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ABSTRAK 

Pada masa kini, pemerihal imej berdasarkan tekstur diguna pakai dalam pelbagai aplikasi 

nyata yang penting. Penggunaan analisis tekstur dalam pengelasan imej perubatan dan 

tekstur telah menarik perhatian ramai pihak. Corak Perduaan Tempatan (LBP) salah satu 

yang paling mudah namun berkesan tekstur pemerihal. Tetapi ia mempunyai beberapa 

batasan yang boleh menjejaskan ketepatannya. Oleh itu, kebanyakan pemerihal 

berasaskan LBP telah dicadangkan untuk menangani kekurangan ini dan meningkatkan 

ketepatan mereka. Corak Pertigaan Tempatan Lengkap (CLTP) adalah salah satu 

pemerihal berasaskan LBP yang penting. Walau bagaimanapun, CLTP menderita dari 

dua batasan utama: pemilihan nilai ambang berasaskan secara manual dan keamatan yang 

tinggi yang memberi kesan negatif kepada prestasi deskriptor dan membawa kepada 

pengiraan yang tinggi. Kajian ini bertujuan untuk meningkatkan ketepatan klasifikasi 

CLTP dan mengatasi had komputasi dengan mencadangkan pemerihal baru  yang 

diilhamkan oleh CLTP. Oleh itu, penyelidikan ini memperkenalkan dua sumbangan: 

Yang pertama adalah  pemerihal baru yang dicadangkan yang menggabungkan 

transformasi wavelet diskrit yang berlebihan (RDWT) dengan CLTP asal, iaitu, wavelet 

menyelesaikan pola ternary tempatan (WCLTP). Mengeluarkan CLTP dalam bentuk 

jelmaan gelombang kecil dapat meningkatkan ketepatan pengelasan disebabkan oleh sifat 

peralihan tak varian dalam RDWT. Pertamanya, imej diuraikan kepada empat sub-

kumpulan (LL, LH, HL dan HH) dengan menggunakan RDWT. Kemudian, CLTP 

dikeluarkan berdasarkan kepada koefisien gelombang kecil LL. Sumbangan kedua pula 

ialah pengurangan daya kedimensian WCLTP dengan mengurangkan saiz dan 

mencadangkan pemerihal tekstur baru, iaitu Corak Pertigaan Tempatan Lengkap 

Gelombang Kecil Berdasarkan Fitur (Feat-WCLTP). Pemerihal cadangan ini dapat 

meningkatkan prestasi CLTP dan mengurangkan kedimensian tinggi. Oleh itu, Feat-

WCLTP merupakan gabungan antara bahagian isyarat, fitur dan pusat. Prestasi kaedah 

WCLTP dan Feat-WCLTP yang dicadangkan telah dinilai menggunakan empat set data 

tekstur (Outex, CURet, UIUC dan Kylberg) dan dua set data perubatan (2D HeLa dan 

Breast Cancer) dan kemudian dibandingkan dengan beberapa varian LBP yang terkenal. 

WCLTP berjaya mengatasi pemerihal lain dan mencapai ketepatan pengelasan tertinggi 

dalam semua eksperimen. Keputusan kaedah cadangan ini bagi set data tekstur ialah 

99.35% dalam OuTex, 96.57% dalam CUReT, 94.80% dalam UIUC dan 99.88% dalam 

Kylberg. Manakala, keputusan WCLTP dalam set data perubatan ialah 84.19% dalam 2D 

HeLa and 92.14% dalam set data Breast Cancer. Feat-WCLTP pula bukan sahaja dapat 

mengatasi masalah kedimensian, malah meningkatkan daya ketepatan pengelasan. 

Keputusan Feat-WCLTP dalam set data tekstur ialah 99.66% dalam OuTex, 96.89% 

dalam CUReT, 95.23% dalam UIUC dan 99.92% dalam Kylberg. Manakala, 

keputusannya dalam set data perubatan ialah 84.42% dalam set daha 2D HeLa dataset 

and 89.12% dalam set data Breast Cancer. Di samping itu, kaedah cadangan Feat-WCLTP 

dapat mengurangkan saiz fitur bagi corak tekstur (1,8) daripada 400 bin kepada 160 bin 

dalam WCLTP. Kedua-dua kaedah WCLTP dan Feat-WCLTP mempunyai daya 

ketepatan dan kedimensian yang lebih baik berbanding kaedah CLTP asal. 



iv 

ABSTRACT 

Nowadays, texture image descriptors are used in many important real-life applications. 

The use of texture analysis in texture and medical image classification has attracted 

considerable attention. Local Binary Patterns (LBP) is one of the simplest yet eff ective 

texture descriptors. But it has some limitations that may affect its accuracy. Hence, 

different variants of LBP were proposed to overcome LBP’s drawbacks and enhance its 

classification accuracy. Completed local ternary pattern (CLTP) is one of the significant 

LBP variants. However, CLTP suffers from two main limitations: the selection of the 

threshold value is manually based and the high dimensionality which is negatively 

affected the descriptor performance and leads to high computations. This research aims 

to improve the classification accuracy of CLTP and overcome the computational 

limitation by proposing new descriptors inspired by CLTP. Therefore, this research 

introduces two contributions: The first one is a proposed new descriptor that integrates 

redundant discrete wavelet transform (RDWT) with the original CLTP, namely, wavelet 

completed local ternary pattern (WCLTP). Extracting CLTP in wavelet transform will 

help increase the classification accuracy due to the shift invariant property of RDWT. 

Firstly, the image is decomposed into four sub-bands (LL, LH, HL, HH) by using RDWT. 

Then, CLTP is extracted based on the LL wavelet coefficients. The latter one is the 

reduction in the dimensionality of WCLTP by reducing its size and a proposed new 

texture descriptor, namely, feature-based wavelet completed local ternary pattern (Feat-

WCLTP). The proposed Feat-WCLTP can enhance CLTP’s performance and reduce high 

dimensionality. The mean and variance of the values of the selected texture pattern are 

used instead of the normal magnitude texture descriptor of CLTP. The performance of 

the proposed WCLTP and Feat-WCLTP was evaluated using four textures (i.e. OuTex, 

CUReT, UIUC and Kylberg) and two medical (i.e. 2D HeLa and Breast Cancer) datasets 

then compared with several well-known LBP variants. The proposed WCLTP 

outperformed the previous descriptors and achieved the highest classification accuracy in 

all experiments. The results for the texture dataset are 99.35% in OuTex, 96.57% in 

CUReT, 94.80% in UIUC and 99.88% in the Kylberg dataset. The results for the medical 

dataset are 84.19% in the 2D HeLa dataset and 92.14% in the Breast Cancer dataset. The 

proposed Feat-WCLTP not only overcomes the dimensionality problem but also 

considerably improves the classification accuracy. The results for Feat-WCLTP for 

texture dataset are 99.66% in OuTex, 96.89% in CUReT, 95.23% in UIUC and 99.92% 

in the Kylberg dataset. The results for the medical dataset are 84.42% in the 2D HeLa 

dataset and 89.12% in the Breast Cancer dataset. Moreover, the proposed Feat-WCLTP 

reduces the size of the feature vector for texture pattern (1,8) to 160 bins instead of 400 

bins in WCLTP. The proposed WCLTP and Feat-WCLTP have better classification 

accuracy and dimensionality than the original CLTP.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background 

Nowadays, computer vision technologies have been developed along with the 

growth in the manufacturing of advanced image capture devices. This development has 

enabled images to be captured efficiently at a high resolution, thereby reinforcing the 

active role of images in most real-life fields (i.e. medical, military, educational, satellite 

and entertainment) (Aziz et al. 2017). Consequently, the image processing field has 

experienced many relevant issues, such as the image classification problem.  

The image classification problem refers to the task of categorising and classifying 

images into known classes based on their content features. A successful classification 

requires the extraction of the best features that can represent the image effectively. An 

image has many significant features, such as texture, edge, shape, spatial relationship and 

colour (Liu et al., 2017). Texture features are considered one of the most essential 

characteristics that can describe an image. No specific definition for texture has been 

given. However, texture can be defined as a set of features (i.e.  uniformity, roughness, 

intensity and density) (Davies 2018). The significance of texture property has inspired 

researchers to make great progress in developing efficient texture classification 

descriptors. 

Texture classification is increasingly recognised as a serious issue in the texture 

analysis field. In general, texture classification aims to design an algorithm that can 

address a sample image to a reference image in a pre-defined image database based on 

image texture property (Davarzani et al. 2015). Accordingly, numerous feature extraction 

algorithms have been proposed over the past decades. The common purpose of all
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descriptors is how to extract distinctive texture features that enable them to 

perform well in real-life applications.  

Texture classification plays a key role in a wide variety of real-life applications, 

such as medical image analysis (Depeursinge et al. 2014; Li et al. 2017; Liu et al. 2018), 

remote sensing(Anwer et al. 2018), the manufacturing industry (Ruiz et al. 2018; Tang et 

al. 2015), face recognition (Nanni et al. 2017) and object tracking (Zoidi et al. 2014). 

