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Deformation of ground during tunnelling projects is one of the complex issues that is required to be monitored carefully to avoid
the unexpected damages and human losses. Accurate prediction of ground settlement (GS) is a crucial concern for tunnelling
problems, and the adequate predictive model can be a vital tool for tunnel designers to simulate the ground settlement accurately.
*is study proposes relatively new hybrid artificial intelligence (AI) models to predict the ground settlement of earth pressure
balance (EPB) shield tunnelling in the Bangkok MRTA project. *e predictive models were various nature-inspired frameworks,
such as differential evolution (DE), particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimizer (ACO)
to tune the adaptive neuro-fuzzy inference system (ANFIS). To obtain the accurate and reliable results, the modeling procedure is
established based on four different dataset scenarios including (i) preprocessed and normalized (PPN), (ii) preprocessed and
nonnormalized (PPNN), (iii) non-preprocessed and normalized (NPN), and (iv) non-preprocessed and nonnormalized (NPNN)
datasets. Results indicated that PPN dataset scenario significantly affected the prediction models in terms of their perdition
accuracy. Among all the developed hybrid models, ANOFS-PSO model achieved the best predictability performance. In
quantitative terms, PPN-ANFIS-PSO model attained the least root mean square error value (RMSE) of 7.98 and a correlation
coefficient value (CC) of 0.83. Overall, the attained results confirmed the superiority of the explored hybrid AI models as robust
predictive model for ground settlement of earth pressure balance (EPB) shield tunnelling.

1. Introduction

*e durability of underground excavation projects is nor-
mally dependent on accurate deformation prediction of the
rock masses [1, 2]. Currently, the construction of a tunnel in
the urban locations with small construction depth is facing a
significant increase in growth in the complex geological
formations and there is increase in risk conditions by ex-
ternal loading from the building [3]. However, the increase
of budge and construction delay may exist when these
conditions cannot be acknowledged before excavating the
tunnel. *us, to prevent project delays around the tunnel, a

significant valid prediction is needed [4], particularly the
structural failure and excessive deformation and structural
failure that are forecasted by monitoring and data collection
within the tunnel. Subsequent genuine and helpful actions are
taken based on the feedback information [5]. Regardless of an
increase in the experience and theoretical assessment obtained
from themonitored data using several construction techniques,
targeted and reliable techniques of available predictions are still
absent [6]. *e analytical and empirical techniques are not
suitable for all geological cases because they cannot produce
reliable results but only forecast a few numbers of geo-me-
chanical applying simplifications and parameters [4].
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Despite the use of the earth pressure balance (EPB)
shields over the years, the actual mechanism that governs
shield-ground interaction is yet to be fully understood. *e
understanding of the EPB tunnelling-induced ground re-
sponse mechanism is difficult as it requires both a reliable
measurement of ground deformations in the field and the
EPB shields’ operational records. Few studies on EPB
tunnelling are currently available but being that there has
been a significant increase in the use of EPB tunnelling
technique in recent times; especially in urban environments,
there is a need for engineers to have a better understanding
of themechanisms of EPB tunnelling and how its parameters
influence ground deformations. *is will help to reduce the
detrimental effects of this mechanism on the immediate
surrounding.

Some of the engineering mechanics attributes of tunnel
rock masses bothered on the failure and mechanism,
meaning that engineers neither readily nor accurately
forecasted because of the lack of clarity on the extent of rock
mass support interaction, heterogeneity of the rock mass,
and geotechnical environments before construction. Many
years ago, some major studies had concentrated on the
regularities and rock masses deformation and mechanism of
ground surface settlements according to the in situ test data
collected from the past projects and accumulated experience
that have detected the durability of the tunnels.

*ere are three kinds of techniques, including the ar-
tificial intelligence and analytical and numerical methods
that can be utilized during practice to evaluate the tunnel
deformation. An analytical technique was performed on a
shallow tunnel in the saturated ground according to [7]
where they used two kinds of drainage conditions with and
without full drainage at the ground-line interface.*e results
obtained showed that the solutions are narrowed to where
ground deformations are small. Chou and Bobet [8] utilized
28 tunnels in determining the predictions from an analytical
method in shallow tunnels on saturated ground. Based on
this result, the difference between observation and predic-
tions from real tunnels showed about 15% good agreement.
Other different studies were carried out using the analytical
methodologies [9–11].

Several AI techniques have been developed for
addressing the challenges associated with rock and geo-
technical engineering [12, 13]. Sou-Sen and Hsien-Chuang
[14] used an artificial neural network- (ANN-) based re-
gression model for the prediction of the influence of the
ground surface settlement through intense excavation. *ey
utilized case data that were obtained from just concluded
deep excavation projects in Taiwan to develop a model.
*ese results showed that the ANN-based forecasted models
that can justifiably forecast the location and magnitude of
maximum ground surface settlement influenced through
deep excavation. An et al. [15] suggested an evolutionary
neural network (ENN) model to simulate the ground set-
tlement. *e model was developed according to the
mechanism which enables every part of the network
structure, such as the learning parameters and several
hidden nodes that can be developed via the genetic algo-
rithms. *ese results showed a better achievement for the

