Static and dynamic analyses are two common techniques

used in malware detection [16, 17]. Both techniques are popular as they are perceived to be

successful analysis methods capable of defending Android applications. The static analysis

focuses on detecting Android malware by examining a file without running it on the system.

This technique includes signature and component-based analyses, reverse engineering, and

Dalvik bytecode. Meanwhile, dynamic analysis is capable of detecting malware based on the

behaviour observed in an isolated environment, such as a simulator and virtual machine [15].

Both techniques are then combined to form a hybrid model for improving malware detection

and identification. The hybrid analysis technique performs the static and dynamic analyses

separately; hence, it consumes more resources and takes longer to complete the analysis [18].

An alternative technique is machine learning analysis. This technique automates the analy-

sis of mobile malware detection by recognising the malware pattern. It can achieve a high rate

of malware detection. This technique is a specific field of artificial intelligence that predicts

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 3 / 23

https://doi.org/10.1371/journal.pone.0257968


future decisions and outputs based on datasets. It refers to the process of characterising mal-

ware behaviour and applying classifiers to evaluate the dataset [19]. In previous studies, the

classifiers most frequently used to assess the necessary features and malware detection include

Naive Bayes, support vector machines, decision trees, Random Forest, K-means, K-nearest

Neighbours AdaBoosting, logistic regression, and J48 [20]. The machine learning and static

analysis techniques require features used to compare the malware and benign applications to

obtain accurate detection. Features used in related studies for malware detection include the

Application Programme Interface (API), a function call, code structure, AndroidManifest.xml,

Intent, and permission [9]. The malware datasets were usually retrieved from Contagiomini-

dump, Genome, Drebin, AMD, and VirusShare, while the benign datasets were usually

retrieved from Google Play, APKpure, APKsapk, Playdrone, and Androzoo.

This study proposes a malware detection system to scrutinise new known malware variants;

it also aims to identify insecure permissions existing in mobile applications. In that respect, the

current study uses static analysis as an approach by focusing on the manifest file (Android-

Manifest.xml), which consists of specific permissions geared towards Android application

development. Such permissions are incapable of change once the development is completed.

In the current study, the features in the manifest file are first organised into a table before the

classification process. An optimisation approach is then utilised to demonstrate the most suit-

able features to detect the malware. This study attempts to evaluate the efficacy of the static

analysis technique by using the machine learning approach and using the application’s permis-

sion noted in the manifest file.

The following are the paper’s primary contributions:

i. To identify the optimal features via optimisation techniques in order to improve Android

malware detection accuracy.

ii. To conduct an experiment using Android permission features by implementing static anal-

ysis in the Android malware detection.

iii. To assess the machine learning classifier’s effectiveness at detecting Android malware.

The rest of the paper is organised as follows: Section 2 presents the state of the art of mal-

ware detection. It introduces the previous research conducted in the field of Android mobile

malware detection. Section 3 discusses the methodology of the study. It describes the general

process of implementing an Android malware detection system, such as the general architec-

ture, the data collection phase, and the machine learning phase. Section 4 presents the evalua-

tion and results of the implementation. It focuses on the evaluation of the experiment and the

efficacy of the proposed method. Section 5 provides the conclusion. It explains the achieve-

ment of the objectives and the contributions of this research to malware detection. It also dis-

cusses the findings and limitations of this study.

Related work

In this era of globalisation, people commonly use their mobile devices in a variety of ways, for

example, as a network connection to interact with the world, for online shopping, for online

banking transactions, or even for cloud storage of files and documents. Nonetheless, some

unscrupulous programmers take advantage of these situations to create and install mobile mal-

ware. Mobile malware is capable of stealing user information and exploiting it [21]. There are

many ways in which malware can corrupt the system or programmes of mobile devices, such

as bypassing the access control of the devices and deleting or encrypting sensitive data [15],

consuming excessive battery [20], and even turning the device into a botnet zombie [1].

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 4 / 23

https://doi.org/10.1371/journal.pone.0257968


Malware is defined by its malicious contents and behaviour that violates the requirements of

the system. This includes observing user system activities without authorisation. Malware

spreads by self-propagating and through social engineering [20]. Self-propagating strategies

automatically install malware into a mobile device, for instance, worms and viruses [22]. Social

engineering takes advantage of users who have no security knowledge. It tricks such users into

manually installing malware applications onto their mobile devices [20]. Cabir was the first

malware detected in 2004 that could use networking technologies to spread and generate infec-

tions [10]. The Zeus botnet, which was reported in 2007, is one of the common malware that

can control many computers and steal data in banking organisation [23]. The DroidDream is

the mobile malware detected in 2011, and it can gain root access, steal information and add

malware to the mobile phone [24, 25]. FakePlayer is Russia’s first Trojan Android malware dis-

covered in 2010. It works as a media player application and sends the SMS to the premium

number without user consent [10].

The Android system is an open system, which can become an easy target for malware

attackers who can contaminate the operating system [26]. In May 2019, Android malware

tracking recorded more than 10.5 million programmes [27]. The growth of Android mobile

users has certainly augmented the spread of Android malware. As can be observed in the

Nokia Threat Intelligence Report [28], of the 20 most frequently detected Android malware in

2018, six were new malware. Android.Adware.AdultSwine was the most frequently detected

Android malware at 17.29%. AdultSwine uses inappropriate advertisements to deceive mobile

users into installing and registering fake security applications with an unknown cost. Once

this installation has been performed, the malware is very difficult to remove [4]. In 2017,

Android.Adware.Uapush.A was listed as the leading Android malware. Android.Adware.

Uapush is an Android adware Trojan that has had a moderate impact on mobile users. The

Uapush adware sends the International Mobile Subscriber Identity, the International Mobile

Equipment Identity, contact information, bookmarks, and call history to a Command and

Control Server in China [29]. The adware then sends a message with obscure programming to

advertise and promote a business without user consent [30]. Even though the Uapush adware

was the highest ranking in terms of attacks in 2017, its impact on mobile users has not been

too severe.

Malware intrusion detection systems

Although there are security mechanisms, such as firewalls, antivirus software, and IDSs, to

secure mobile devices, there is still a need to develop a novel approach towards detecting mal-

ware. Commercial antivirus mechanisms can effectively detect known malware, but they are

incapable of detecting unknown malware. Therefore, malware detection techniques with high

levels of accuracy and speed are important to ensure the effectiveness of such malware applica-

tions. The IDSs were developed to protect devices from attackers. If an intrusion is detected,

then it is logged, and an alert is generated. The malware IDSs are divided into three classifica-

tions, as illustrated in Fig 3.

Analysis technique. The two most common techniques used in this field are static and

dynamic analysis techniques. The static analysis technique analyses the programmes without

executing them. The static examination is possible by using the program analyser, debugger,

and disassembler [31]. The features commonly used in the static analysis are permission, intent

filters, Java code, network address, strings, and hardware components [32]. Android applica-

tions use permissions to protect the mobiles from malware. The application requests permis-

sion to access the mobile device during the installation process [33]. Meanwhile, Android

applications use API calls to communicate with the devices. Dishonest programmers normally

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 5 / 23

https://doi.org/10.1371/journal.pone.0257968


change the sequence and then rename the API calls to evade the detection system. This is

known as code obfuscation. It is then saved as a Dalvik format. Fraudulent programmers are

able to modify the code-base and inject malicious code into Android applications. All the static

features are accessible in the AndroidManifest.xml file or Java code file. Table 1 shows the

related work in static analysis.