Medical image analysis is a wide area where texture classification algorithms are 

used extensively in many medical imaging tasks, such as disease diagnosis and surgical 

planning. The evolution in the medical domain leads to the use of sophisticated medical 

equipment that helps in making a correct medical diagnosis, such as magnetic resonance 

imaging, electron microscopy, computed tomography and ultrasound devices. These 

equipment and methods are considered basic sources of medical images. However, given 

the abundant details and sensitivity of images obtained through these methods, manual 

screening is difficult and insufficient. Researchers have found that texture presents 

reliable and effective features that could enhance the accuracy and the time consumed in 

examining these images (Tech & Somwanshi 2017). 

1.2 Motivation 

Texture analysis has played a significant role in various fields. The human eye can 

extract a number of obvious texture features from an image. However, it cannot notice 

fine details that play a significant role in understanding the image contents. Such 

inadequacy leads to incorrect image representation. Therefore, developing a robust 

texture classification descriptor will overcome human mistakes as well as save time and 

cost. Recently, considerable attention has been paid to the use of texture analysis in the 

medical image field because of many reasons. Firstly, medical images may contain 

several and complex textures that cause the human visual system to struggle in 

discriminating textural information, thereby possible leading to diagnosis errors, which 

are not tolerated due to the sensitivity of medical images (Depeursinge et al. 2017). 

Secondly, experts sometimes need to understand the progress of specific diseases, thereby 

requiring the analysis of a large number of images over a long period of time, which 

entails great effort and time. Automating this process will help reduce time consumption 

and improve the functionality of the diagnosis of diseases (Weese & Lorenz 2016). 
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Accordingly, developing a reliable and robust texture classification descriptor that works 

effectively on texture and medical images is an urgent need. 

1.3 Problem Statement   

An eff ective texture classification descriptor is the Local Binary Pattern (LBP), 

which was proposed over two decades ago (Ojala et al., 1996). LBP gained popularity 

due to its superior advantages (i.e. simplicity, flexibility and high distinguishing ability), 

which make LBP a preferred choice for many applications. However, it suffers from 

obvious limitations such as noise sensitivity, rotation, illumination variations and limited 

discriminative capability (Liu et al. 2014). Therefore, many descriptors based on LBP 

have been proposed to overcome its limitations, enhance its performance accuracy and 

preserve its advantages. Examples of these descriptors are Completed Local Binary 

Pattern (CLBP) (Guo et al. 2010), Local Ternary Pattern (LTP) (Tan & Triggs 2010) and 

Completed Local Binary Count (CLBC) (Zhao et al. 2012). Although these LBP variants 

improved the performance of the original LBP descriptor to some extent, they inherited 

some of LBP’s limitations, such as noise sensitivity.  

The Completed Local Ternary Pattern (CLTP) (Rassem et al., 2017) is one of the 

descriptors that eliminate noise sensitivity. CLTP achieved impressive classification 

accuracy rates in different image classification systems. However, CLTP suffers from 

some limitations, such as high dimensionality, where the size of CLTP is double that of 

CLBP, thereby increasing the computation time and needing a large memory space. 

Moreover, it may affect classification accuracy. In addition, the threshold value in CLTP 

is selected manually. Overcoming the high dimensionality of the CLTP texture descriptor 

will help improve its recognition and classification performance. The possibility of wrong 

matching and classification is higher with the high-dimensional descriptor in the 

classification stage using some classifiers, thereby reducing the descriptor’s performance. 

Therefore, proposing a new descriptor that is robust to noise, illumination invariances and 

rotation invariances and has a low dimension is a challenge that must be overcome.  

1.4 Research Objectives  

On the basis of the aforementioned problems in the Section 1.3, this study seeks 

to implement an accurate texture and medical image classification system using texture 

features. The objectives of this research are as follows: 
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1. To improve the classification accuracy of CLTP.  

2. To propose a new feature-based texture descriptor by overcoming the 

computational limitation of the wavelet CLTP.  

3. To evaluate the performance of the proposed texture descriptors for medical and 

texture image classification tasks. 

1.5 Research Scope 

This research focuses on the feature extraction task and investigates 

improvements of the CLTP descriptor. It will improve the classification performance of 

CLTP in two ways: by enhancing the classification accuracy of CLTP and introducing a 

new wavelet CLTP (WCLTP) texture descriptor and by reducing the high dimensionality 

and introducing the feature-based WCLTP (Feat-WCLTP) texture descriptor. Four 

standard textures (i.e. OuTex, CUReT, UIUC and Kylberg) and two medical (i.e. 2D 

HeLa and Breast Cancer) datasets were used to evaluate the performance of both WCLTP 

and Feat-WCLTP. In addition to estimate the validity of the results, a confusion matrix 

was used to calculate the classification accuracy. 

1.6 Thesis Organisation 

This thesis is organised as follows: 

Chapter One presents a general overview of the texture analysis issue, especially 

the texture classification problem. The research motivations, problems, objectives and 

scope are identified. 

Chapter Two presents a general review of texture analysis, reviews of the LBP 

descriptor and some of its significant variants. It illustrates and explains the mathematical 

presentation for each method in the literature, as well as highlights the main advantages 

and limitations of each method. Finally, this chapter presents information about the 

benchmark datasets.  

Chapter Three presents the methodology of the research. Then, it introduces the 

general proposed work, which consists of two proposed descriptors (WCLTP and Feat-
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WCLTP) to address the research objectives. Also, this chapter investigates and discusses 

the proposed descriptors in detail and highlights their advantages.  

Chapter Four presents the experimental results for the evaluation of the proposed 

descriptors. Moreover, it compares the evaluation results with those of the methods in the 

literature. Finally, it demonstrates the favourable performance of the proposed descriptors 

in all experiments. 

Chapter Five concludes the thesis findings. Then, suggestions for future work are 

presented. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a literature review of texture analysis and its general 

research domains, highlighting the texture classification process and its general 

framework. In addition to providing a brief review of the main feature extraction 

methods, this chapter investigates the LBP descriptor and some of its variants and briefly 

introduces wavelet transform. Then, some benchmark databases are explored. Finally, 

the chapter summarises the review.   

2.2 Texture Analysis 

A digital image in computer vision applications can be described by a set of 

features, such as colour, shape, edge and texture. The texture is considered the most 

important and fundamental feature in image analysis. However, no official definition of 

this term has been given yet. Texture may provide good information about the physical 

properties of an image, such as roughness or smoothness. It can also be used to 

diff erentiate one object from another. As a result, texture analysis has been a universal 

research area in image processing and is applied in a variety of important computer vision 

applications (Liu et al., 2017). Texture analysis includes five general research domains: 

texture classification, texture segmentation, texture synthesis, texture compression and 

shape from texture. 
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2.2.1 Texture Classification  

Texture classification aims to design an algorithm for classifying diff erent 

unknown images into several groups based on a given set of training images. It has been 

used in many areas of application, such as medical image analysis (Tang et al. 2017), 

content-based image retrieval (Singh et al. 2018), object recognition (Pham et al. 2018), 

and remote sensing (Anwer et al. 2018). 

2.2.2 Texture Segmentation 

The goal of segmentation is to divide an image into individual homogeneous 

regions of similar texture. Therefore, additional analysis is conducted in these regions. 

The segmentation can be categorised into two types: supervised and unsupervised. The 

supervised scheme needs prior information or training samples that consist of textures 

from the classes presented in the image. In the unsupervised scheme, training samples do 

not need to be trained, and the pixels are grouped together based on their similarity. Many 

applications of texture segmentation exist, such as medical image analysis (Smistad et al. 

2015) and document processing (Eskenazi et al. 2017). 

2.2.3 Texture Synthesis 

The goal of synthesis is to produce an output image from a particular input. Both 

images must be similar, but matching is not necessary. Texture synthesis is applied to 

many applications. For example, it can be used to synthesise high-resolution images in 

low-resolution images while retaining the image details (Yoo et al. 2016). It has been also 

used for image reconstruction, where a destroyed textured section of an image is replaced 

by a similar texture region (Colombo et al. 2011). 

2.2.4 Texture Compression 

The goal of texture compression is to minimise the amount of data required to 

store a textured image (Amin et al. 2018). The difference between texture compression 

and the normal image compression is that the first one is designed to utilise the statistical 

textured images by retaining all important high-frequency signals and simultaneously 

blocking artefacts. Compression is mainly used when storing or transmitting large 

amounts of data and multimedia such as digital encyclopaedias, videos and games (Jha et 

al. 2017). 

https://www.sciencedirect.com/science/journal/13618415
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2.2.5  Shape from Texture 

This process mainly aims to reconstruct the 3D shape of a textured object from its 

image. This process requires some measurement of the image structure in addition to 

some information about surface texture to obtain a three-dimensional shape (Colombo et 

al. 2011).  

2.3 Texture Classification 

Texture classification is one of the most important and popular research topics in 

texture analysis and has recently become an active research field because it has been 

widely applied in many diff erent important applications. Generally, texture classification 

aims to design an algorithm that can address a sample image to defined class where  

training examples have been given based on the image texture property (Suresha & Naik 

2017). A general structure for texture classification includes four main processes which 

are: Pre-processing, feature extraction, feature selection and classification, as shown in 

Figure 2.1. 