prediction of the ground settlement. Neaupane and Adhikari
[16] established the ANN model for predicting ground
movement throughout the tunnels. *e predicted surface
settlement above a horizontal ground movement and tunnel
can be as a result of a tunnel construction through the
assistance of input parameters that can cause direct physical
significance. *ese results showed the ability of the ANN
model to achieve positive outcomes and fairly and suc-
cessfully forecasted the desired goal. Cheng et al. [17] de-
veloped an evolutionary fuzzy neuro-inference system
(EFNIS) in facilitating geotechnical expert in decision
making. *e EFNIM consist of three separate AI technol-
ogies, such as genetic algorithm (GA), neural network (NN),
and fuzzy logic (FL). Two case studies were considered,
estimating slurry-wall duration that includes a selection of
retaining wall construction techniques and estimating
slurry-wall duration. *e outcomes showed that EFNIS has
an increased capability for the geotechnical challenges over
the other classical AI models when the two references were
compared. Santos and Celestino [18] confirmed the ANN
model functionality by analysing tunnel settlement instru-
mentation. *is study was centred on a settlement above
shotcrete-supported tunnels on West Extension that were
excavated in tertiary sediment utilizing the sequential ex-
cavation technique. *e study has shown that the ANN
model predicted accurately. Lee and Akutagawa [19] re-
ported the ANN method as a rapid displacement prediction
by utilizing the outcomes of field measurement in the
NATM tunnels. *ey gathered data for NATM tunnels built
on a coarse ground and analysed them based on the major
tunnelling parameters, including tunnel displacement,
support condition, and geometry discovered during con-
structions. *e outcomes proposed that the ANN model
could forecast tunnel deformations at the last phase before
construction with reasonable increase in the level of accu-
racy of some information. Yao et al. [20] reported a mul-
tistep-ahead prediction model according to the SVM model
of the tunnel that surrounds the rock displacement pre-
diction. *ey used shuffled complex evolution algorithm
(SCEUA) through some exponential transformations in
improving the training capacity of the SVM. *e outcomes
demonstrated that SVM is better than the classical ANN and
indicated that SVM can be an effective and feasible multistep
technique for a tunnel which surrounds the rock displace-
ment prediction. Pourtaghi and Lotfollahi-Yaghin [21] in-
troduced the method that was based on a combination
between the ANN model and wavelet theory for the pre-
diction of maximum surface settlement due to tunnelling.
*e simulation results showed a reduction in estimated error
values which represented the capacity to increase the activity
approximation ability and wherefore exhibited outstanding
learning capability as compared to the other activation
activities. Wang et al. [22] utilized an easy relevancy vector
machine with a wsRVM to module tunnelling-induced
ground surface settlement establishment. Several conditions
that affect settlement were examined, such as shield oper-
ational, geological, and geometrical parameters. *e out-
comes indicated that the prediction model works perfectly
and the extension of the predictions could give a mean of
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predicting uncertainty. Khamesi et al. [23] presented a
numerical analysis, imperialistic competitive algorithm, and
intelligent back analysis technique combining fuzzy systems
to improve the capacity of intelligent back analysis in
tunnelling. *e results showed that PSO achieved the best
parameters tuning performance while ICA showed great
capacity for world searching on designed fuzzy system and it
was seen that the fuzzy systems are equal to the inputs with
given outputs for making back analysis feasible in a large
worldwide space and to apply these methods to additional
difficult engineering problems. Ahangari et al. [24] used new
intelligent techniques in predicting subway settlement
depended on gene expression programming (GEP) and
ANFIS model in the settlement prediction. *ey obtained
data from fifty-three tunnels all over the world, forty data
sets were used in intelligent modeling, while thirteen data
were utilized to evaluate its role. *ey deduced that the two
intelligent techniques are approved to predict subway set-
tlements. Hasanipanah et al. [25] revealed that hybrid ANN-
PSO can be used to predict maximum surface settlement
resulted from tunnelling.*emodel was developed based on
143 datasets. *e results showed that the suggested PSO-
ANN model can predict maximum surface settlements by
producing an increased level of accuracy when compared to
the ANN results.

*e potential of the ANFIS model for modeling settle-
ment problems has been documented in the literature [26].
Results indicated an optimistic research trend using the
capability of the ANFIS model. However, there are certain
problems with the ANFIS model and these are related with
the tuning of the parameters of the membership function
[27]. *is problem is incorporated with the learning process
of the model that at the first place influence the prediction
accuracy. As a matter of fact, AI models are subjective to
hyperparameters tuning [28]. *e new era of computer aid
application is advanced to the exploration of the hybrid-
ization of AI models with various nature inspired optimi-
zation algorithms such as ant colony (ACO), particle swarm
optimization (PSO), genetic algorithm (GA), and differential
evolution (DE) [29–32], which can be used to train AI
models and improve their performance in addressing both
high-dimensional and nonlinear problems. *e introduced
optimization algorithms have been evidenced their capacity
in optimizing ANFIS model for modeling diverse prediction
problems [33–38]. *e hybridization of ANFIS model with
nature inspired optimization algorithms demonstrated a
remarkable improvement for prediction process of several
engineering applications [39–43]. Hence, the main goal of
the hybridization is to attain a stable and reliable learning
process [44–46].