In contrast, the dynamic analysis runs the application in a safe environment while observ-

ing the malware behaviour [7]. It is capable of detecting malware when the obfuscation tech-

nique is applied. The features most commonly selected for detecting malware in the dynamic

analysis were memory and registry usage, instruction traces, network traffic, and API call

traces [38]. More than 1,000 datasets were used in these studies. The accuracy rate of the detec-

tion was more than 90%. Various tools used in the dynamic analysis include CrowDroid,

TaintDroid, ParanoidAndroid, Aurasium, Appfence, and DriodScope [17]. The hybrid analy-

sis combines both static and dynamic analyses. In the hybrid analysis, user behaviours and per-

mission intent were the most common features selected for detecting malware. More than

Fig 3. Taxonomy of malware intrusion detection systems.

https://doi.org/10.1371/journal.pone.0257968.g003

Table 1. Related work in static analysis.

References Year Tools Objective Limitation

[32] 2009 Kirin To provide lightweight certification for applications that incorporate

security rules to mitigate malware during the installation process.

Specific rules may be deemed unenforceable for any

number of reasons.

[33] 2011 Stowaway To detects overprivileged in compiled Android applications. The tool is unable to handle multiple reflective calls.

[34] 2012 RiskRanker To analyse a specific application dangerous behaviour using risk analysis Malware is easy to escape in the first step, as

RiskRanker uses the heuristic only in the second step

[35] 2013 AndroSimilar To generates a signature by extracting statistically improbable features to

detect malicious Android apps.

Consist significantly less malware signature

[36] 2014 FLOWDROID To provides static taint analysis for Android applications Resolves reflective calls only with string constants and

unaware of multi-threading

[37] 2020 AdDroid To analyse and detect malware in Android applications using a variety of

artefact combinations referred to as Rules.

The small and imbalanced dataset is used in the

experiment

https://doi.org/10.1371/journal.pone.0257968.t001

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 6 / 23

https://doi.org/10.1371/journal.pone.0257968.g003
https://doi.org/10.1371/journal.pone.0257968.t001
https://doi.org/10.1371/journal.pone.0257968


4,000 datasets extracted from MARVIN, Drebin, Genome and Virushare were used in these

studies. The accuracy rate of the detection was more than 90% [39].

Detection approach. There are two common approaches used for detecting malware: Sig-

nature-based and anomaly-based [40]. The signature-based approach relies on recognising the

signature of the malware behaviour. In contrast, the anomaly-based approach uses its knowl-

edge to compare the normal and abnormal behaviours of a system [1]. Programmes that devi-

ate from the specifications are assessed as anomalous and, usually, as malware. The

combination of these two approaches is known as a hybrid approach.

Deployment approach. The deployment approach in the IDS can be divided into three

categories: A host-based intrusion detection system (HIDS), a network-based intrusion detec-

tion system (NIDS), and a hybrid-based IDS. The HIDS assembles resources from end devices

(host) and servers. It also monitors and analyses intrusive traffic in the system resources and

emphasises the CPU consumption, the file system, memory, and device [30]. In the event of a

change occurring to the host system, the IDS sensor then checks the abnormal activity in the

log entry by using a signature. If the signatures correspond, the sensor will notify the manage-

ment console [41]. If any anomalous activities have occurred, the administrator will receive a

warning. Another development of the HIDS is the application-based IDS. It monitors net-

works’ traffic, such as inspection files, void file executions, and abnormal traffic.

A NIDS is used to sniff network traffic for examination. This is accomplished by using a

deep packet analyser [1]. A NIDS is vital in today’s computer network infrastructure to moni-

tor and identify unwanted and malicious network traffic [22]. The NIDS uses anomaly- and

signature-based detection approaches. The sensor in the NIDS analyses all the packet headers

to detect malicious attacks; HIDS cannot detect this type of attack [42]. Analysis of the header

packet can detect the IP-based denial of service attacks in network traffic. The NIDS sensor is

capable of detecting attacks based on the packet header in real-time. Many tools are used in

the NIDS. Among them are Honeypot, Snort, Solarwinds, Sagan, and Splunk. The combina-

tion of the HIDS and NIDS approaches is known as a hybrid-based IDS.

Android malware features. Android malware features include static, dynamic, hybrid,

and application metadata features. Fig 4 shows the taxonomy of Android malware features.

The static features are available in the AndroidManifest.xml or Java code file. The common

static features used are permission, Java code, intent filters, network address, strings, and hard-

ware components. In comparison, dynamic features refer to the application behaviours that

communicate between the operating systems or networks. A previous study used network

Fig 4. Taxonomy of Android malware features.

https://doi.org/10.1371/journal.pone.0257968.g004

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 7 / 23

https://doi.org/10.1371/journal.pone.0257968.g004
https://doi.org/10.1371/journal.pone.0257968


traffic, system calls, and API calls as dynamic features to detect malware. Hybrid features are

those derived from a combination of static and dynamic features. They are used in the detec-

tion system as an additional measure to increase accuracy. The application metadata features

refer to the information that appears before a download installs the application. They include

the application description, rating, requested permission, and developer information. The

selection of features is a crucial part of the classification process. Some of the features used in

previous studies [43–45] were permission-based features [40] that used the API call sequence

features and [46] intent.

The current study applied permission-based features (static features) to detect Android

mobile malware. Permission codes involve applications making frequent permission requests,

such as for the internet, to send_sms, access_network_state, receive_sms, and write_external_-

storage. In this regard, mobile users should be aware of the application permission request to

be better prepared for protecting their mobile devices. Neglecting an application’s permission

request can cause harm to mobile devices. Android permissions are the permissions that an

application requests the mobile user to grant during the installation. It is the first security step

in Android mobile devices. The permission is the first obstacle a user encounters with an

unscrupulous programmer before an attack. Android permissions can be categorised into four

levels of protection known as a normal, dangerous, signature, and signatureORsystem [19, 47].

Each protection level involves a base permission type and zero or more flags. Normal permis-

sions are the default permissions of lower risk, which are automatically granted during installa-

tion without the user’s permission. Dangerous permissions are higher risk permissions that

allow a malware application’s request to access the user’s data or control devices, exposing

mobile users to threats. Signature permissions automatically grant the permission of the appli-

cation request when a signed certificate matches the application that declared the permission.

SignatureOrSystem grants the applications in a dedicated folder on the Android system image

or that are signed with the same certificate as the application that declared the permission.

Multiple vendors use SignatureOrSystem level to share specific features when developing

applications. Therefore, the awareness of mobile users concerning the dangers of malware

must be increased. Otherwise, more damage and losses to their devices will occur [1]. Table 2

shows the protection level of Android permissions, descriptions, and examples of the permis-

sions [47].

Methodology

This section discusses the process of the malware detection system and the implementation of

machine learning. There are four phases in the Android mobile malware detection system.

They include data collection, data analysis, the database, and machine learning. The fourth

phase contains the evaluation phase, which uses the machine learning approach to classify

Table 2. Android permission protection level.

Protection level Description Example of permission features

Normal Low risk to users or apps. Automatically allow the

permission, and the user did not revoke the

permission

ACCESS_LOCATION_EXTRA_COMMANDS, ACCESS_NETWORK_STATE,

ACCESS_NOTIFICATION_POLICY, ACCESS_WIFI_STATE.

Dangerous High risk to the user. Apps need to prompt the user

and wait until user approval

ACCESS_MEDIA_LOCATION, ACCESS_FINE_LOCATION,

ACCESS_BACKGROUND_LOCATION, ACCEPT_HANDOVER.

Signature The system grants the apps when the same certificate

signs the apps

BIND_ACCESSIBILITY_SERVICE, BIND_AUTOFILL_SERVICE.