 

Figure 2.1 Framework of texture classification 

 

2.3.1 Pre-processing 

Pre-processing is a set of operations applied to the input image to prepare it for 

the next stage. This process aims to remove the variation from the input image without 

affecting the essential information in the image (Joshi & Karule 2018). Many examples 

of various sources during the image acquisition are given, such as the image device 

manufacturer, difference in sizes of the field of view, variations in illumination, image 

blurring and exposure duration. Preprocessing aims to remove these sources as much as 

possible. This process is performed by using a set of operations such as binarization, 
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scaling the image and removing the covered area, noise removal and illumination 

correction (Joshi & Karule 2018). 

2.3.2 Feature Extraction 

Image features are a distinctive characteristic of an image that helps in 

distinguishing between the categories of the images. Image features have two main types, 

namely, global and local features. The global features describe the image as a whole set 

and can represent an entire image with a single vector. Examples of global features are 

shape matrices and histogram-oriented gradients (HOG) (Lisin et al. 2005). Local features 

describe image patches, such as lines, spots and edges. Local features can be computed 

at multiple points in the image; thus, they are considered robust in representing an image. 

The texture features are a set of mathematical parameters that are calculated from the 

pixel’s distribution in an image. Therefore, they are considered the best property that can 

describe an image properly. The main purpose of feature extraction is to extract the useful 

information that is required to describe a texture from the input image. The researchers 

agreed that feature extraction is the most significant step in the texture classification 

process (Liu et al. 2019). A successful classification result depends mainly on the 

efficiency of the feature extraction method (Bala & Scholar 2017). Many texture feature 

extraction descriptors have been proposed and tested since 1960. Given that this research 

focuses on texture descriptors, this matter will be further explained in detail in Section 

2.4. 

2.3.3 Feature Selection 

Feature selection involves choosing a subset of relevant and useful discriminative 

features from whole extracted features according to certain criteria. In the feature 

extraction process, the number of extracted features may be large and some of the features 

may not be helpful. Thus, removing irrelevant and redundant features will reduce the 

dimensionality of data, decrease the mathematical computation and increase the 

classification accuracy, thereby improving the performance of the classification model 

(Jović et al. 2015). Feature selection is an optional step, and many classification systems 

were proposed without it. 
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2.3.4 Classification 

The last step is classification, where the extracted features are used to distinguish 

between different textural classes where each image is sorted to one of the pre-defined 

texture classes. Many classification algorithms are used to classify textural images. 

Examples of the most common classifiers are support vector machines (SVMs) (Ashour 

et al. 2016), and the K-nearest neighbour (KNN) classifiers (Polat & Kayaalp 2019), 

convolutional neural network (CNN) (Han et al. 2017) and artificial neural network 

(ANN) (Deepa & Devi 2011). In the following subsection, K-NN and SVM are explained 

given that they are used mostly with texture descriptors.  

2.3.4.1  Support Vector Machines (SVM) 

The SVM is one of the popular classifiers that used in image classification in 

recent years. It is first proposed by (Vapnik & Kotz 1982). The SVM aims to build a 

model that able to classify two separable classes of data, using a decision surface. In SVM 

the examples are represented as points in space and it divided by a gap as wide as possible, 

the data points which are nearest to the gap are called support vectors. The decision 

surface is computed by determining the maximum gap between the two supporting 

vectors. Figure 2.2 shows a simple SVM model. 

 

Figure 2.2 Example of a simple SVM model  

Source: Hamel (2011) 

The SVM classifier is working directly on the given input data space and is a good 

choice for a dataset with a large number of features (Yadav et al. 2017). 
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2.3.4.2 K-Nearest Neighbour (KNN) 

The KNN algorithm is one of the simplest classification algorithms (Wan et al. 

2012) and was first proposed by (Cover & Hart 1967). KNN depends on feature 

similarity. In this algorithm, a positive integer K is set. With each new sample, it specifies 

how many nearest neighbours are present near the test example. Then, the object is 

classified by a majority vote of its neighbours and is assigned to the class that is most 

common among its K-nearest neighbours. Figure 2.2 illustrates the process of the KNN 

algorithm. 

 

Figure 2.3 Example of KNN classification process. 

To determine the class of the star, the star can be circle, square or triangle, and 

nothing else. The ‘K’ in the KNN algorithm is the nearest neighbours to take a vote from. 

In (A) K = 3. Hence, a circle with a star as the centre is made; it should be big to enclose 

only three data points on the plane. The star in (A) is assigned to the first class because 2 

triangles and only 1 square are present inside the inner circle. In (B), K = 6, it is assigned 

to class 3 (3 circles, 2 triangles, 1 square) inside the circle. In (c), K = 12, it is assigned 

to class 3 also (5 circles, 3 triangles, 4 square) inside the circle. The k-nn algorithm is a 

good choice for classification in case no prior knowledge exists about the distribution 

data, such as nonlinear data (Yu et al. 2016). 

2.4 Textural Feature Extraction 

Numerous feature extraction methods have been developed and introduced for 

efficient texture classification. The common main purpose of all texture descriptors is to 

extract distinctive texture features that are robust to image effects such as noise, rotation, 
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blurriness and illumination variations (Bala & Scholar 2017). The existing methods can 

be categorised into four main groups as shown in Figure 2.4.  

 

Figure 2.4 Textural feature extraction methods  

 

2.4.1 Structural Methods 

The algorithms in this approach consider that textures are formed of a set of 

elements called primitives or texel. These elements are arranged based on particular 

spatial rules, then the texel and their rules are used to describe textures and extract 

features. Many methods based on structural approach are applied to finding texels and 

extracting their features such as mathematical morphological operation (Velasco-Forero 

& Angulo 2013), fractal analysis (Xu et al. 2011) and the topographic map method 

(Jasiewicz & Stepinski 2013). However, this method is seldom used in texture 

classification because it is not adequate for analysing complex textures. It is suitable for 

textures with uniform patterns because the textures are well-defined, and it is not 

appropriate for micro textures’ structures; it works well with large structures only 

(Cataldo & Ficarra 2017). 

2.4.2 Model-based Methods 

These methods suppose that textural images could be represented by some 

experimental models, and the parameters of the model are determined and used as the 

image features. Many popular models use this approach, such as Markov random field 

(Gu et al. 2017), Autoregression (Sahu et al. 2015),  and fractals (Al-Kadi 2015). 
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The main trouble in the model-based methods is the process of choosing the 

proper model for a specific texture and mapping textures into the selected model 

effectively. Moreover, these models require many parameters, which may be difficult to 

determine especially if the neighbourhood size is not small. Therefore, the use of model-

based methods in texture classification is still limited. 

2.4.3 Transform-based methods 

Transform-based methods are also known as filter-based methods because they 

are based on applying a filter to an image and converting it into a new domain, after which 

discriminative features are extracted. The fundamental step in this method is filtering. The 

filter is used to extract the relevant image features, then the filter response is performed 

by a local energy function to evaluate the energy in the filter output. The local energy 

function output is a series of images, which are considered the basis for classification. 

Many filters have been used in this approach, such as Fourier transform (Prakash & 

Chaudhury 2017), WT (Nayak et al. 2016) and Gabor transform (Jia et al. 2016). The 

main challenge is the selection of the filter, in addition to the large number of features 

produced by the filter, which results in computational complexity (Cataldo & Ficarra 

2017). 

2.4.4 Statistical-based Methods 

These methods can be considered the most popular and effective methods for 

texture analysis. These methods use statistical measurements of diff erent textural patterns 

based on spatial distribution of the grey value for the pixel to extract texture features. The 

statistical methods can be categorised into three different sets depending on its statistics 

order. The first set is the first-order statistical methods, which depend on the individual 

extraction features from every single pixel and ignoring the relationships between image 

pixels. Thus, they are not discriminative enough to be applied in classifying complex 

textures. The second set is the second-order statistical methods, which obtain properties 

from two or more-pixel values that share relative locations to each other like the grey-

level co-occurrence matrix. The third set is the higher-order statistical operators, which 

are mainly used to overcome the limitations of the aforementioned sets. In this case, the 

features are extracted based on the spatial relationships between micropatterns. A well-

known example of higher-order statistical method is LBP (Ojala et al., 1996).  
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2.5 Texture Descriptor  

A representation of texture is also known as texture features. A texture descriptor 

is used to calculate the texture features numerically using one of the aforementioned 

methods. Selecting an appropriate texture descriptor is not easy, because no single 

descriptor is suitable for all applications. In the following, different texture descriptors 

will be discussed. 

2.5.1 Local Binary Pattern  

LBP is a simple yet powerful greyscale invariant texture descriptor proposed by 

Ojala two decades ago (Ojala et al., 1996). LBP has made a great contribution to the 

texture analysis field. It has been applied in a wide variety of application and has achieved 

good performance in medical image analysis (Nanni et al. 2010), texture classification 

(Davarzani et al. 2015) and face recognition (Taouche et al. 2014). LBP was initially 

defined within the concept of 8 grey pixels with a centre pixel. The LBP encoding process 

is illustrated in Figure 2.5, where the grey-level difference between the centre pixel and 

its neighbourhood pixel is calculated. The neighbourhood pixel is set to 1 if the difference 

is positive or 0 if it is negative; then, these values are used to obtain a binary code, which 

is generated later to represent a histogram that describes the image texture and the centre 

pixel value.  