*is work is driven by the need to study the feasibility of
relatively new hybrid models based on the hybridization of
ANFIS model with four different nature-inspired algorithms
which are ACO, PSO, GA, and DE for modeling ground
settlement of earth pressure balance (EPB) shield tunnelling.
To attain an accurate and reliable predictability perfor-
mance, the modeling procedure is established based on four
different dataset scenarios where the data preprocessing and
data normalization are incorporated. A comprehensive

analysis and assessment are conducted on the achieved
results. Several limitations are recognized and reported for
possible future research devotion.

2. Underground Tunnel and Data Description

In the current research, the underground dataset used for the
modeling development is belonged to the Bangkok Subway
project. *e project consisted of twenty kilometers length of
twin tunnels. *e entire project was initiated with eight EPB
shields. *e geological feature of the project is Chao Praya
delta plain with topological around 1–0.5 meters above the
sea level. During the excavation of the project, large number
of surface settlement markers and array “within 50 meters
depth” were installed to measure the ground settlement (see
Figure 1). *ere are several factors effecting the surface
settlement including the geometry of the tunnel (depth of
the tunnel and the distance from shaft), geological param-
eters (e.g., the groundwater table, geology at the crown, and
invert of the tunnel) and shield operation parameters (rate of
penetration, face pressure, pitching angle, percentage tail
void grout filling, and tail void grouping pressure) [47]. *is
study considered 13 related parameters to build the pre-
diction matrix of the proposed hybrid predictive models.

3. Methodology Overview

3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS).
Neuro-fuzzy (NF) set approach represents an integrative soft
computing method comprising of neural networks for
patterns recognition for the immediate environment and a
human expert-dependent fuzzy inference system for making
solutions and differentiating solutions in a special field
[48, 49]. *e performance of these systems in decisions
processing and explanation ought to mimic human-like
expertise [50]. Additionally, the system has a fault tolerance
capability that ensures the system will not be adversely affected
during a deletion/amendment task. However, the applicability
of soft computing approach is gaining momentum with the
development of a firm foundation in various fields all around
the world. Adaptive neuro-fuzzy inference system (ANFIS) was
developed as a branch of the AI models whose mechanism of
operation is based on Takagi–Sugeno fuzzy inference system
[51]. ANFIS combines the advantages of neural networks and
fuzzy logic in a single framework [52]. It is also equipped with a
fuzzy inference system which can be trained; thus, it is taken as
a systemwith better efficiency compared to systems with only a
neuro-fuzzy system.*is work used different input parameters
and only one output f interference system.*e rules of the first-
order Sugeno fuzzy model [53] are as follows: f1, f2, . . ., fn,
where n is the highest number of rules [54]:

Rule #1: if X isA1 andY isB1 , thenf1 � p1x + q1y + r1,

Rule #2 : if X isA2 andY isB2, thenf2 � p2x + q2y + r2,

(1)

where A1-A2 and B1– B2 are the membership functions for
multiple inputs including x and y. Figure 2 presents the main
ANFIS model structure.
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In an ANFIS model structure with multiple rules, several
inputs, and one output, the nodes in the same layer perform
the same role. *e output of the ith node in the first layer is
selected when the input membership functions (MFs) are
contained in the first layer and the input values are delivered
to the subsequent layer [55, 56]. *e generalized bell
function must have the best nonlinear parameters catego-
rization capability for it to be used. In the first layer, every
node is squared to initiate the membership grades.*e input
parameters are translated into linguistic terms:

O
1
i � μAi

(x), i � 1, 2, (2)

in which x� input parameters of node I, Ai � a linguistic
term, and O1

i � the MF of Ai.
*e output of the first layer is multiplied by the second

layer (usually called a membership layer) to generate a new
output. Each node in the second layer is considered a fixed
node whose output depends on all the input values.*e node
i in the 3rd layer computes the firing strength ratio of the
rules, with the outputs taken as the normalized weights [57].
*e values of the inference rules-based outputs are provided

by the fourth layer; the overall inputs of the previous layers
are combined in this layer before converting the classifi-
cation results into the final output. *e ANFIS structure is
identified by the applied learning algorithm. *e functional
forward pass signal in this algorithm continues until the fifth
layer (the defuzzification layer).

Least squares estimate was used to identify the conse-
quent parameters.*e error rates propagate backward in the
backward pass while during the gradient descent, the
premise parameters are updated. *e ANFIS models’
membership function was later tuned using several nature
inspired optimization algorithms including PSO, GA, and
DE optimization algorithms to ensure a minimum solar
radiation prediction error.

3.2. Particle Swarm Optimization (PSO). PSO is a compu-
tational framework put together by Eberhart and Kennedy
[58] in 1995 for continuous and discontinues decision-
making processes. It was based on the natural behavior of
living species such as the schooling of fishes when searching
for food sources. Being that in the PSO, each particle in the
population is considered as a potential solution, the PSO is
regarded as a population search-based method. During an
active search, the optimal solution found by every particle is
varied in a multidimensional space until there are no more
computation limitations to be addressed. In the PSO, the
major problems encountered during swarm optimization
are associated with the position ofN particles; this position is
randomly assigned to the swarm in the D-dimensional
space. Each solution in the swarm is associated with a po-
sition and each particle in the solution space is counted
through a scoring function whose values explain the status of
the problem. Several studies have applied PSO on several
optimization problems [59], where it has been found that all
the particles found the global best position in the solution
space and achieved personal best positions. *e new
assigned position and velocity of the particles are updated by
the following rules [60]:

p � p + v, (3)

with

v � v + c1.rand. pbest − p( 􏼁 + c2.rand. gbest − p( 􏼁, (4)

where p and v are the particle position and direction, c1 is the
local weight and c2 is the global weight, pbest and gbestare the
best positions for the particles and swarms, respectively, and
rand is a random value. *e operation of the PSO algorithm
is depicted in Figure 3.