SignatureOrSystem Grants the applications in a dedicated folder that

signed with the same certificate.

BATTERY_STATS BIND_CALL_REDIRECTION_SERVICE

https://doi.org/10.1371/journal.pone.0257968.t002

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 8 / 23

https://doi.org/10.1371/journal.pone.0257968.t002
https://doi.org/10.1371/journal.pone.0257968


each of the malware families and analyse the application permissions that can detect benign or

malware applications. Fig 5 shows the architecture of the malware detection system.

Detailed in the figure is the malware detection system process. It involves the four phases

mentioned above. The data collection begins by collecting all the permissions in the malware

and benign applications. The data are then processed in the analysis, which decompiles the

apk file. This is then extracted to the data cleansing process, which filters the permissions. For

data labelling, all the permissions that have been assembled are saved in an attribute relation

file format (x.arff). They are then stored in a database in a readable format. All the feature attri-

butes used in the feature optimisation process are saved in a.arff file. A three feature optimisa-

tion technique aims mainly at analysing patterns.

The data collection and the optimisation process of the features are crucial for detecting

malware. During the cleansing process, malware and benign behaviours are detected. Follow-

ing this, a notification is then sent to the database. During this phase, data labelling relies on

the permission package name to ensure that the same features and applications are detached

from the database. The final process is machine learning, whereby feature optimisation exe-

cutes the labelled data with 10-fold cross-validation and evaluation. This is achieved by using a

training classifier to detect the malware. The current experiment utilises the detection perfor-

mance, such as the level of accuracy and false positive rate, to detect malware.

Data collection process

In the data collection phase, the malware and benign datasets were extracted and then com-

piled in.csv file format. The random samples were retrieved from the Androzoo and Drebin

datasets. The Androzoo dataset consists of more than three million applications and is scruti-

nised by ten types of antivirus products for malware detection. This dataset has the potential to

contribute to new research topics within the Android application and can engage in reproduc-

ible experiments. The dataset is accessible at https://Androzoo.uni.lu [48]. The Drebin dataset

contributes to the public academic dataset of Android malware that was launched in 2014. The

dataset was introduced in the article ‘DREBIN: Effective and Explainable Detection of Android

Malware in Your Pocket’. The research community mostly uses the Drebin dataset as a mal-

ware dataset to evaluate the effectiveness of a detection system and compare an algorithm’s

performance. The Drebin dataset is available at the website Http://user.cs.uni-goettingen.de/

˜darp/drebin [49]. A set of 10,000 samples from the dataset that is confined to the applications

is presented in Table 3.

The benign applications were downloaded from Androzoo, which belongs to the Google

Play store. The malware applications were downloaded from the Drebin project. The current

study collected 274 lists of permissions (known as features). The datasets were then labelled as

benign or malware in the last column. The 10,000 samples were indicated by hash numbers to

Fig 5. Malware detection system.

https://doi.org/10.1371/journal.pone.0257968.g005

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 9 / 23

https://androzoo/.uni.lu
http://user/.cs.uni-goettingen.de/darp/drebin
http://user/.cs.uni-goettingen.de/darp/drebin
https://doi.org/10.1371/journal.pone.0257968.g005
https://doi.org/10.1371/journal.pone.0257968


avoid duplications. The datasets were then saved in a binary format (.CSV) and subsequently

transformed to the attribute relation file format. Fig 6 shows the data collection process.

The AndroidManifest.xml file was used to obtain essential information such as the permis-

sions and activities of the application. Before the dataset were saved in the database as a x.arff

file, all extracted permissions were labelled as benign and malware. These features served as

attribute values and were termed the ‘feature set’. The values represent the binary value con-

cerning whether permission was requested or not by the application. The values were stated as

‘1’, which represented permission requested by a specific application, while ‘0’ represented per-

mission not requested by the specific application. Table 4 shows the 10 Android applications

most frequently granted permissions for access to the system by malware or benign applica-

tions analysed from the database.

Table 4 shows that the malware and benign applications had six comparable permissions

involving INTERNET, READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE,

ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE, and WAKE_LOCK. The INTER-

NET permissions comprised the highest percentage, with malware at 99% and benign at 81%.

Seven applications were dangerous permissions involving READ_PHONE_STATE, WRI-

TE_EXTERNAL_STORAGE, SEND_SMS, RECEIVE_SMS, READ_SMS, ACCESS_FINE_-

LOCATION and GET_ACCOUNTS. Table 5 shows the description of the ten permission

features most requested by malware applications. Fig 7 shows the comparative graph for the

six permissions requested by the malware and benign applications.

The graph indicates that INTERNET applications made the highest number of requests.

Although the INTERNET application request was the highest, it did not have a critical impact

on mobile users because the protection level is normal. The READ_PHONE_STATE permis-

sion had the highest percentage of requests among the dangerous applications requested by

malware applications. This permission allows an unscrupulous programmer with privileged

read-only access to phone state information, such as network information, phone numbers,

call history, and the phone account [49]. As a result, the mobile user needs to pay more atten-

tion to those dangerous permissions because they can cause harm to the mobile device. Fur-

ther, optimisation features can also be used to obtain the best features of the permissions.

Table 3. Dataset summary.

Dataset Source Total Dataset

Benign Androzoo 5000

Malware Drebin 5000

TOTAL 10,000

https://doi.org/10.1371/journal.pone.0257968.t003

Fig 6. Data collection process.

https://doi.org/10.1371/journal.pone.0257968.g006

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 10 / 23

https://doi.org/10.1371/journal.pone.0257968.t003
https://doi.org/10.1371/journal.pone.0257968.g006
https://doi.org/10.1371/journal.pone.0257968


Machine learning process

Machine learning, known as artificial intelligence, is used to solve complex problems and

reduce decision-making times for human beings. They are used in several fields, such as medi-

cine, space exploration, engineering, lab work, aviation and more [50]. In this study, the

machine learning approach was developed to heighten the effectiveness of malware detection.

It automates the analytical model that characterises the malware behaviour process. Typically,

the machine learning process involves three phases: File representation, feature selection, and

classification [35]. Machine learning takes two routes: Supervised and unsupervised tech-

niques [37]. Supervised learning uses label datasets that are classified as either malware or

benign. The training dataset is evaluated by using application features with a class label. In

contrast, unsupervised learning uses unlabeled datasets which are assigned to a different group

known as a cluster. The large datasets are then grouped into smaller datasets with similarities.

This study uses supervised and randomised datasets to evaluate permission features on detect-

ing Android malware.

Feature optimisation is used to optimise permission features. The implementation of the

optimisation approach can reduce training and testing time, reduce overfitting, and simplify

malware detection. This approach is ideal for data processing and increasing the accuracy of

the experiments. It is an effective malware detection system. The process begins with cleaning

the dataset, which removes any irrelevant and redundant features. The next stage is to acquire

Table 4. 10 most frequent permission requests in malware and benign applications.

Malware Application Benign Application

Permission Protection Level Frequency (%) Permission Protection Level Frequency (%)

INTERNET Normal 99 INTERNET Normal 81

READ_PHONE_STATE Dangerous 94 ACCESS_NETWORK_STATE Normal 74

WRITE_EXTERNAL_STORAGE Dangerous 72 WRITE_EXTERNAL_STORAGE Dangerous 55

ACCESS_NETWORK_STATE Normal 71 WAKE_LOCK Normal 32

SEND_SMS Dangerous 53 READ_PHONE_STATE Dangerous 31

RECEIVE_BOOT_COMPLETED Normal 52 VIBRATE Normal 25

ACCESS_WIFI_STATE Normal 48 ACCESS_WIFI_STATE Normal 24

WAKE_LOCK Normal 42 ACCESS_FINE_LOCATION Dangerous 22

RECEIVE_SMS Dangerous 40 GET_ACCOUNTS Dangerous 22

READ_SMS Dangerous 40 RECEIVE Signature 21

https://doi.org/10.1371/journal.pone.0257968.t004

Table 5. Description of the ten highest permission requests by malware applications.