 

Figure 2.5 LBP operator 

 

In 2002, authors developed the idea of LBP to use neighbourhoods with different 

sizes by using a symmetric circle neighbourhood defined by R and P, where R denotes 

the radius of the circle while P denotes the number of neighbourhood pixels (Ojala et al. 

2002). The mathematical equation of LBP is shown below.  
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LBPP,R = ∑ 2Ps(ip − ic

P−1

p=0

)  , s(x) = {
1, x ≥ 0
0, x < 0

   
2.1 

where icic and ipiP denote the grey values of the centre pixel and the neighbour 

pixel, respectively. The neighbours’ pixels that do not locate strictly in the centre of pixels 

are estimated by interpolation (Chowriappa et al. 2013). Figure 2.5 shows examples of 

three different texture patterns with different values of R and P.  

 

Figure 2.6 Examples of different patterns   

Source : Chowriappa et al. (2013) 

Together with this generalisation, the authors presented ‘uniform patterns’ of LBP 

(Ojala et al. 2002). LBP is called uniform if its uniformity measure is equal to at most 2. 

Uniformity (U) is the number of bitwise transitions from 0 to 1 or 1 to 0 when the bit 

pattern is considered circular. For example, patterns 11111111, 10001111 and 01010011 

have 0, 2 and 6 transitions, respectively. The first two patterns are uniform because the 

uniformity measure is 2 or less, and the third pattern is non-uniform because it consists 

of more than two transitions. In the uniform-pattern LBP, each pattern is assigned a 

separate label, and all non-uniform patterns are assigned under a single label. This makes 

the uniform pattern LBP,  LBPP,R
u2  histogram size smaller compared with the original LBP, 

the superscript u2 stands for “uniform pattern”. With uniform patterns, for P neighbours, 

P*(P-1) +3 different uniform patterns will be present as opposed to 2𝑃patterns in the 

original LBP. To achieve rotation invariance, a local rotation invariant pattern is 

presented as 
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LBPP,R
riu2 =  {

∑ 2ps(ip − ic

P−1

p=0

)         if U (LBPP,R ) ≤ 2 

p + 1                           otherwise

 

2.2 

Where 𝑖𝑐, 𝑖𝑃, P and R are as described in Equation 2.1 and the superscript riu2 

stands for “rotation invariant uniform pattern” 

The mapping from 𝐿𝐵𝑃𝑃,𝑅 to 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2(Ojala et al. 2002) can be implemented 

using a lookup table with a P+2 output values. Perhaps the most serious disadvantages of 

this method are its high sensitivity to noise and sometimes the different patterns of LBP 

possibly could be classified into the same class (Guo et al. 2012). Examples of these two 

weaknesses are shown in Figures 2.7 and 2.8. 

 

Figure 2.7 Example of the LBP operator’s   noise sensitivity 

 

 

Figure 2.8 Example of classifying falsely problem. 
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As Figure 2.7 shows, a slight change in the centre grey pixel value from 42 to 43 

due to noise may change the whole LBP binary code. In this example, this slight change 

from 42 to 43 changes the LBP code. Figure 2.8 shows that the LBP binary code for two 

different patterns is the same, thereby possibly leading to false classification of both 

patterns under the same class.  

LBP has gained high popularity due to its simplicity, flexibility and high 

distinguishing power, thereby making LBP a foundation for new research directions 

(Pietikäinen & Zhao 2015). Thus, many different variants of LBP have been proposed to 

improve its discriminative power for texture classification and overcome its limitations. 

In the following, some well-known LBP variants will be explained. 

2.5.2 Local Ternary Pattern  

In 2010, Tan and Triggs  modified the general LBP descriptor to overcome noise 

sensitivity by using a threshold value (t) and encoded the neighbour pixel values into 3-

value instead of 2-valued codes (Tan & Triggs 2010). This new descriptor is called LTP, 

which is mathematically defined as follows: 

LTPP,R = ∑ 2ps(ip − ic

P−1

p=0

)  , s(x) = {
1 ,                  t ≥ 0
0, −t < x < t

−1,                 x < −t
 

2.3 

where 𝑖𝑐, 𝑖𝑝, 𝑅 and 𝑃 are defined previously in Equation (2.1), and 𝑡 indicates the 

threshold value.  

The extraction of LTP can be shown in Figure 2.9 where the threshold value is set 

to 5; thus, the interval tolerance becomes [26, 36]. The values belong to the interval 

encoded to 0, and the values above 36 are encoded to 1. The values below 26 are encoded 

to -1. 
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Figure 2.9 LTP operator 

Tan and Triggs used LTP for face image classification. Since then, LTP has been 

used in many other fields. Although LTP reduces noise sensitivity, it is no longer strictly 

invariant to greyscale changes and still inherited the second weakness of LBP which is 

classifying some different LBP patterns into the same class  (Ren et al. 2013).  

2.5.3 Completed Local Binary Pattern 

CLBP was introduced by Guo et al (Guo et al., 2010) as a new descriptor for 

texture classification to improve rotation invariant texture classification results. The 

authors adopted a broader perspective for feature extraction more than LBP by including 

the information from the magnitude vectors and the centre pixels. The information was 

used to construct three operators, namely, CLBP_S, CLBP_M and CLBP_C. In CLBP, 

the local diff erence is disassembled into two complementary components: the sign 

component sp and magnitude component mp. The sign component is used to build (CLBP 

_S) operator, which is equivalent to the conventional LBP. The magnitude component is 

used to construct the (CLBP _M) operator that measures the local variance of the 

magnitude. CLBP_S and CLBP_M can be expressed as in Equation (2.4) and Equation 

(2.5), respectively. 

CLBP_SP,R = ∑ 2ps(ip − ic

P−1

p=0

)  , s(p) = {
1 ,         ip ≥ ic,

0, ip < ic,
   

2.4 
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CLBP_MP,R = ∑ 2pt(mp, c

P−1

p=0

)  , t(mp, c) = {
1,         |   ip − ic| ≥ c

0, |   ip − ic| < c
          

2.5 

where 𝑖𝑐, 𝑖𝑝, 𝑅 and 𝑃 are defined previously in Equation (2.1), 𝑚𝑝 is the magnitude 

component and c denotes the mean value of 𝑚𝑝. Figure 2.10 shows a clarification 

example for calculating the sign and magnitude of CLBP operators. 

 

Figure 2.10 (a) a 3 × 3 pattern. (b) CLBP_S.  (c) magnitude component. (d) 

CLBP_M. 

The CLBP_C operator is constructed by thresholding the centre pixel of the 3 × 3 

neighbourhood pattern at the average greyscale value of the whole image. It is 

mathematically expressed as in Equation (2.6). 

 CLBP_CP,R  =  t(ic, cI)                              
2.6 

where ic denotes the grey value of the centre pixel of the pattern, and cI denotes 

the average grey level of the entire image. The three operators could be combined into 

joint or hybrid distributions. At first, the CLBP_S and CLBP_M could be combined in 

two ways: concatenation or jointly. In concatenation, the histograms of the CLBP_S and 

CLBP_M codes are calculated separately and then concatenated together, thereby 

constructing the CLBP_S_M. In the joint approach, a joint 2D histogram of the CLBP_S 

and CLBP_M codes is calculated to construct the CLBP_S/M. The three operators 

CLBP_S, CLBP_M and CLBP_C could also be combined in two ways: jointly or hybrid. 
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In the joint method, a 3D joint histogram is built, which is represented as CLBP_S/M/C. 

In the hybrid approach, a 2D joint histogram CLBP_S/C or CLBP_M/C is built firstly, 

and then the histogram is converted to a 1D histogram, which is then concatenated with 

CLBP_M or CLBP_S to generate a joint histogram, denoted by CLBP_M_S/C or 

CLBP_S_M/C (Guo et al. 2010). 

The CLBP considerably improves texture classification. However, the CLBP 

suffers from some problems, such as noise sensitivity; similar sizes of the dimensionality 

of the CLBP_M and the CLBP_S, which means that the size of the histogram grows 

sharply; and the need to exploit the complementary between the sign component and the 

magnitude component (Sree 2015). Figure 2.11 demonstrates the general framework of 

the CLBP generation process. 

 

Figure 2.11 The framework of CLBP 

Source: Guo et al. (2010) 

2.5.4 Completed Local Binary Count  

In 2012, a new texture descriptor called Local Binary Count (LBC) was proposed 

by (Zhao et al. 2012) for texture classification. Unlike LBP and its variants, the concept 

of LBC depends on computing the number of values of 1s that resulted from the 

thresholding step without the encoding step. An example of this operator is shown in 

Figure 2.12. 
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Figure 2.12 LBC operator 

 

Mathematically, the following equation describes the LBC operator. 

LBCP,R = ∑ s(ip − ic

P−1

P=0

)  , s(x) = {
1 , x ≥ 0
0, x < 0

                                 

2.7 

where 𝑖𝑐, 𝑖𝑝 𝑅 and 𝑃 are defined in Equation 2.1. Similar to CLBP, the LBC was 

extended to completed LBC (CLBC), where the three operators CLBC_S, CLBC_M and 

CLBC_C  are combined in joint or hybrid distributions. The CLBC_S is equal to the 

original LBC described above in Equation 2.7. The magnitude and centre operators can 

be described mathematically as follows: 

CLBC_MP,R = ∑ t(mp, c

P−1

p=0

)  ,   t(mp, c) = {
1,         |ip − ic| ≥ c,

0, |ip − ic| < c,
      

2.8 

CLBC_CP,R  =  t(iC, cI)                                                          
2.9 

where 𝑖𝑐, 𝑖𝑝, 𝑅, 𝑃, c, mp and cI are defined in Equations (2.1), (2.5) and (2.6).  The 

CLBC can achieve similar accurate classification rates as the CLBP. However, it reduces 

the computational complexity for the training and classification process and suffers from 

the same limitations of LBP (Nair & Jacob 2017). 