3.3. Genetic Algorithm (GA). *e GA was first developed by
[61] as an advanced optimization framework. As an AI
framework, it uses vectors of 1’s and 0’s to represent complex
structures. *e GA was modeled after the concept of natural
genetics as optimized functions are established by com-
paring 2 distinct approaches. *e GA has a better capability
of establishing global optimal solutions to huge combina-
torial problem and this is its major advantage compared to
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Figure 1: Typical instrumentation for ground surface settlement
for the studied project.

x

y
B1

A2

A1

B2

II

II N

N

∑ f

ANFIS

x y

x y

Input
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Output
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the other systems. Consequently, the GA is often used in
multiobjective tasks optimization. *e operation of the GA
is similar to those of natural evolution processes; it relies on
3 operators which are selection, crossover, and mutation.
*e first optimization step using GA involves the evaluation
of the fitness functions of the selected configuration (known
as a chromosome). *is step also involves sustaining a
population of M solutions. If the annualized system cost of
the evaluated chromosome is lower than the lowest known
annualized system cost from the previous iterations, such a
chromosome will be considered the optimal solution, and
this would reduce the required number of problem itera-
tions. Meanwhile, this optimum solution can also be ex-
changed with any better solution. *en, the crossover and
mutation processes will be executed to select the best so-
lution which will generate a new set of generations.

*is process is repeated until an already specified con-
vergence level is reached. Some precise parameters were
used in the suggested GA model in this study; they are the
size of the population, the rate of mutation, the crossover
percentage, and the selection pressure (refer to Table 1).
Figure 3 depicts the flow chart of the proposed GA.

3.4. Deferential Equation. *e DE was developed as an in-
telligent framework for optimization tasks. Its operation
mimics the basic optimized mutation, crossover, and se-
lection operators. *e DE relies on NP and D-dimensional
parameter vectors because it is a parallel direct search
method and is not impacted by minimization processes;
hence, it is considered a population process when generating
each generation G. In the DE, an initial population vector is

randomly selected to cover all the parameter spaces; all the
random choices are assigned a uniform probability distri-
bution. DE generates new parameter vectors based on the
available preliminary solution by generating the weight
difference between 2 population vectors and a 3rd vector via a
mutation operation as follows:

xi, G � [x1, i, G, x2, i, G, . . . , xn, i, G], i � 1, 2, . . . , k,

(5)

wherex1, G, i � 1, 2, 3, . . ., NP are the generated mutant
vectors using vi,G+1, and r1 , r2, and r3 are arbitrarily selected
numbers ∈[1, 2, 3, . . .,] . . . NP. Note that NPmust have these
values, with i and F being actual that only differed from each
other ∈[1, 2, 3, . . .,] . . . NP. *e trial vector is established via
a mixing process (crossover operation) that involves mixing
the parameters of the mutated vector with the other pa-
rameters of the predetermined vectors as follows:

xLj ≤ xj, i, 1 ≤ xUj, (6)

where ui, G +1 is the trailer vector and xi, G is the target vector;
rand b(j) represents the Jth uniform random evaluation
∈∈[0.1], rnbr(i ) is a random value index ∈∈[1, 2, 3, . . . , d],
and CR is a user-specified crossover constant. Lastly, the trial
vector that gives the lowest cost function value compared to
the target vector is used during the selection operation as the
target value in the subsequent generation. Being that each
population must serve as the target vector, NP tasks are
considered as a one-generation procedure. A study by [62]
has provided a deep description of the standard DE. Table 1
presents the proposed DE models’ structure while its flow
chart is depicted in Figure 3.

Initialization of ANFIS model

Train PSO Train ACO Train DE Train GA

Determine the pass
functions

Update the population
parameters

Perform the crossover
and mutation

Compare the pass functions

Meet the
stopping
criteria

YesYes

Meet the
stopping
criteria

NoNo

YesYes

Meet the
stopping
criteria

Meet the
stopping
criteria

NoNo

Select and comparison
operations

Pheromone evaporation
Update velocity

and position

Comparison and
replacement

Calculate the
fitness of

population

Creation of ant and
initiating entry state

Pheromone deposit

Daemon activities

End

Crossover
operation

Mutation operation

Define all parameters

Figure 3: *e flow chart of the proposed hybrid ANFIS models; the optimization procedure of each integrated nature inspired algorithm.
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3.5. Ant Colony Optimization (ACO). ACO was put forward
two decades ago by Dorigo [63] but has undergone several
modifications since its development. ACO algorithms have a
wide range of application due to their capability to solve both
static and dynamic problems. Stignergy, a self-organization-
enabling process, coordinates numerous activities in ant
colonies; such activities include food hunting, labour par-
titioning, brood sorting, and cooperative transport in the ant
colony. Ant colonies are known to contain simple indi-
viduals; yet, it is a complex but well-organized structure
where all activities are coordinated by stignergy. Chemical
deposits known as pheromone are deposited by the leading
ants for the followers to trail while seeking the shortest route
to food source. ACO relies on such procedure for estab-
lishing the optimal position in the solution space. *e ants
move in a forward and backward pattern and adopt a step-
wise decision approach in finding the optimal solution to
any problem [48–50]. Figure 3 shows the flowchart for ACO.