Android Application Description

INTERNET Enable apps to open the network socket.

READ_PHONE_STATE Enable access to phone state with read-only privilege (phone number, ongoing calls status, cellular network information, and

PhoneAccounts).

WRITE_EXTERNAL_STORAGE Enable external storage written by any apps

ACCESS_NETWORK_STATE Enables apps to access network information

SEND_SMS Enables apps to send Short Message Service (SMS).

RECEIVE_BOOT_COMPLETED Enables apps to accept the broadcast Intent.ACTION_BOOT_COMPLETED after the complete boot process.

ACCESS_WIFI_STATE Enables apps to grant information in Wi-Fi networks.

WAKE_LOCK Enables use of PowerManager WakeLocks to manage sleeping processor or dimming screen.

RECEIVE_SMS Enables apps to receive SMS messages.

READ_SMS Enables apps to read SMS messages.

https://doi.org/10.1371/journal.pone.0257968.t005

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 11 / 23

https://doi.org/10.1371/journal.pone.0257968.t004
https://doi.org/10.1371/journal.pone.0257968.t005
https://doi.org/10.1371/journal.pone.0257968


data randomisation. For this, the Waikato Environment for Knowledge Analysis (WEKA) was

used to evaluate the Android application. Weka is one of the machine learning software used

to solve complex issues. It provides a graphical interface to display the results and different

algorithms to predict and model the data [51]. applied WEKA to evaluate and improve the

quality of Android software [52]. used WEKA to process the failure log data set for industrial

machine components and prioritise components that are more likely to fail. In addition,

WEKA provides optimum results for feature optimisation as well as for dataset filtering pro-

cesses [53]. The filtering process was used to predict datasets at random. This process allows

any possible biases to be removed during the experiment [19]. applied WEKA for features

optimisation and malware detection. In this study, to select the best features, the optimisation

technique was used. Three optimisation techniques were selected to distinguish the malware

detection results. They included particle swarm optimisation (PSO), information gain, and

evolutionary computation. The performance between the different classifiers was measured to

determine the effectiveness of the Android malware detection.

PSO is an approach that seeks to solve problems in optimising decision-making. It was cre-

ated by Kennedy and Eberhart in 1995 [54]. PSO is a swarm-intelligence-based, non-deter-

ministic optimisation approach. It was created from the desire to simulate animal behaviour

(bird swarms) [55]. This approach and the location of the particles (sample of the experiment)

is alternated in the research area to achieve optimal results and resolve computational restric-

tions. The optimisation algorithm in PSO is capable of enhancing machine learning

approaches for detecting malware [19]. The PSO applied in [19] was intended to increase mal-

ware detection performance. This study [56] used the PSO to optimise the random generation

of candidate detectors and parameters because PSO enhances the ANFIS performance [55] by

modifying membership functions and reducing errors. The PSO concept includes each time

step, changing the velocity of a particle represented by pbest (the value of fitness) and gbest

(global version). Information gain then evaluates the value of an attribute by assessing the

information gain concerning the class. Evolutionary computation explores the attribute space

via an evolutionary algorithm. To identify efficacy in the Android malware detection areas, the

performances of five classifiers were compared. This study implemented a 10,000 sample data-

set which included 5,000 malware and 5,000 benign samples.

Experiment and results

This section describes the Android malware detection system and the evaluation process that

used WEKA as the machine learning tool. This study evaluated the effectiveness of an Android

malware detection system that applied static analysis techniques with machine learning

Fig 7. Comparison of total permission requests by malware and benign applications.

https://doi.org/10.1371/journal.pone.0257968.g007

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 12 / 23

https://doi.org/10.1371/journal.pone.0257968.g007
https://doi.org/10.1371/journal.pone.0257968


approaches. A standard metric was used for detecting malware. A high true positive (TP) value

was required to depict an accurate result. A TP occurs when the system correctly recognises

malware as malicious. A false negative (FN) occurs when it incorrectly identifies malware as

benign. A true negative (TN) occurs if the system recognises the benign programme as benign

correctly, whereas false positive (FP) occurs when a benign programme is incorrectly identi-

fied as malicious. This study used the Androzoo dataset for benign applications and the Drebin

dataset for malware applications. The total number of datasets involved in this experiment

amounted to 10,000 samples.

The evaluation process started with the collection of the malware and benign samples.

These were then combined into one database for training and testing the sets. The datasets

were then labelled as malware or benign. The datasets were first pre-preprocessed and then fil-

tered as unsupervised and randomised. The PSO, information gain, and evolutionary compu-

tation were then utilised for optimisation to obtain the best features. Tables 6–8 shows the

twenty features selected from PSO, information gain and evolutionary computation

approaches. Following this, the dataset that was evaluated by the five classifiers with 10-fold

cross-validation was used to restrict the problem of overfitting. It is important to ensure that

the dataset can be read and the technique can be facilitated in an unknown dataset [15].

Table 9 shows the result of the five machine learning classifiers used for detecting malware.

They were Random Forest, MLP, kNN, J48, and Adaboost.

Table 9 shows the detection performance of five Android malware detection classifiers. The

performance of each classifier is measured by five performance metrics such as TPR, FPR, pre-

cision, recall, f-measure and accuracy. The table indicates that PSO performs better than infor-

mation gain, evolutionary computation. Furthermore, Random Forests and kNN on PSO

perform well with 91.6% TPR. For each classifier, the average TPR is above 90% except for

Adabosst, which is 89%. The results showed that permission-based features and machine

Table 6. 20 features selection of PSO.

PSO

android.permission.FACTORY_TEST

android.permission.GLOBAL_SEARCH

android.permission.INSTALL_PACKAGES

android.permission.MOUNT_UNMOUNT_FILESYSTEMS

android.permission.PERMISSION_NAME

android.permission.PERSISTENT_ACTIVITY

android.permission.READ_PHONE_STATE

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.RECEIVE_SMS

android.permission.RECORD_VIDEO

android.permission.RESTART_PACKAGES

android.permission.SEND_SMS

android.permission.USE_CREDENTIALS

android.permission.WRITE_SECURE_SETTINGS

android.permission.WRITE_SMS

android.webkit.permission.PLUGIN

com.android.alarm.permission.SET_ALARM

com.android.browser.permission.READ_HISTORY_BOOKMARKS

com.android.launcher.permission.INSTALL_SHORTCUT

com.google.android.providers.gsf.permission.READ_GSERVICES

https://doi.org/10.1371/journal.pone.0257968.t006

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 13 / 23

https://doi.org/10.1371/journal.pone.0257968.t006
https://doi.org/10.1371/journal.pone.0257968


learning classifiers are an effective way to detect Android malware. Features optimisation also

helped to identify the best possible features and enhance accuracy in Android malware

detection.

Table 7. 20 features selection of information gain.