2.5.5  Robust Local Binary Pattern 

RLBP was proposed in 2013 by (Chen et al. 2013) to overcome the noise 

sensitivity problem in LBP. The concept of RLBP is finding the possible bit in LBP that 

was changed by the noise and then amending the changed bit of the LBP pattern. RLBP 

is used only in case of P = 8 and R = 1, in where the set of any neighbouring three-bit 

substring is Y = {y1 = (000), y2 = (001), y3 = (010), y4 = (011), y5 = (100), y6 = (101), 

y7 = (110), y8 = (111)}. The cases of y3 and y6 are assumed to be noisy, so they changed 
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to a new sub-string y′3 = (000) and y′6 = (111). Figure 2.13 shows a clear example of the 

RLBP process.  

 

Figure 2.13 The RLBP  

Figure 2.13 shows a pattern with an LBP binary code 11010011. The pixel with a 

value of 29 has a high possibility of being noisy because it results in a noisy substring 

101 (y6). Thus, the RLBP changes the noisy substring 101 to the corresponding substring 

111. The new code is 11110011, which denotes a local edge, which is a more meaningful 

pattern for texture representation. Thus, for each bin, the RLBP operator searches all its 

neighbouring three-bit substrings and maps its y3 or y6 to y′3 or y′6. Despite the 

simplicity of the idea, it works well. However, the main problem of this method is that 

the nonuniform patterns may be mapped to uniform ones and it is limited to one scale. 

2.5.6 Noise Resistant Local Binary Pattern 

NRLBP was mainly proposed to overcome the drawbacks of LTP and enhance its 

robustness to noise sensitivity (Ren et al. 2013). The connotation of NRLBP is based on 

the generation of different LBP patterns at the one-pixel place. The small pixel difference 

is most susceptible to noise. Thus, the NRLBP encodes the small pixel difference as the 

undetermined bit before determining its value depending on the other different bits of the 

LBP code. In the end, all the uncertain bit values are assigned to form all possible uniform 

LBP codes and change the noisy non-uniform patterns back to the uniform code. The 

main problems in NRLBP are its limited neighbourhood size because it needs a 3𝑃size 

table for P neighbouring pixels, and using a larger number of neighbouring pixels will be 

computationally expensive. Figure 2.14 shows an example of NRLBP calculation 

compared with LBP and LTP. 
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Figure 2.14 The uncertain code “11×100×0” is encoding and resulting in three 

NRLBP codes comparing with LBP and LTP in  (a), (b),(c), and (d). (e) shows that no 

uniform code can be formed. 

Source: Ren et al. (2013)   

2.5.7 Binary Rotation Invariant and Noise Tolerant  

Motivated by CLBP (Guo et al. 2010), a new feature extraction descriptor called 

Binary Rotation Invariant and Noise Tolerant (BRINT) descriptor was proposed (Liu et 

al. 2014). The BRINT combines three individual descriptors, namely, BRINT_S, 

BRINT_M and BRINT_C. Unlike the CLBP, which used only rotation invariant uniform 

patterns, BRINT considers all rotation invariant patterns. The BRINT can deal with a 

large number of different scales because the neighbour’s pixels are placed in a symmetric 

circle of radius R. Thus, adjusting the radius R creates operators for several spatial 

resolutions. The final representation histogram is a concatenation of binary histograms 

from multiple resolutions. Figure 2.15 illustrates the overall framework of the BRINT 

descriptor. BRINT has low dimensionality and noise robustness. However, the 

BRINT_M performs exactly the same as CLBP_M in extracting the magnitude 

information, which can be easily affected by rotation and illumination changes; thus, it 

still suffers the same limitations of CLBP_M.  
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Figure 2.15 The overall framework of BRINT descriptor 

Source:  Liu et al. (2014) 

2.5.8 Completed Local Ternary Pattern  

Despite the significant accuracy in invariant rotation texture classification that has 

been achieved by CLBP, it also inherits the same challenges of LBP.(Rassem & Khoo 

2014) proposed a more powerful texture operator called CLTP by combining CLBP and 

LTP. In CLTP, the local difference is decomposed into four complementary components; 

the first two are the upper and lower sign components, and the second two are the upper 

and lower magnitude components, which can be expressed as follows: 

Sp
upper

= S (ip − (ic + t)) 
2.10 

Sp
lower = S(ip − (ic − t)) 

2.11 

Mp
upper

= |ip − (ic + t)| 
2.12 

Mp
lower = |ip − (ic − t)| 

2.13 

Then the sign components are used to build the CLTP_𝑆𝑃,𝑅
𝑢𝑝𝑝𝑒𝑟

 and CLTP_𝑆𝑃,𝑅
𝑙𝑜𝑤𝑒𝑟 

as follows: 
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𝐶LTP_SP,R
upper

= ∑ 2ps(ip − (ic + t)

P−1

p=0

), SP
upper

= {
1 ,         ip ≥ ic + t,

0, otherwise,
 

2.14 

CLTP_SP,R
lower = ∑ 2ps(ip − (ic − t)

P−1

p=0

), SP
lower  = {

1 ,         ip < ic − t,

0, otherwise,
  

2.15 

where 𝑖𝑐, 𝑖𝑝, 𝑅 and 𝑃 are defined in Equation (2.1), and t is the threshold value, 

which is manually set to 5. 

The two operators are then concatenated to form 𝐶𝐿𝑇𝑃_𝑆𝑃,𝑅 as follows: 

CLTP_SP,R = [CLTP_SP,R
upper

    CLTP_SP,R
lower]                           

2.16 

With the use of 𝑚𝑝
𝑢𝑝𝑝𝑒𝑟

and 𝑚𝑝
𝑙𝑜𝑤𝑒𝑟, the CLTP_MP,R is built 𝑚𝑝

𝑙𝑜𝑤𝑒𝑟as follows 

𝐶LTP_MP,R
upper

= ∑ 2pt(mp
upper

, c

P−1

p=0

), t(mp
upper

, c)  

= {
1, |ip − (ic + t)| ≥ c,

0, |ip − (ic + t)| < c,
 

2.17 

CLTP_MP,R
lower = ∑ 2pt(mp

lower, c

P−1

p=0

), t(mp
lower, c)

= {
1, | ip − (ic − t)| ≥ c,

0, | ip − (ic − t)| < c,
 

2.18 

where 𝑖𝑐, 𝑖𝑝, 𝑅 and 𝑃 are defined previously in Equation (2.1), and c is the mean 

value of the magnitude component. 

CLTP_MP,R = [CLTP_MP,R
upper

    CLTP_MP,R
lower]   

2.19 

 

 Figure 2.16 shows a clear example for calculating the sign and magnitude in 

CLTP operator where the local difference is computed twice based on the upper and lower 

value of the centre pixel. The sign is computed directly using the new value of the centre 

pixel after using the threshold, while the magnitude is computed based on the upper and 

lower magnitudes calculated according to c.  
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Figure 2.16 The CLTP sign and magnitude operators.  

Similar to the above process, CLTP_𝐶𝑃,𝑅
𝑢𝑝𝑝𝑒𝑟

 and CLTP_𝐶𝑃,𝑅
𝑙𝑜𝑤𝑒𝑟 can be 

mathematically expressed as follows: 

𝐶LTPCP,R
upper = t(ic

upper
, CI)                                              

2.20 

𝐶LTP
CP,R

lower = t(ic
lower, CI)                                          

2.21 

where 𝑖𝑐
𝑢𝑝𝑝𝑒𝑟

= ic + t , 𝑖𝑐
𝑙𝑜𝑤𝑒𝑟 = ic − t and CI is the average pixel intensities of the 

whole image. The final CLTP operator is built the same as the CLBP operator by 

combining the three CLTP operators into joint or hybrid distributions to build the final 

histogram, which is double the size of the CLBP histogram. This feature may be 

considered a weak point of this operator.  

2.5.9 Dominant Rotated Local Binary Patterns  

In 2016, Mehta and Egiazarian challenged the rotation invariance problem, which 

is one of the most significant limitations in LBP, by proposing the dominant rotated LBP 

(DRLBP) descriptor (Mehta & Egiazarian 2016). DRLBP achieved rotation invariance 

by using a reference direction that was selected by the authors as the dominant direction 

as a reference direction based on experiments. The dominant direction is computed 

locally from the neighbourhood as the index of the neighbouring pixel, which has the 

maximum difference from the centre pixel as in Equation (2.22) 

D = arg max |ip − ic| 2.22 
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DRLBP captures structural information by using both sign and magnitude 

components. Similar to conventional LBP, DRLBP obtains a binary code that represents 

the neighbourhood by calculating the local differences between a centre pixel and its 

neighbours. Mathematically, the DRLBP descriptor is defined as Equation (2.23) 

DRLBPP,R = ∑ S(ip − ic) × 2mod(p−P,D),

P−1

p=0

 

 S(ip − ic) = {
1,         if ip ≥ ic

0, if ip <  ic
 

2.23 

 

where 𝑖𝑐, 𝑖𝑝, 𝑅 and 𝑃 are defined by Equation (2.1), mod denotes the modulus 

operator and the weight depending on D, and D is the dominant direction. The DRLBP is 

invariant to both rotation and illumination variations and has a high discriminative power. 