3.6. Modeling Development Scheme. *e developed hybrid
and standalone ANFIS models (ANFIS-PSO, ANFIS-DE,
ANFIS-ACO, ANFIS-GA, and ANFIS) were constructed
based on several geo-technical information.*e information
was used as numerical parameters to initiate the prediction
matrix. Figure 4 presents the input/output parameters used

in the current research. *e dataset has a total of 49 ob-
servations and for the non-preprocessed datasets, the data
were partitioned into 65% and 35% for training and testing
purposes, respectively. For the preprocessed data, the
modeling was executed with 38 observations based on the
data partitioning percentage of 63%–35%. Several statistical
measures, plots, and error levels between the experimental
and predicted ground settlements were reported during the
testing phase. *e prediction process was conducted based
on several scenarios associated with the data processing
including (i) preprocessed and normalized (PPN) dataset,
(ii) preprocessed and nonnormalized (PPNN) dataset, (iii)
non-preprocessed and normalized (NPN) dataset, and (iv)
non-preprocessed and nonnormalized (NPNN) dataset
“with total 20 modeling investigations model 1-model 20.”
*e statistical performance of all the developed predictive
models are reported in Tables 2–5, respectively.

3.7. Modeling Performance Metrics. Several statistical met-
rics are computed to assess the predictability performance of
the proposed predictive models including mean absolute
error (MAE), root mean square error (RMSE), Legate and
McCabe’s index (LMI), PBIAS, Willmott’s index (WI),
correlation coefficient (CC), and relative root mean square
error (RRMSE); these metrics were calculated, thus [64–68]

Table 1: *e values of the models tuning parameters.
Models Parameters Values

Algorithm: PSO

Global learning coefficient 2
Number of iterations 1200
Number of populations 50

Personal learning coefficient 0.9
Inertia weight damping ratio 0.95

Inertia weight 1

Algorithm: DE
Crossover probability 0.1

Lower bound of scaling factor 0.3
Upper bound of scaling factor 0.7

Algorithm: ACO

Number of populations 50
Number of iterations 1200

Deviation distance ratio 1
Intensification factor 0.5

Algorithm: GA

Selection pressure 8
Mutation percentage 0.5
Number of mutants 50

Mutation rate 0.1
Number of iterations 1200
Crossover percentage 0.7
Number of populations 50
Number of offspring 35

ANFIS

Train step size increase 1.15
Train step size decrease 0.95
Train initial step size 0.01

Train error goal 0
Train epoch 500
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Figure 4: *e related geo-science input parameters and the output ground settlement.

Table 2: *e statistical evaluation of the developed hybrid and original ANFIS for the scenario of the preprocessed and normalized (PPN)
dataset over the testing phase of the modeling.

Models order Scenario models RMSE MAE LMI CC WI SRMSE
Model 1 PPN-ANFIS 11.57 8.77 − 0.06 0.74 0.76 41.89
Model 2 PPN-ANFIS-PSO 7.99 6.22 0.25 0.83 0.82 28.90
Model 3 PPN-ANFIS-DE 8.61 6.96 0.16 0.66 0.57 31.16
Model 4 PPN-ANFIS-ACO 8.98 7.49 0.10 0.73 0.36 32.49
Model 5 PPN-ANFIS-GA 9.23 7.19 0.13 0.76 0.75 33.39

Table 3: *e statistical evaluation of the developed hybrid and original ANFIS for the scenario of the preprocessed and nonnormalized
(PPNN) dataset over the testing phase of the modeling.

Models order Scenario models RMSE MAE LMI CC WI SRMSE
Model 6 PPNN-ANFIS 10.40 8.29 0.00 0.78 0.77 37.64
Model 7 PPNN-ANFIS-PSO 8.78 6.60 0.20 0.80 0.78 31.79
Model 8 PPNN-ANFIS-DE 9.08 7.51 0.09 0.41 0.60 32.86
Model 9 PPNN-ANFIS-ACO 10.04 8.44 − 0.02 − 0.48 0.04 36.34
Model 10 PPNN-ANFIS-GA 9.26 7.51 0.09 0.77 0.79 33.51

Table 4: *e statistical evaluation of the developed hybrid and original ANFIS for the scenario of the non-preprocessed and normalized
(NPN) dataset over the testing phase of the modeling.

Models order Scenario models RMSE MAE LMI CC WI SRMSE
Model 11 NPN-ANFIS 12.96 10.10 − 0.13 0.36 0.62 48.58
Model 12 NPN-ANFIS-PSO 10.82 8.14 0.09 0.29 0.59 40.54
Model 13 NPN-ANFIS-DE 8.99 7.44 0.17 0.49 0.59 33.70
Model 14 NPN-ANFIS-ACO 11.00 9.16 − 0.03 − 0.28 0.15 41.24
Model 15 NPN-ANFIS-GA 11.10 8.02 0.10 0.20 0.53 41.62

Table 5:*e statistical evaluation of the developed hybrid and original ANFIS for the scenario of the non-preprocessed and nonnormalized
(NPNN) dataset over the testing phase of the modeling.