Information Gain

Android.03permission.READ_PHONE_STATE

Android.permission.SEND_SMS

Android.permission.READ_SMS

Android.permission.RECEIVE_SMS

Android.permission.RECEIVE_BOOT_COMPLETED

Android.permission.WRITE_SMS

com.Android.launcher.permission.INSTALL_SHORTCUT

Android.permission.INTERNET

Android.permission.INSTALL_PACKAGES

com.Android.browser.permission.WRITE_HISTORY_BOOKMARKS

com.Android.browser.permission.READ_HISTORY_BOOKMARKS

com.Android.launcher.permission.UNINSTALL_SHORTCUT

com.lge.launcher.permission.READ_SETTINGS

com.motorola.launcher.permission.READ_SETTINGS

com.motorola.dlauncher.permission.READ_SETTINGS

com.htc.launcher.permission.READ_SETTINGS

com.motorola.launcher.permission.INSTALL_SHORTCUT

com.lge.launcher.permission.INSTALL_SHORTCUT

com.motorola.dlauncher.permission.INSTALL_SHORTCUT

com.Android.launcher.permission.READ_SETTINGS

https://doi.org/10.1371/journal.pone.0257968.t007

Table 8. 20 features selection of evolutionary computation.

Evolutionary Computation

android.permission.ACCESS_LOCATTON_MOCK_LOCATION

android.permission.DEVICE_POWER

android.permission.FACTORY_TEST

android.permission.INSTALL_PACKAGES

android.permission.GLOBAL_SEARCH

android.permission.MOUNT_UNMOUNT_FILESYSTEMS

android.permission.PERMISSION_NAME

android.permission.PERSISTENT_ACTIVITY

android.permission.READ_PHONE_STATE

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.RECEIVE_SMS

android.permission.RECORD_VIDEO

android.permission.RESTART_PACKAGES

android.permission.SEND_SMS

android.permission.USE_CREDENTIALS

android.permission.WRITE_SECURE_SETTINGS

android.permission.WRITE_SMS

android.webkit.permission.PLUGIN

com.android.alarm.permission.SET_ALARM

com.android.browser.permission.READ_HISTORY_BOOKMARKS

https://doi.org/10.1371/journal.pone.0257968.t008

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 14 / 23

https://doi.org/10.1371/journal.pone.0257968.t007
https://doi.org/10.1371/journal.pone.0257968.t008
https://doi.org/10.1371/journal.pone.0257968


Receiver operating characteristic curve

A receiver operating characteristic curve (ROC) is a graphical plot. It is used to represent the

evaluation of performance detection in machine learning approaches. The ROC curve mea-

sures the effectiveness of the classifier prediction. The more closely the apex curve approaches

the upper left corner, the more accurate the prediction. The left corner indicates that the classi-

fier correctly detected the malware; it showed high accuracy with minimal false alarms. Fig 8

indicates that the five classifiers produced good performances based on the PSO results

because the ROC curve was close to the top left corner.

Area under a curve

The area under a curve (AUC) is used to measure the performance of the classifier with the fol-

lowing threshold values: 1 indicates perfect prediction, 0.9 excellent prediction, 0.8 good pre-

diction, 0.7 mediocre prediction, and 0.6 poor prediction. Table 10 shows the evaluation of

AUC, in which all the classifiers obtained excellent prediction. This demonstrates that the fea-

tures chosen are capable of detecting Android malware. Random Forest attained the highest

Table 9. Results of detection performance.

Optimisation Technique Machine Learning Classifier Performance Metric

Accuracy

(%)

TPR (%) Precision (%) Recall (%) F-Measures (%) FPR

PSO Random Forest 91.59 91.6 91.6 91.6 91.6 0.084

MLP 91.24 91.2 91.3 91.2 91.2 0.088

kNN 91.56 91.6 91.6 91.6 91.6 0.084

J48 91.07 91.1 91.1 91.1 91.1 0.089

Adaboost 89.03 89.0 89.2 89.0 89.0 0.110

Information Gain Random Forest 90.54 90.5 90.5 90.5 90.5 0.095

MLP 90.56 90.6 90.6 90.6 90.6 0.094

kNN 90.6 90.6 90.6 90.6 90.6 0.094

J48 90.35 90.4 90.4 90.4 90.3 0.097

Adaboost 89.53 89.5 89.6 89.5 89.5 0.105

Evolutionary Computation Random Forest 90.5 90.5 90.6 90.5 90.5 0.095

MLP 90.49 90.5 90.5 90.5 90.5 0.095

kNN 90.51 90.5 90.6 90.5 90.5 0.095

J48 90.18 90.1 90.3 90.2 90.2 0.098

Adaboost 88.55 88.6 88.7 88.6 88.5 0.115

https://doi.org/10.1371/journal.pone.0257968.t009

Fig 8. Receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0257968.g008

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 15 / 23

https://doi.org/10.1371/journal.pone.0257968.t009
https://doi.org/10.1371/journal.pone.0257968.g008
https://doi.org/10.1371/journal.pone.0257968


accuracy rate and was the most effective classifier for predicting malware. Random Forest is an

ensemble classifier in machine learning using decision trees. A different subset of training data

are constructed with an auxiliary to train each tree. This classifier is also known as the divide

and conquer algorithm. It has been proven to produce highly accurate results [53] and [6] is

effective in detecting malware.

Box plot analysis

The box plot analysis is applied to validate the experiment assessment based on the PSO per-

formance metric result. All test results have been saved in a.arff file, and then converted to a.

csv file. The result of precision, recall and f-measure were then produced in box plot graphs for

experimental evaluation and are shown in Figs 9–11. The top whiskers demonstrate that the

five classifiers achieved high precision rates of greater than 0.9%. Recall and f-measure rates

also achieved high result with significantly higher than 0.9%, except for the Adaboost, the per-

formance value is greater than 0.8%. In addition, five classifiers also show the value is going

from 0.0 to 1.0. As a result, it was indicated that the performance demonstrates high precision

with a high recall rate, proving that it is effective at accurately detecting malware.

Discussion

This section discusses the results of static analysis for Android malware detection. To enhance

the accuracy of Android malware detection, three optimisation techniques are used for fea-

tures selection–PSO, information gain and evolutionary computation. Twenty features of the

Android application are selected and has been evaluated by a machine learning approach with

five classifiers. PSO with Random Forest classifier present the best result accuracy compare to

others. Despite this, the others classifiers still consistently produces high-accuracy results in

excess of 88%. The comparative analysis of the study’s findings with previous research served

to emphasise the study’s relevance. Table 11 show the comparative study with related work.

[51] has shown 91.95% accuracy in malware detection. However, only 7400 datasets were

used compared with 10,000 data sets in this study [9]. applied information gain as features

optimisation, and Random Forest achieved the highest F-measure result, 94.3% in malware

detection. However, there is only an F-measure result is present. [58] applied information gain

as features optimisation and indicates Random Forest is the highest accuracy result, 94.73% in

malware detection. However, it involved a small dataset which is 3128, and only accuracy

results are present. In contrast, this study examines three optimisation techniques for the selec-

tion of features, namely PSO, information gain and evolutionary computation. It also displays

complete metric evaluation results and achieves high accuracy and low FPR. The FPR value is

important in determining the value of malware that has been incorrectly predicted [35]. The

results of the performance assessment show that this approach can detect well-known malware

for Android. This study also used the real Android data collection and applied different classi-

fiers to evaluate Android malware detection.

Table 10. Evaluation of AUC.