However, it is sensitive to noise, and the calculating process of dominant orientation 

requires more computation. 

2.5.10 Feature-based Local Binary Pattern 

Recently, Pan et al. (2017), influenced by CLBP, proposed a new algorithm called 

feature-based LBP (FbLBP) to enhance LBP and overcome the limitations of its variants 

(Pan et al., 2017). The technique of constructing the final histogram of FbLBP is similar 

to that used by the CLBP where three binary codes are generated from three 

complementary parts, namely, the sign, feature and the centre pixel components. The sign 

operator (FbLBP_S) is qualified for conventional LBP, whilst the feature part (FbLBP_F) 

includes two features, namely, the mean and the variance. The mean and variance are 

encoded into binary format by using an adaptive local threshold proposed by the authors. 

They divided the image into n×n non-overlapping sub-images, then the adaptive threshold 

is determined for each sub-image. Thus, the FbLBP_F is defined as in Equation (2.24) 

and Equation (2.25).  

FbLBP_Fµ(ic)  =  S(µm  −  tµ) 2.24 

FbLBP_Fσ(ic)  =  S (σm
2  –  tσ ) 2.25 
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where (𝜇𝑚) and (𝜎𝑚
2  ) are the mean and variance of the magnitude vector 𝑚𝑝 , 

and the local threshold 𝑡𝜇and 𝑡𝜎  are the average values of (𝜇𝑚) and (𝜎𝑚
2  ) in the sub-

image. In a similar way, the centre pixel component is encoded to binary. as in Equation 

(2.26). Figure 2.17 summarises the overall calculation process of the FbLBP. 

 

Figure 2.17 The overall calculation process of FbLBP 

Source: Pan et al. (2017) 

The FbLBP achieves good discrimination accuracy and solves the dimensionality 

problem, as indicated by the reduced dimensionality of the final histogram compared with 

that of the CLBP operator. However, the first problem, which is noise sensitivity, still 

appears in FbLBP as in CLBP and CLBC. 

Table 2.1 compares all the previous descriptors in terms of noise sensitivity, 

illumination sensitivity, rotation sensitivity, the use of tuning parameters, computational 

complexity, high dimensionality and the histogram size. The table shows the limitations 

of the original LBP and some of its variants. All LBP variants aimed to increase the 

classification accuracy of LBP and handle its limitations. However, most of LBP variants 

still inherited at least one of LBP’s limitations, (i.e. noise sensitivity, rotation sensitivity 

and illumination sensitivity). CLTP is one of the LBP-based descriptors that eliminate 

noise sensitivity problem and achieved impressive classification accuracy rates in 

different image classification tasks. However, CLTP suffers from the high dimensionality 

issue, where the size of CLTP is double that of CLBP. Moreover, the threshold value in 

CLTP is selected manually. Thus, this work aims to enhance the classification accuracy 

of CLTP and addressing the high dimensionality problem. Overcoming the high 

𝐹𝑏𝐿𝐵𝑃𝐶(𝑖𝑐) = 𝑆(𝑖𝑐 − 𝑡𝑐) 2.26 
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dimensionality will reduce the computational time. To achieve these objectives this 

research will introduce two texture descriptors: the WCLTP descriptor, which mainly 

aims to enhance the classification accuracy, and Feat-WCLTP, which is mainly aims to 

overcome the high dimensionality and reduces the computational time.  

Table 2.1 The well-known LBP variants texture descriptors. 

 

2.6 Wavelet Transform (WT) 

WT considers a unified framework for image multiresolution decomposition. It 

allows the examination of the texture under several resolutions while preserving spatial 

resolution (Sree 2015). The main concept of the WT is analysing the signal as a 

superposition of wavelets across multiple scales. It was developed to overcome the 

problems of Fourier transform related to frequency and time resolution properties 

(Cataldo & Ficarra 2017). For example, some important features in the image are 
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LBPP,R
ri   Yes Yes No No No Yes 2P 

LBPP,R
u2   Yes Yes No No No Yes  P*(P-1) +3 

LBPP,R
riu2 Yes Yes No No No No P+2 

LTP  Yes Yes No Yes No No (P+2)*2 

CLBP Yes Yes No No Yes Yes (P+2)*(P+2)*2 

CLBC Yes Yes No No Yes  Yes (P+1)*(P+1)*2 

NRLBP No Yes Yes Yes No Yes 3P 

RLBP Yes No No No No Yes  P*(P-1) +3 

CLTP No No No Yes Yes Yes ((P+2)*(P+2)*2)2 

BRINT No  Yes No No No No 144 

DRLBP Yes No No Yes  Yes No Not constant  

FbLBP Yes Yes No No No No  (P+2)*(2+2)*2 

Yes, indicates the limitation still exists 

No indicates the limitation has been overcome. 
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localised in the spatial domain. Fourier transform failed to represent these features in their 

transform coefficients. To solve such a problem, WT is used. WT extracts features from 

the input image by decomposing the original image into a series of sub-band images. 

Several WT types can be found in the literature, such as continuous WTs (CWT) (Rahimi 

& Moghaddam 2015), discrete WT (DWT) (Kovac et al. 2018) and redundant WT 

(RDWT) (Subhedar & Mankar 2016). 

2.6.1 Continuous wavelet transforms (CWT) 

CWT divides a continuous time function into wavelets (Rioul & Vetterli 1991). 

CWT has the ability to structure a time-frequency representation of an image with a good 

time and frequency localisation. CWTs f(x) is presented as in Equation (2.26)  

W (a, b) =
1

√𝑎
∫ 𝑥(𝑡) Ψ ∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡.        𝑎 > 0, 𝑏𝜖 ℜ 2.26 

where 𝛹 represents the mother wavelet function, a and b denote the scale 

parameters and * represents the convolution operator. The main problem in CWT is that 

it generates a large amount of unnecessary information because it calculates wavelet 

coefficients at every possible scale and position, thereby leading to high cost. 

2.6.2 Discrete Wavelet Transform  

DWT was proposed to overcome the drawbacks of CWT and makes WT more 

efficient in real-life applications(Mallat 1989). DWT selects only a subset of scales and 

positions during the analysis process. It represents the image in the time domain by 

employing a digital filter. DWT analyses an image by passing it over filters with several 

cut-off frequencies at different scales. This process includes three main steps: 

transforming the image into the frequency domain before multiplying it with the 

frequency filter function and then re-transforming the result into the spatial domain. 

Figure 2.18 illustrates an example of DWT.  
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Figure 2.18 Example of DWT  

Source: Li et al., (2003) 

In the figure, the image S is decomposed into four sub-bands. The sub-band with 

low frequency represents an approximation of the image S, and the other three sub-bands 

with high-frequency represent detail images in different orientations, i.e. vertical, 

horizontal and diagonal.  

The sub-band images can be computed by using the following equations:  

𝐴 = [ℎ𝑥 ∗  (ℎ𝑦 ∗ 𝑆)↓2,1] ↓ 1,2 2.27 

𝐻 = [ℎ𝑥 ∗  (𝑔𝑦 ∗ 𝑆)↓2,1] ↓ 1,2 2.28 

𝑉 = [𝑔𝑥 ∗  (ℎ𝑦 ∗ 𝑆)↓2,1] ↓ 1,2 2.29 

𝐷 = [𝑔𝑥 ∗  (𝑔𝑦 ∗ 𝑆)↓2,1] ↓ 1,2 2.30 

where h, g and S, represent the high-pass filter, the low-pass filter and the input image, 

respectively. ↓ represents the downsampling operator. For further decompositions, the 

approximation image LL is used to achieve higher levels of decomposition. This 

operation is continued until the final scale is reached. Despite the widespread use of DWT 

in the image classification field, it suffers from the main drawback, which is translation variance. 

Moreover, the DWT sub-bands are half the size of the original image, thereby leading to the loss 

of much spatial information during this type of decomposition.  

2.6.3 Redundant discrete wavelet transforms  

RDWT was proposed to overcome the limitations of the DWT (Fowler 2005). 

One major drawback of DWT is the shift variance problem, which is a result of 
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downsampling operation. The downsampling process removes useless samples from sub-

band images, thereby helping reduce the redundant samples in the decomposition process. 

However, this approach leads to translation variance of the decomposition results. For 

example, a slight shift in the input image leads to a large amendment in wavelet 

coefficients, thereby causing incorrect feature extraction. RDWT overcomes this problem 

by eliminating the downsampling operation and producing an overcomplete 

representation (Irani Mehr et al. 2013). RDWT decomposes an image into four sub-bands 

that each have the same size as the input image: LL, HL, LH and HH. In DWT, the sub-

band size is decreased by half the input image size in each decomposition level. Thereby, 

in RDWT, the texture features in each sub-band and input image will be identical in 

spatial location, thereby efficiently acquiring the local texture (Subhedar & Mankar 

2016). Figure 2.19 shows the size of each band for DWT and RDWT. 