Models order Scenario models RMSE MAE LMI CC WI SRMSE
Model 16 NPNN-ANFIS 14.62 11.81 − 0.32 0.30 0.56 54.79
Model 17 NPNN-ANFIS-PSO 10.07 8.11 0.09 0.38 0.63 37.73
Model 18 NPNN-ANFIS-DE 11.75 9.87 − 0.11 − 0.25 0.16 44.04
Model 19 NPNN-ANFIS-ACO 11.27 9.43 − 0.06 − 0.42 0.09 42.24
Model 20 NPNN-ANFIS-GA 10.67 8.55 0.04 0.38 0.62 40.01
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where the (GS)expand (GS)Sim are the experimental and
simulated ground settlements, (GS)exp and (GS)Sim are their
mean values, and Ns is the sample size.

Among the proposed predictive models, superior model
may be different in terms of different performance indices.

*is weakness can be solved using a new index called mean
performance (MP) which is the integrate of all employed
indices. To compute the MP value of each predictive model,
it is necessary to convert the indices to standardized form in
the range of [0 1] as following equations [69]:

􏽤RMSEModel(i) �
RMSEmax

All − RMSEModel(i)􏼐 􏼑

RMSEmax
All − RMSEmin

All􏼐 􏼑
,

􏽤MAEModel(i) �
MAEmax

All − MAEModel(i)􏼐 􏼑

MAEmax
All − MAEmin

All􏼐 􏼑
,

􏽤LMIModel(i) �
LMIModel(i) − LMImin

All􏼐 􏼑

LMImax
All − LMImin

All􏼐 􏼑
,

􏽣CCModel(i) �
CCModel(i) − CCmin

All􏼐 􏼑

CCmax
All − CCmin

All􏼐 􏼑
,

􏽣WIModel(i) �
WIModel(i) − WImin

All􏼐 􏼑

WImax
All − WImin

All􏼐 􏼑
,

􏽤SRMSEModel(i) �
SRMSEmax

All − SRMSEModel(i)􏼐 􏼑

SRMSEmax
All − SRMSEmin

All􏼐 􏼑
,

(8)

where 􏽤RMSEModel(i), 􏽤MAEModel(i), 􏽤LMIModel(i), 􏽣CCModel(i),
􏽣WIModel(i), and 􏽤SRMSEModel(i) are the standardized values
of the utilized performance metrices of ith model (hybrid

ANFIS model), RMSEmax
All , MAEmax

All , LMImax
All , CCmax

All ,
WImax

All , and SRMSEmax
All are the maximum values of indices

among all predictive models while RMSEmin
All , MAEmin

All ,
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LMImin
All , CC

min
All , WImin

All , and SRMSEmin
All are the minimum

ones.
*en, the MP metric of ith model (hybrid ANFIS) can be

expressed mathematically as follows [70]:

MPModel(i) �
􏽤RMSEModel(i) + 􏽤MAEModel(i) + 􏽤LMIModel(i) + 􏽣CCModel(i) + 􏽣WIModel(i) + 􏽤SRMSEModel(i)􏼐 􏼑

6
. (9)

From equation (9) it is clear that the MP value of each
model is the mean value of its standardized performance
indices which is in the range of [0 1]. However, the superior
model has the highest value of MP compared to other ones.

4. Application Results and Analysis

*is study was initiated to study the feasibility of using
different variants of hybrid ANFIS models for the prediction
of the magnitude of settlement in soil. In nature, soil
structure behavior is influenced by several morphological
and external parameters such as structural loading. How-
ever, the main concern is to quantify the exact possible
settlement can be experienced to maintain the build sus-
tainability and safety. Soil is usually characterized by non-
stationary varying and nonlinearly pattern with the
constituents and their properties. Empirical formulas are not
strong enough for the simulation of the relationships be-
tween soil settlement and the other related parameters;
hence, the use of strong and reliable predictive tools for the
determination of the effects of the independent parameters
on the dependent parameters was proposed in this study.
Indeed, these reliable predictive models can contribute to the
geo-science practical implementations.

4.1. Statistical Evaluation of the Developed Hybrid Models.
Based on the results in Table 2 (PPN scenario), the best
prediction performance was attained for the ANFIS-PSO
with minimal RMSE and MAE values (7.99 and 6.22) and
maximum CC andWI values (0.83 and 0.82). Table 3 reveals
the modeling results of the second modeling scenario
(PPNN). Based on the reported results in Table 3, the ac-
curate prediction process was achieved using the same
hybrid model developed for the first scenario (i.e., ANFIS-
PSO). Model 7 indiacted minimum RMSE ≈ 8.78 and
MAE ≈ 6.6, while the CC ≈ 0.80 and WI ≈ 0.78. Table 4
reported the third modeling scenario where the dataset was
non-preprocessed and normalized. *e hybridization of the
differential evolution optimizer with ANFIS model attained
the best predictability performance with computed statistical
metrics (RMSE ≈ 8.99, MAE ≈ 7.44, LMI ≈ 0.17,
CC ≈ 0.49, WI ≈ 0.59, and SRMSE ≈ 33.7). *e results of
the last modeling scenario are tabulated in Table 5. *e best
prediction results were obtained using the ANFIS-PSO
model with statistical performance metrics (RMSE ≈ 10.07,
MAE ≈ 8.11, LMI ≈ 0.09, CC ≈ 0.38, WI ≈ 0.63, and
SRMSE ≈ 37.73). Generally, the variance of the prediction
results achieved based on the developed classical and hybrid
ANFIS models can be explained by the use of different

learning processes, and AImodels can attain during the train
and test modeling phases.