Classifier AUC Level

Random Forest 0.9974 Excellent Prediction

kNN 0.9945 Excellent Prediction

J48 0.9839 Excellent Prediction

MLP 0.9672 Excellent Prediction

Adaboost 0.9605 Excellent Prediction

https://doi.org/10.1371/journal.pone.0257968.t010

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 16 / 23

https://doi.org/10.1371/journal.pone.0257968.t010
https://doi.org/10.1371/journal.pone.0257968


Fig 9. Precision.

https://doi.org/10.1371/journal.pone.0257968.g009

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 17 / 23

https://doi.org/10.1371/journal.pone.0257968.g009
https://doi.org/10.1371/journal.pone.0257968


Fig 10. Recall.

https://doi.org/10.1371/journal.pone.0257968.g010

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 18 / 23

https://doi.org/10.1371/journal.pone.0257968.g010
https://doi.org/10.1371/journal.pone.0257968


Fig 11. F-Measure.

https://doi.org/10.1371/journal.pone.0257968.g011

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 19 / 23

https://doi.org/10.1371/journal.pone.0257968.g011
https://doi.org/10.1371/journal.pone.0257968


Conclusion

As previously stated, the current study utilised a machine learning approach which was com-

prised of five classifiers to detect Android mobile malware. The most effective classifiers were

selected, which consisted of Random Forest, MLP, kNN, J48, and Adaboost. Permission fea-

tures have been utilised to evaluate the efficiency of classifiers based on TPR results. Drebin’s

malware dataset includes 5,000 samples, while Androzoo’s benign dataset included 5,000

benign samples. They were then utilised to evaluate the static analysis technique. When apply-

ing the machine learning approach, the three stages of feature optimisation, training classifiers,

and the evaluation of the machine learning classifiers were observed. The experiment results

showed that Random Forest achieved the highest TPR of 91.6% for feature optimisation. This

result proved that the machine learning classifier was able to detect Android malware.

As is the case in all research, the current study was also constrained by some limitations.

First, it focused only on permission-based features. Future studies may want to extend the

model by identifying more malware behaviours along with the extraction of other features,

such as API calls and code analysis. These could serve as the basic input for the model. A risk

assessment system could also be considered in future studies to optimise malware detection.

Through the risk assessment, the risk of each permission request would then be prioritised and

zoned. The prioritising and zoning practice would raise mobile users’ awareness of potential

malware damage. It is hoped that the research community will consider conducting further

investigations into the problem of Android malware. The input of the community would serve

as a valuable reference for others interested in malware research.

Supporting information

S1 Data.

(ZIP)

Acknowledgments

We would like to express our gratitude to the anonymous reviewers for their insightful com-

ments on our work.

Author Contributions

Conceptualization: Sharfah Ratibah Tuan Mat.

Data curation: Sharfah Ratibah Tuan Mat.

Table 11. Comparative study with related work.

Reference Objective Features Algorithm Result

This

study

To propose a mobile malware detection system based on

static analysis

Permission-based Particle Swarm Optimisation with 5 machine

learning classifiers (RF, MLP, J48, kNN,

Adaboost)

Accuracy = 91.6%

[57] To identify those spare permissions requested and use this

information in the security and privacy approach, which use

static and code analysis

Permission-based,

code analysis

Bayesnet, Naive Bayes, logistic regression, MLP,

Ibk, K star, Decision Table, OneR, J48, RF,

Random Tree.

Accuracy = 91.95%

[9] Providing an efficient classification model to detect mobile

malware or mobile malware risk factors

Permission and

API calls

RF, J48, Random Tree, kNN and Naive Bayes. F-

measure = 94.3%

[58] To identify the best set of permission and intent in malware

detection

Permission and

intent

SVM, Naïve Bayes and Random Forest Accuracy = 94.73%

https://doi.org/10.1371/journal.pone.0257968.t011

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257968.s001
https://doi.org/10.1371/journal.pone.0257968.t011
https://doi.org/10.1371/journal.pone.0257968


Funding acquisition: Mohd Faizal Ab Razak, Nor Syahidatul Nadiah Ismail.

Methodology: Nor Syahidatul Nadiah Ismail.

Project administration: Mohd Faizal Ab Razak.

Resources: Ahmad Firdaus.

Software: Ahmad Firdaus.

Supervision: Mohd Faizal Ab Razak.

Validation: Suryanti Awang.

Visualization: Suryanti Awang.

Writing – original draft: Juliza Mohamad Arif.

Writing – review & editing: Juliza Mohamad Arif.

References

1. Razak M. F. A., Anuar N. B., Salleh R., and Firdaus A., “The rise of ‘malware’: Bibliometric analysis of

malware study,” J. Netw. Comput. Appl., vol. 75, pp. 58–76, 2016, https://doi.org/10.1016/j.jnca.2016.

08.022

2. G Data, “Cyber attacks on Android devices on the rise,” 2018. [Online]. Available: https://www.

gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise.

3. GData, “Mobile Malware Report -no let-up with Android malware,” 2019. [Online]. Available: https://

www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-

malware.

4. Mcaffee, “McAfee Mobile Threat Report Q1,” 2019. [Online]. Available: https://www.mcafee.com/

enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf.

5. Kakavand M., Dabbagh M., and Dehghantanha A., “Application of machine learning algorithms for

android malware detection,” ACM Int. Conf. Proceeding Ser., pp. 32–36, 2018, https://doi.org/10.1145/

3293475.3293489

6. Narudin F. A., Feizollah A., Anuar N. B., and Gani A., “Evaluation of machine learning classifiers for

mobile malware detection,” Soft Comput., vol. 20, no. 1, pp. 343–357, 2016, https://doi.org/10.1007/

s00500-014-1511-6

7. Alzaylaee M. K., Yerima S. Y., and Sezer S., “DL-Droid: Deep learning based android malware detec-

tion using real devices,” Comput. Secur., vol. 89, 2020, https://doi.org/10.1016/j.cose.2019.101663

8. Buchanan W. J., Chiale S., and Macfarlane R., “A methodology for the security evaluation within third-

party Android Marketplaces,” Digit. Investig., vol. 23, pp. 88–98, 2017, https://doi.org/10.1016/j.diin.

2017.10.002

9. Alazab M., Alazab M., Shalaginov A., Mesleh A., and Awajan A., “Intelligent mobile malware detection

using permission requests and API calls,” Futur. Gener. Comput. Syst., vol. 107, pp. 509–521, 2020,

https://doi.org/10.1016/j.future.2020.02.002

10. Qamar A., Karim A., and Chang V., “Mobile malware attacks: Review, taxonomy & future directions,”

Futur. Gener. Comput. Syst., vol. 97, pp. 887–909, 2019, https://doi.org/10.1016/j.future.2019.03.007

11. Saadi C., Kandrouch I., and Chaoui H., “Proposed security by IDS-AM in Android system,” 2019 Int.

Conf. Optim. Appl. ICOA 2019, pp. 1–7, 2019, https://doi.org/10.1109/ICOA.2019.8727616

12. Rehman A., Ur Rehman S., Khan M., Alazab M., and T. R. G, “CANintelliIDS: Detecting In-Vehicle Intru-

sion Attacks on a Controller Area Network using CNN and Attention-based GRU,” IEEE Trans. Netw.

Sci. Eng., vol. 4697, no. c, pp. 1–11, 2021, https://doi.org/10.1109/TNSE.2021.3059881

13. Numan M. et al., “A Systematic Review on Clone Node Detection in Static Wireless Sensor Networks,”

IEEE Access, vol. 8, pp. 65450–65461, 2020, https://doi.org/10.1109/ACCESS.2020.2983091

14. Amin M., Tanveer T. A., Tehseen M., Khan M., Khan F. A., and Anwar S., “Static malware detection and

attribution in android byte-code through an end-to-end deep system,” Futur. Gener. Comput. Syst., vol.