 

Figure 2.18 RDWT and DWT with (512 x 512) image size  (a) single-level Haar 

RDWT with size 512x512 for each sub-band (b) single-level Haar DWT with size (256 

x 256) for each sub-band. 

 

RDWT has one more distinctive feature, which is the introduction of over-complete 

frame expansion, thereby making it more robust to noise than DWT (Jarholiya 2016). 

Figure 2.20 shows the RDWT analysis and synthesis filter bank, where f(n) denotes the 

input image and f′(n) denotes the retrieved image. h[−k] and g[−k] are low-pass and high-

pass filters for analysis, respectively. h[k] and g[k] are corresponding synthesis filters. The 

output coefficients are symbolised by cj and dj at level j. 
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Figure 2.19 RDWT analysis and synthesis filter banks 

Source : Hien et al. (2006)  

Mathematically, RDWT analysis can be expressed as: 

𝑐𝑗 [𝑘] = (𝑐𝑗 + 1[𝑘] ∗  ℎ𝑗 [−𝑘]) 2.31 

𝑑𝑗 [𝑘] = (𝑐𝑗 + 1[𝑘] ∗  𝑔𝑗 [−𝑘]) 2.32 

RDWT synthesis can be expressed a 

𝑐𝑗 + 1[𝑘] =
1

2
(𝑐𝑗 [𝑘] ∗  ℎ𝑗 [𝑘] + 𝑑𝑗 [𝑘] ∗ 𝑔𝑗 [𝑘]) 2.33 

The redundancy of RDWT consumes more memory space. However, this 

increases the number of extracted features from the image. 

The previous literature suggests that all LBP variants have inherited at least one 

or more of the limitations set out in Table 2.1. Therefore, this thesis will address the 

computational limitation and enhance the classification accuracy of the CLTP descriptor. 

These objectives will be achieved by introducing two descriptors: the WCLTP descriptor, 

which mainly aims to enhance the classification accuracy, and Feat-WCLTP, which is 

mainly proposed to overcome the computational limitation.  

2.7 Datasets 

To evaluate the effectiveness of the proposed work, two types of dataset were 

used, namely, texture dataset and medical dataset. These datasets are described in detail 

in section 2.7.1 and 2.7.2, respectively.  
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2.7.1 Texture Datasets 

Four representative texture datasets were used, namely, CuReT(Dana et al. 1999), 

OuTeX (Ojala et al. 2002), UIUC (Lazebnik et al. 2005), and Kylberg (Kylberg 2011). 

These datasets are mostly used in recent research for assessment purposes. Using these 

datasets will help to compare the proposed descriptors with others to achieve a fair 

evaluation. 

2.7.1.1 CuReT Dataset  

The CuReT dataset contains 61 texture classes, and every class has 205 images 

obtained from several viewpoints and lighting directions (Dana et al. 1999). A total of 

118 images are shot from a viewing angle of less than 60°. Of these 118 images, 92 images 

were selected, from which a sufficiently large region could be cropped (200 * 200) across 

all texture classes (Guo et al. 2010). A different number of images N (N = 6, 12, 23, 46) 

are selected randomly as training data from every class. Some images from the CuReT 

dataset are shown in Figure 2.21.  

Figure 2.20 Some images from CuReT dataset 

2.7.1.2 OuTeX Dataset  

The OuTeX dataset family has 16 different suits. In these experiments, OuTeX-

TC-0010 and OuTeX-TC-0012 were selected. Each of them has 24 classes of texture 

images taken under 3 illuminations (‘inca’) for TC-0010 and (‘t184’ and ‘horizon’) for 

TC-0012, and 9 rotation angles (0°, 5°, 10°, 15°, 30°, 45°, 60°, 75° and 90°) (Ojala et al. 

2002). Twenty 128×128 images are available for each rotation angle under a given 
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illumination condition. The 24 × 20 images of TC-0010 and rotation 0° were used for the 

training sample; the rest of the images at different rotations were adopted as the testing 

sample. The whole sample in TC-0012 taken under lighting ‘t184’ and ‘horizon’ was 

adopted as the testing sample.   Some images from the OuTeX dataset are shown in Figure 

2.22. 

 

 

Figure 2.21 Some images from OuTeX dataset. 

 

2.7.1.3 UIUC Dataset  

The UIUC database includes 25 texture classes with 40 texture images in each 

class. The images were collected under different illuminations and viewpoint angles 

(Lazebnik et al. 2005). From each class, N number of images were selected randomly for 

training, while the remaining 40-N images were used for testing. The final classification 

accuracy is the average percentage of over 100 random splits. Figure 2.23 shows some 

sample images in the UIUC dataset.  
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Figure 2.22 some sample images in UIUC database 

2.7.1.4 Kylberg Dataset  

Kylberg is a texture dataset that contains 28 texture classes of different natural 

and man-made surfaces, with each class consisting of 160 images (Kylberg 2011). The 

image size is 576 × 576 pixels and stored as greyscale 8-bit PNG images, as shown in 

Figure 2.24.   

 

Figure 2.23 Some images from Kylberg dataset 
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2.7.2 Medical Datasets  

To evaluate the performance of the proposed work, two medical datasets were 

used: 2D-HeLa database (Boland & Murphy 2001) and Breast Cancer dataset (Junior et 

al. 2009).    

2.7.2.1 2D HeLa Dataset  

The 2D-HeLa database contains 10 classes, namely, DNA, Actin, Endosomes, 

ER, Golgi GPP130, Golgia, Lysosomes, Microtubules, Nucleolus and Mitochondria 

(Boland & Murphy 2001). Each class has a different number of images; the highest 

number of images is 87. Four-fifths of images from every class were randomly chosen as 

training data, and the remaining 1/5 of images were adopted as testing data, similar to 

(Rassem et al. 2015). The final classification accuracy is the average percentage over 10 

random splits. Figure 2.25 shows an example of a 2D HeLa image dataset.  

 

Figure 2.24 Images from 2D Hela dataset 
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2.7.2.2 Breast Cancer Dataset  

The Breast Cancer dataset has three classes, namely, benign, control and 

malignant, and has a total of 1394 images (Junior et al. 2009). The setup of this dataset is 

the same as that of 2D-Hela where 4/5 of the images from every class were randomly 

chosen as training data, and the remaining1/5of images was adopted as testing data. The 

final classification accuracy is the average percentage over 10 random splits. Some 

examples of the Breast Cancer dataset images are shown in Figure 2.26. 

 

Figure 2.25 Image from BR Database 

2.8 Summary  

This chapter presented a review of texture analysis methods. Texture analysis 

consists of five general domains: classification, segmentation, synthesis, compression and 

the shape from texture. The general structure for texture classification is produced and 

the main steps for the classification process are discussed. Texture feature extraction is 

presented as it is an important step in texture classification. Texture feature extraction 

methods are classified into four groups: statistical, structural, model-based and signal 

processing-based. Furthermore, LBP was presented as one of the simplest and popular 

texture descriptors. Other well-known and popular texture descriptors (i.e. LBP, LTP, 

CLBP, CLBC, CLTP, NRLBP, RLBP, BRINT, DRLBP and FbLBP) were introduced. 

The main advantages and limitations of each descriptor were highlighted. CLTP is one of 

the most important LBP variants that was proposed to overcome the drawbacks of LBP. 

However, despite the impressive performance of CLTP, it suffers from some limitations, 

such as high dimensionality and the problem of selecting the threshold value. At the end, 

a brief introduction about WT was included. In addition, some information about 

benchmark datasets that used was presented.
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter presents the research methodology used in this research. The 

following section illustrates the overall research methodology. The next section 

introduces the proposed descriptors, which include two main stages: Wavelet Completed 

Local Ternary Pattern (WCLTP) and Feature-based WCLTP (Feat-WCLTP). A summary 

is given in the last section.  

3.2 Methodology of the Proposed Descriptors   

The overall research methodology of this research is divided into three main 

stages: literature review, design and implementation, and the evaluation stage, which are 

summarised as follows:  

The literature review phase involves identifying the texture descriptors applied to 

different real-world problems, i.e. medical, face and fingerprint. This phase shows that 

many texture descriptors were proposed in previous years, each one having different 

strengths and weaknesses. CLTP is one of these descriptors and was proposed in 2014 

(Rassem & Khoo 2014). Although CLTP showed good performance, it still suffers from 

some limitations, which are summarised in Table 2.1.  
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The design and implementation stage involve overcoming the limitations of CLTP 

by proposing new texture descriptors inspired by CLTP for the image classification task. 

Firstly, a new descriptor called WCLTP is proposed by extracting CLTP after converting 

an image to transform domain. This conversion is performed because of the properties of 

the WT compared with the spatial domain. The original descriptor suffers from the high 

dimensionality problem; therefore, the WCLTP suffers from the same problem. To 

overcome this problem, further enhancement is proposed, which involves reducing the 

extracted features and combining the extracted features in a single vector, as will be 

explained in the coming sections.   