*e hybridization of ANFIS model with nature-inspired
optimization algorithms yielded the maximum prediction
accuracy as a result of the robust tuning of the membership
function. In quantitative explanation and for the best input
combination, these tables displayed the optimal prediction
possibility using all the applied predictive models. Based on
the results in Table 6, the minimal RMSE metric was
achieved using PPN-ANFIS-PSO (RMSE ≈ 7.99) followed
by PPNNANFIS-PSO (RMSE ≈ 8.78), NPN-ANFIS-DE
(RMSE ≈ 8.99), and NPNN-ANFIS-PSO (RMSE ≈ 10.07).

4.2. Modeling Evaluation Based on Graphical Presentation.
*e proposed predictive models for the settlement quanti-
fication were examined using several graphical visualizations
including mean performance index (MP), scatter plot, box
plot, and Taylor diagram. Figure 5 demonstrates the MP of
all the computed performance measures of the deployed
predictive models and for all the examined scenarios over
the testing modeling phase. Figures 5(a)–5(d) indicate
similar prediction performance observed using the statistical
metrics which are tabulated in Tables 2–5. ANFIS-PSO was
the best predictive model for the 1st, 2nd, and 4th modeling
scenarios with maximum MP� 1.0, whereas ANFIS-DE
accomplished the best prediction results for the 3rd modeling
scenario non-preprocessed and normalized (NPN) dataset
with MP ≈ 0.99. Due to the diverse prediction perfor-
mances exemplified in Figure 5, the best predictive models
were abstracted and validated with respect to the applied
modeling scenarios (Figure 6). Based on the visualization in
Figure 6, the various variations in modeling predictability
were avoided. Figure 6 evidenced the feasibility of the 1st
modeling scenario which gave the best results with MP� 1
using the potential of the ANFIS-PSO model. *is is clearly
presenting the potential of the PSO tuning algorithm in-
tegrated with the standalone ANFIS for providing a robust
and reliable predictive model for settlement prediction. *e
worst model was recognized for the non-preprocessed and
nonnormalized dataset scenario with minimal MP� 0.03
using ANFIS-PSO.

*e behavior of the best applied predictive models was
drawn in the form of scatter plot in Figure 7. Scatter plot
displays the variance between the experimental and pre-
dicted values of the settlement. *e best predictive model
was identified from the variance around the fitted line and
the correlation coefficient magnitude. Figure 7 indicates that
the preprocessed and normalized scenario using ANFIS-
PSO model attained the best fit in accordance with the
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determination coefficient scale (R2 � 0.69), whereas the
worst indicator was observed for the 4th scenario with
(R2 � 0.14) using ANFIS-PSO model. Based on the reported
determination coefficient, the models performed slightly
with less correlation. However, this is clearly indicating the
high stochasticity of the simulated surface settlement owing
to the huge number of the associated parameters.

*e box plot computations for the applied predictive
models are displayed in Figure 8. *e degree of the spread in
the predicted data and quartiles are 25, 50, 75, and the
interquartile range (IQR). Based on the magnitudes of the
lower (Q25%), median (Q50%), and upper (Q75%) quartiles,
ANFIS-PSO with PPN scenario outperformed the other

classical and hybrid ANFIS models. Based on the various
statistical metrics and graphical representations, the pro-
posed hybrid data-intelligence model is an excellent tool for
predicting the settlement magnitudes.

*e visualization of the 2-dimensional graphical ex-
amination of Taylor diagrams for the best prediction model
(ANFIS-PSO) is shown in Figures 9(a) and 9(b) (processed
and nonprocessed dataset, respectively). *e figure presents
a summary of the statistical performance of the actual and
predicted tests in terms of the correlation coefficients,
RMSE, and standard deviations. *e Taylor curve is a
graphical view of the similarity between the observed and
predicted values. *e results demonstrate that ANFIS-PSO

Table 6: Summary of the best statistical performance of the developed hybrid ANFIS for all the examined modeling scenarios over the
testing modeling phase.

Models order Scenario models RMSE MAE LMI CC WI SRMSE
Model 2 PPN-ANFIS-PSO 7.99 6.22 0.25 0.83 0.82 28.90
Model 7 PPNN-ANFIS-PSO 8.78 6.60 0.20 0.80 0.78 31.79
Model 13 NPN-ANFIS-DE 8.99 7.44 0.17 0.49 0.59 33.70
Model 17 NPNN-ANFIS-PSO 10.07 8.11 0.09 0.38 0.63 37.73
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Figure 5: *e mean performance index computed for the applied hybrid and classical ANFIS models over the test phase; (a) PPN scenario,
(b) PPNN scenario, (c) NPN scenario, and (d) NPNN scenario.
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using PPN scenario coordinated the nearest to the observed
experimental tests. For the nonprocessed dataset, ANFIS-DE
indicated the nearest coordination to the observed experi-
mental tests.