102, pp. 112–126, 2020, https://doi.org/10.1016/j.future.2019.07.070

15. Alam S., Alharbi S. A., and Yildirim S., “Mining nested flow of dominant APIs for detecting android mal-

ware,” Comput. Networks, vol. 167, p. 107026, 2020, https://doi.org/10.1016/j.comnet.2019.107026

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 21 / 23

https://doi.org/10.1016/j.jnca.2016.08.022
https://doi.org/10.1016/j.jnca.2016.08.022
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware
https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware
https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://doi.org/10.1145/3293475.3293489
https://doi.org/10.1145/3293475.3293489
https://doi.org/10.1007/s00500-014-1511-6
https://doi.org/10.1007/s00500-014-1511-6
https://doi.org/10.1016/j.cose.2019.101663
https://doi.org/10.1016/j.diin.2017.10.002
https://doi.org/10.1016/j.diin.2017.10.002
https://doi.org/10.1016/j.future.2020.02.002
https://doi.org/10.1016/j.future.2019.03.007
https://doi.org/10.1109/ICOA.2019.8727616
https://doi.org/10.1109/TNSE.2021.3059881
https://doi.org/10.1109/ACCESS.2020.2983091
https://doi.org/10.1016/j.future.2019.07.070
https://doi.org/10.1016/j.comnet.2019.107026
https://doi.org/10.1371/journal.pone.0257968


16. Comput J. P. D., Tong F., and Yan Z., “A hybrid approach of mobile malware detection in Android,” J.

Parallel Distrib. Comput., vol. 103, pp. 22–31, 2017, https://doi.org/10.1016/j.jpdc.2016.10.012

17. Li J., Sun L., Yan Q., Li Z., Srisa-An W., and Ye H., “Significant Permission Identification for Machine-

Learning-Based Android Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 3216–

3225, 2018, https://doi.org/10.1109/TII.2017.2789219

18. Chouhan R. R., “A Preface on Android Malware: Taxonomy, Techniques and Tools,” Int. J. Recent

Innov. Trends Comput. Commun., no. June, pp. 1111–1117, 2017.

19. Razak M. F. A., Anuar N. B., Othman F., Firdaus A., Afifi F., and Salleh R., “Bio-inspired for Features

Optimization and Malware Detection,” Arab. J. Sci. Eng., vol. 43, no. 12, pp. 6963–6979, 2018, https://

doi.org/10.1007/s13369-017-2951-y

20. Yan P. and Yan Z., “A survey on dynamic mobile malware detection,” Softw. Qual J, no. May 2017, pp.

891–919, 2018, https://doi.org/10.1007/s11219-017-9368-4

21. Liu X., Lin Y., Li H., and Zhang J., “A novel method for malware detection on ML-based visualization

technique,” Comput. Secur., vol. 89, 2020, https://doi.org/10.1016/j.cose.2019.101682

22. Rabbani M., Wang Y. L., Khoshkangini R., Jelodar H., Zhao R., and Hu P., “A hybrid machine learning

approach for malicious behaviour detection and recognition in cloud computing,” J. Netw. Comput.

Appl., vol. 151, no. May 2019, p. 102507, 2020, https://doi.org/10.1016/j.jnca.2019.102507

23. Etaher N., Weir G. R. S., and Alazab M., “From ZeuS to zitmo: Trends in banking malware,” Proc. - 14th

IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2015, vol. 1, pp. 1386–1391, 2015, https://

doi.org/10.1109/Trustcom.2015.535

24. Bernardi M. L., Cimitile M., Martinelli F., and Mercaldo F., “A fuzzy-based process mining approach for

dynamic malware detection,” IEEE Int. Conf. Fuzzy Syst., 2017, https://doi.org/10.1109/FUZZ-IEEE.

2017.8015490

25. Yan L. K. and Yin H., “DroidScope: Seamlessly reconstructing the os and dalvik semantic views for

dynamic android malware analysis,” Proc. 21st USENIX Secur. Symp., no. January 2012, pp. 569–584,

2012.

26. Wang S., Chen Z., Yan Q., Yang B., Peng L., and Jia Z., “A mobile malware detection method using

behavior features in network traffic,” J. Netw. Comput. Appl., vol. 133, no. January, pp. 15–25, 2019,

https://doi.org/10.1016/j.jnca.2018.12.014

27. Statista, “Development of new Android malware worldwide from June 2016 to May 2019,” 2019.

[Online]. Available: https://www.statista.com/statistics/680705/global-android-malware-volume/.

28. Nokia, “Nokia Threat Intelligence Report– 2019,” Netw. Secur., vol. 2019, no. 12, p. 4, 2019, https://doi.

org/10.1016/s1353-4858(18)30122-3

29. Alcatel-Lucent, “Mobile malware: A network view,” 2015. [Online]. Available: https://www.blackhat.com/

docs/ldn-15/materials/london-15-McNamee-Mobile-Malware-A-Network-View-wp.pdf.

30. Salah Y., Hamed I., Nabil S., Abdulkader A., and Mostafa M. M., “Mobile Malware Detection: A Survey,”

Int. J. Comput. Sci. Inf. Secur., vol. 17, no. 1, 2019.

31. Gyamfi N. K., “Survey of Mobile Malware Analysis, Detection Techniques and Tool,” pp. 1101–1107,

2018.

32. Enck W., Ongtang M., and McDaniel P., “On lightweight mobile phone application certification,” Proc.

ACM Conf. Comput. Commun. Secur., no. May, pp. 235–245, 2009, https://doi.org/10.1145/1653662.

1653691

33. Felt A. P., Chin E., S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,” Proc. ACM

Conf. Comput. Commun. Secur., no. October, pp. 627–636, 2011, https://doi.org/10.1145/2046707.

2046779

34. Grace M., Zhou Y., Zhang Q., Zou S., and Jiang X., “RiskRanker: Scalable and accurate zero-day

android malware detection,” MobiSys’12—Proc. 10th Int. Conf. Mob. Syst. Appl. Serv., pp. 281–293,

2012, https://doi.org/10.1145/2307636.2307663

35. Faruki P., Ganmoor V., Laxmi V., Gaur M. S., and Bharmal A., “AndroSimilar: Robust statistical feature

signature for android malware detection,” SIN 2013—Proc. 6th Int. Conf. Secur. Inf. Networks, no. Sep-

tember 2015, pp. 152–159, 2013, https://doi.org/10.1145/2523514.2523539

36. Arzt S. et al., “FLOWDROID: Precise context, flow, field, object-sensitive and lifecycle-aware taint anal-

ysis for Android apps,” ACM SIGPLAN Not., vol. 49, no. 6, pp. 259–269, 2014, https://doi.org/10.1145/

2594291.2594299

37. Mehtab A. et al., “AdDroid: Rule-Based Machine Learning Framework for Android Malware Analysis,”

Mob. Networks Appl., vol. 25, no. 1, pp. 180–192, 2020, https://doi.org/10.1007/s11036-019-01248-0

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 22 / 23

https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1007/s13369-017-2951-y
https://doi.org/10.1007/s13369-017-2951-y
https://doi.org/10.1007/s11219-017-9368-4
https://doi.org/10.1016/j.cose.2019.101682
https://doi.org/10.1016/j.jnca.2019.102507
https://doi.org/10.1109/Trustcom.2015.535
https://doi.org/10.1109/Trustcom.2015.535
https://doi.org/10.1109/FUZZ-IEEE.2017.8015490
https://doi.org/10.1109/FUZZ-IEEE.2017.8015490
https://doi.org/10.1016/j.jnca.2018.12.014
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://doi.org/10.1016/s1353-4858%2818%2930122-3
https://doi.org/10.1016/s1353-4858%2818%2930122-3
https://www.blackhat.com/docs/ldn-15/materials/london-15-McNamee-Mobile-Malware-A-Network-View-wp.pdf
https://www.blackhat.com/docs/ldn-15/materials/london-15-McNamee-Mobile-Malware-A-Network-View-wp.pdf
https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2307636.2307663
https://doi.org/10.1145/2523514.2523539
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1007/s11036-019-01248-0
https://doi.org/10.1371/journal.pone.0257968


38. Gibert D., Mateu C., and Planes J., “The rise of machine learning for detection and classification of mal-

ware: Research developments, trends and challenges,” J. Netw. Comput. Appl., p. 102526, 2020,

https://doi.org/10.1016/j.jnca.2019.102526

39. Naway A. and Li Y., “A Review on The Use of Deep Learning in Android Malware Detection,” Int. J.

Comput. Sci. Mob. Comput., vol. 7, no. 12, pp. 42–58, 2018.

40. Jerlin M. A. and Marimuthu K., “A New Malware Detection System Using Machine Learning Techniques

for API Call Sequences,” J. Appl. Secur. Res., vol. 13, no. 1, pp. 45–62, 2018, https://doi.org/10.1080/

19361610.2018.1387734

41. Sarmah Abhijit, “Intrusion Detection Systems: Definition, Need and Challenges,” 2019. [Online]. Avail-

able: https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-systems-definition-

challenges-343.

42. Kosa J. A., “Ashish Kumar Luhach First International Conference on Sustainable Technologies for

Computational Intelligence,” 2019.

43. Feizollah A., Anuar N. B., Salleh R., Suarez-Tangil G., and Furnell S., “AndroDialysis: Analysis of

Android Intent Effectiveness in Malware Detection,” Comput. Secur., vol. 65, pp. 121–134, 2017,

https://doi.org/10.1016/j.cose.2016.11.007

44. Razak M. F. A., Anuar N. B., Salleh R., Firdaus A., Faiz M., and Alamri H. S., “‘Less Give More’: Evalu-

ate and zoning Android applications,” Meas. J. Int. Meas. Confed., vol. 133, pp. 396–411, 2018.

45. Firdaus A., Anuar N. B., Razak M. F. A., and Sangaiah A. K., “Bio-inspired computational paradigm for

feature investigation and malware detection: interactive analytics,” Multimed. Tools Appl., vol. 77, no.

14, pp. 17519–17555, 2018, https://doi.org/10.1007/s11042-017-4586-0

46. Peiravian N. and Zhu X., “Machine learning for Android malware detection using permission and API

calls,” Proc.—Int. Conf. Tools with Artif. Intell. ICTAI, pp. 300–305, 2013, https://doi.org/10.1109/ICTAI.

2013.53

47. Google Developers, “Manifest.permission,” 2020. [Online]. Available: https://developer.android.com/

reference/android/Manifest.permission#READ_PHONE_NUMBERS. [Accessed: 16-Jan-2020].

48. Allix K., Bissyandé T. F., Klein J., and Le Traon Y., “AndroZoo: Collecting millions of Android apps for

the research community,” Proc. - 13th Work. Conf. Min. Softw. Repos. MSR 2016, pp. 468–471, 2016,

https://doi.org/10.1145/2901739.2903508

49. Arp D., Spreitzenbarth M., Hübner M., Gascon H., and Rieck K., “Drebin: Effective and Explainable

Detection of Android Malware in Your Pocket,” NDSS, no. August, 2014, https://doi.org/10.14722/ndss.

2014.23247

50. Kumar N., Kharkwal N., Kohli R., and Choudhary S., “Ethical aspects and future of artificial intelligence,”

2016 1st Int. Conf. Innov. Challenges Cyber Secur. ICICCS 2016, no. Iciccs, pp. 111–114, 2016,

https://doi.org/10.1109/ICICCS.2016.7542339

51. Chandra K., Kapoor G., Kohli R., and Gupta A., “Improving software quality using machine learning,”

2016 1st Int. Conf. Innov. Challenges Cyber Secur. ICICCS 2016, no. Iciccs, pp. 115–118, 2016,

https://doi.org/10.1109/ICICCS.2016.7542340

52. Lima E., Gorski E., Loures E. F. R., Portela Santos E. A., and Deschamps F., “Applying machine learn-

ing to AHP multicriteria decision making method to assets prioritization in the context of industrial main-

tenance 4.0,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 2152–2157, 2019, https://doi.org/10.1016/j.

ifacol.2019.11.524

53. Firdaus A., Anuar N. B., Karim A., and Razak M. F. A., “Discovering optimal features using static analy-

sis and a genetic search based method for Android malware detection,” Front. Inf. Technol. Electron.

Eng., vol. 19, no. 6, pp. 712–736, 2018, https://doi.org/10.1631/FITEE.1601491

54. Eberhart R. and Kennedy J., “New optimizer using particle swarm theory,” Proc. Int. Symp. Micro Mach.

Hum. Sci., pp. 39–43, 1995, https://doi.org/10.1109/mhs.1995.494215

55. Afifi F., Anuar N. B., Shamshirband S., and Choo K. K. R., “DyHAP: Dynamic Hybrid ANFIS-PSO

approach for predicting mobile malware,” PLoS One, vol. 11, no. 9, pp. 1–21, 2016, https://doi.org/10.

1371/journal.pone.0162627 PMID: 27611312

56. Adebayo O. S. and Aziz N. A., “Improved Malware Detection Model with Apriori Association Rule and

Particle Swarm Optimization,” Secur. Commun. Networks, vol. 2019, 2019, https://doi.org/10.1155/

2019/2850932

57. Arslan R. S., Dogru I. A., and Barisci N., “Permission-Based Malware Detection System for Android

Using Machine Learning Techniques,” Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 1, pp. 43–61, 2019,

https://doi.org/10.1142/S0218194019500037

58. Khariwal K., Singh J., and Arora A., “IPDroid: Android malware detection using intents and permis-

sions,” Proc. World Conf. Smart Trends Syst. Secur. Sustain. WS4 2020, pp. 197–202, 2020, https://

doi.org/10.1109/WorldS450073.2020.9210414

PLOS ONE Android permission-based malware detection system

PLOS ONE | https://doi.org/10.1371/journal.pone.0257968 September 30, 2021 23 / 23

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1080/19361610.2018.1387734
https://doi.org/10.1080/19361610.2018.1387734
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-systems-definition-challenges-343
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-systems-definition-challenges-343
https://doi.org/10.1016/j.cose.2016.11.007
https://doi.org/10.1007/s11042-017-4586-0
https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.1109/ICTAI.2013.53
https://developer.android.com/reference/android/Manifest.permission#READ_PHONE_NUMBERS
https://developer.android.com/reference/android/Manifest.permission#READ_PHONE_NUMBERS
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/ICICCS.2016.7542339
https://doi.org/10.1109/ICICCS.2016.7542340
https://doi.org/10.1016/j.ifacol.2019.11.524
https://doi.org/10.1016/j.ifacol.2019.11.524
https://doi.org/10.1631/FITEE.1601491
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1371/journal.pone.0162627
https://doi.org/10.1371/journal.pone.0162627
http://www.ncbi.nlm.nih.gov/pubmed/27611312
https://doi.org/10.1155/2019/2850932
https://doi.org/10.1155/2019/2850932
https://doi.org/10.1142/S0218194019500037
https://doi.org/10.1109/WorldS450073.2020.9210414
https://doi.org/10.1109/WorldS450073.2020.9210414
https://doi.org/10.1371/journal.pone.0257968