4.3. Discussion and Possible Future Research Direction. In
accordance to Figure 5, it was revealed that preprocessing
the data by eliminating the redundant experimental test and
scaling the data between (0-1) as normalized dataset could
enhance the learning process of the applied hybrid predictive

models. *is could be explained due to the exclusion of the
vague attributes supplied to the prediction matrix. Hence, it
is not always the case in providing more information at-
tributes to fit data with higher accuracy. On the contrary,
building the hybrid predictive model based on normal data
information can offer insufficient learning process which
leads to inaccurate prediction of result. *e applications of
AI models have been widely performed for several engi-
neering problems and geo-technical is one of the distin-
guished research scopes experienced on the AI implications.

1.00

0.76

0.34

0.03
0.00

0.20

0.40

0.60

0.80

1.00

1.20

PP
N

-A
N

FI
S-

PS
O

PP
N

N
-A

N
FI

S-
PS

O

N
PN

-A
N

FI
S-

D
E

N
PN

N
-A

N
FI

S-
PS

O

M
P

Figure 6: *e best attained predictive models in accordance with
the mean performance index over the testing phase.
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Figure 8: *e box plots presentation of the observed and predicted
settlement over the testing phase.
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Consequently, the development of more robust and reliable
AImodels was based on their newly advanced versions in the
motivation of engineers, designers, and scientists. *e
proposed hybrid ANFIS-PSO model provided an efficient
and flexible methodology for computing ground settlement
compared to the classical AI standalone models. In addition,
the current research introduced a newly fusion of technology
to eliminate boundaries between the digital and engineering
spheres. *e breakthroughs of novel AI models, such as the
proposed one, are changing the solving manners of engi-
neering problems. Hence, the proposed hybrid ANFIS tool
and other intelligent models can be used in future automated
and semiautomated design processes.

In this study, several hybrid ANFIS models were de-
veloped to predict ground settlement of earth pressure
balance (EPB) shield tunnelling. *e models were con-
structed based on various modeling data preprocessing
scenarios. In accordance with the attained prediction per-
formance, the potential of the hybrid ANFIS model dem-
onstrated an acceptable prediction accuracy using
preprocessed and normalized dataset. However, the pre-
diction capacity is varied from one hybrid model to another
and this definitely evidenced the existence of the modeling
uncertainty, that is, one of the major limitations of the
current research. Another reason, the influence of the
dataset span on the prediction performance. In addition, one
of the major limitations of ANFIS model is that when a large
number of inputs are applied that causing a dimensionality
issues and computational expense.*erefore, an optimizer is
required to reduce these problems. In contrary, those
metaheuristic algorithms also have their own limitations,
such as unstable convergence for the DE algorithms and
time consumption for the GA, while the PSO suffers from
partial optimism. All in all, it is impossible to say that there is
one metaheuristic method which can compete with other
methods in all possible discrete functions.*us, based on the
reported modeling limitations, the following possible future
researches can be further studied: (i) inspecting the asso-
ciated uncertainties, either modeling uncertainty or input
parameters uncertainty; (ii) extending the span of the
modeled dataset with other related studies from the liter-
ature to give more informative details of the input attributes;
and (iii) the data modeling division, various data division
percentages can be examined for better learning process of
the established models; (iv) the achieved modeling results
accuracy level can be further improved by using several other
nature-inspired algorithms such as nomadic algorithm [71],
equilibrium algorithm [72], arithmetic algorithm [73], and
black window algorithm [74].

5. Conclusion

Among several side effects during tunnelling excavation
and initiating, ground settlement is one of the essential
processes to be measured and monitored to avoid any
unexpected damages and human losses. In general,
ground settlement is a complex issue as there are several
geo-technical parameters influencing the soil deforma-
tion. Accurate and reliable prediction of ground

settlement is very important for tunnelling project
management and maintenance and thus an adequate
intelligent predictive model can contribute to the basic
knowledge of designing tunnels. *e current research was
devoted on the assessment of relatively new hybrid AI
models to predict the ground settlement of EPB shield
tunnelling. *e data collected from tunnel project were
established in *ailand in the name of Bangkok MRTA
project. *e developed hybrid and standalone ANFIS
models (i.e., ANFIS-PSO, ANFIS-DE, ANFIS-ACO,
ANFIS-GA, and ANFIS) were constructed based on
several related parameters to predict the GS. For the
purpose of obtaining accurate and reliable investigation,
the modeling procedure was conducted based on four
different dataset scenarios including (i) preprocessed and
normalized (PPN), (ii) preprocessed and nonnormalized
(PPNN), (iii) non-preprocessed and normalized (NPN),
and (iv) non-preprocessed and nonnormalized (NPNN).
Modelling results revealed the superiority of the first
modeling scenario that preprocessed and normalized
dataset were incorporated. PPN dataset scenario dem-
onstrated a significant impact on the perdition accuracy of
the proposed models. In addition, among all the applied
models, the hybrid ANFIS-PSO model accomplished the
best predictability performance. *e PPN-ANFIS-PSO
model achieved minimum (RMSE � 7.98) and maximum
(CC � 0.83).
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