Finally, the evaluation phase is performed, which consists of two main steps: 

assessing the new descriptor using different benchmark datasets, such as medical image 

and texture image databases, and discussing the final outcome. The performance of the 

new descriptors is compared with that of other descriptors especially CLBP, CLBC and 

the original CLTP. These stages are illustrated in Figure 3.1. 

 

Figure 3.1 Illustration of the methodology 

 

3.3 General proposed model  

Generally, the texture classification aims to design an algorithm that can address 

a sample image to one of a set of known classes whose training examples have been 

provided. As mentioned in the literature, this process requires a set of steps: 



41 

preprocessing, feature extraction, feature selection and classification. Many researchers 

agree that the feature extraction step is the most important step (Liu et al. 2019) because 

the powerful extracted features play a crucial role in the final classification results. 

However, if the best classifier is fed by weak features, then it will fail to achieve good 

results (Liu et al. 2019). Therefore, given this work’s focus on the feature extraction task, 

CLTP is selected as its backbone model. Accordingly, the performance of CLTP is 

improved in two ways: by introducing the WCLTP descriptor, which mainly aims to 

enhance the classification accuracy rate of CLTP, and by introducing the Feat-WCLTP 

descriptor to reduce the high dimensionality problem that was inherited from the original 

CLTP descriptor and causes high memory consumption. Figure 3.2 shows the general 

framework of the proposed method.   

 

Figure 3.2 General Framework for the proposed work 

As shown in Figure 3.2, the proposed work generally consists of three main 

phases, namely, (A) preprocessing, (B) feature extraction and (C) classification.  The aim 

of preprocessing is to enhance the input image and present it in a way that can be 

measured consistently for strong classification. In this work, the preprocessing process is 

shortened by normalising the image, converting images to greyscale and resizing them. 

In phase (B), the feature extraction process is implemented to extract useful information 

from the preprocessed image. Thus, this phase will be implemented in two stages: Firstly, 

the WCLTP descriptor is proposed by integrating RDWT with CLTP to extract more 

useful features and improve the accuracy rate. Secondly, a feature-based descriptor is 
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proposed to reduce the size of the extracted features. In the classification phase, the 

extracted features are fed to a classifier to assign the image to one of the pre-defined 

classes. Different kinds of classifiers were introduced in the past. In this research, KNN 

is used because of its good performance with different texture descriptors and for a fair 

comparison with other descriptors. The following sections will introduce each proposed 

model in detail. 

3.3.1 Wavelet Completed Local Ternary Pattern  

The proposed WCLTP mainly aims to enhance the performance of CLTP and 

improve its classification accuracy. In image processing, the method of transforming the 

images from the spatial forms (pixel values) to the wavelet form has been used to enhance 

many applications due to the properties of WTs, such as the ability to analyse data at 

different scales and the low computational complexity (Irani Mehr et al. 2013). 

RDWT transform is considered one of the robust WTs. It was proposed to 

overcome the limitations of DWT (Fowler 2005). The downsampling in DWT gains shift 

variance even for a slight shift in the input image, thereby leading to incorrect feature 

extraction. RDWT addresses the shift variance problem of DWT. It decomposes an image 

into four sub-bands, where the size of each sub-band equals the size of the original image 

unlike DWT where the sub-band size is only the half size of the original image. As a 

result, the important textures in the image will be at the same spatial location in each sub-

band, thereby ensuring an accurate capture of the local texture and its exact measure.  

The implementation steps of the proposed WCLTP are described as follows: 

Firstly, RDWT is applied to the preprocessed input image and decomposes the image into 

four sub-bands: LL, HL, LH and HH. LH, HL and HH represent the horizontal, vertical 

and diagonal detail, respectively. LL is approximate for the input image; thus, the power 

is more compact in the LL sub-band.  

 Therefore, the LL sub-band is selected. Then, CLTP_S, CLTP_M and CLTP_C 

are extracted from the LL sub-band. WCLTP_S, WCLTP_M and WCLTP_C are 

combined in different ways to evaluate the effectiveness of the WT. Figure 3.3 shows the 

WCLTP extraction process. 
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Figure 3.3 Flowchart of WCLTP extraction process 

The WCLTP can be expressed mathematically as follows: Firstly, the upper and 

lower sign and magnitude components can be expressed as follows: 

Sp
upper

= s (ip − (ic + t)) 
3.1 

Sp
lower = s(ip − (ic − t)) 

3.2 

Mp
upper

= |ip − (ic + t)| 
3.3 

Mp
lower = |ip − (ic − t)| 

3.4 

 Then the sign components are used to build the WCLTP_𝑆𝑃,𝑅
𝑢𝑝𝑝𝑒𝑟

 and 

WCLTP_𝑆𝑃,𝑅
𝑙𝑜𝑤𝑒𝑟 , as follows:  

𝑊CLTP_SP,R
upper

 = ∑ 2ps(ip − (ic + t)

P−1

p=0

), SP
upper

= {
1 ,         ip ≥ ic + t,

0, otherwise,
                                         

3.5 
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WCLTP_SP,R
lower = ∑ 2ps(ip − (ic − t)

P−1

p=0

), SP
lower  = {

1 ,         ip < ic − t,

0, otherwise,
  

3.6 

where 𝑖𝑐, 𝑖𝑝, 𝑅 and 𝑃 are as described previously in Equation (2.1), while t is the 

threshold value. The two operators are then concatenated to form WCLTP_SP,Ras in 

Equation (3.7). Figure 3.4 illustrates an example of the WCLTP_SP,R calculation process. 

𝑊CLTP_SP,R = [WCLTP_SP,R
upper

    WCLTP_SP,R
lower]                           

3.7 

 

Figure 3.4 Example of WCLTP sign extraction process 

 

As shown in Figure 3.4 (a) is the input grey-level image. In (b), RDWT is applied 

to the input image and decomposes the image into four sub-bands, where the LL sub-band 

is selected. (c) shows how the sign is calculated, where the local difference vector is firstly 

calculated according to Equations (3.1) and (3.2). Equations (3.5) and (3.6) are utilised to 
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calculate the upper and lower WCLTP_S, respectively. The histogram size for the  

WCLTP_S is (P+2) *2 bins. 

Similar to WCLTP_SP,R, the WCLTP_MP,R is built using the two magnitude 

complementary components 𝑚𝑝
𝑢𝑝𝑝𝑒𝑟

 and 𝑚𝑝
𝑙𝑜𝑤𝑒𝑟as follows: 

𝑊CLTP_MP,R
upper

= ∑ 2pt(mp
upper

, c

P−1

p=0

), t(mp
upper

, c)  

= {
1, |ip − (ic + t)| ≥ c,

0, |ip − (ic + t)| < c,
 

3.8 

WCLTP_MP,R
lower = ∑ 2pt(mp

lower, c

P−1

p=0

), t(mp
lower, c)

= {
1, | ip − (ic − t)| ≥ c,

0, | ip − (ic − t)| < c,
 

3.9 

WCLTP_MP,R = [WCLTP_MP,R
upper

    WCLTP_MP,R
lower]   

3.10 

where ic, ip, P, R and c are defined in Equations (2.1) and (2.5). Figure 3.5 shows 

an example of the calculation process to construct the WCLTP_MP,R 

 

Figure 3.5 Example of WCLTP magnitude extraction process 

As seen in Figure 3.5, the local difference is calculated while ignoring the sign by 

using Equations (3.3) and (3.4). Then, the neighbouring pixels are thresholded according 

to the C value, where C can be defined as the mean value of all 𝑚𝑝 in the whole image. 

Equations (3.8) and (3.9) are used to build the upper- and lower-magnitude operators for 

the proposed WCLTP. The histogram size for the WCLTP_M is (P+2) *2 bins. 
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Similar to the above process, WCLTP_CP,R
upper

 and WCLTP_CP,R
lower can be 

mathematically expressed as follows: 

WCLTPCP,R
upper = t(ic

upper
, CI)                                              

3.11 

WCLTP
CP,R

lower = t(ic
lower, CI)                                          

3.12 

WCLTP_CP,R = [WCLTP_CP,R
upper

    WCLTP_CP,R
lower]   

3.13 

where 𝑖𝑐
𝑢𝑝𝑝𝑒𝑟

= ic + t , 𝑖𝑐
𝑙𝑜𝑤𝑒𝑟 = ic − t and CI is the average grey level of the whole 

image. The histogram size for the WCLTP_C is 2*2 bins. 

The proposed WCLTP_S, WCLTP_M and WCLTP_C operators are combined 

into joint or hybrid distributions to build the final operator histogram similar to CLTP.  

The operators of the same type of pattern, i.e. the upper and the lower pattern, are 

combined firstly into joint or hybrid distributions. Then their results are concatenated to 

build the final operator histogram that has a size of ((P+2)*(P+2)*2)2, which is 

considered relatively high dimensionality.  

3.3.2 Feature-based WCLTP 

The proposed WCLTP was evaluated in this work through a set of experiments 

that will be discussed in detail in the next chapter. The results show the effectiveness of 

the enhanced model in improving the performance of CLTP. However, the size of the 

resultant histogram is too large. This problem is inherited from the original CLTP. The 

high dimensionality negatively affected the performance of the descriptor and increased 

the running time. Moreover, high dimensionality needs large storage space. In addition, 

the classification process will be slow. In this section, the objective is to overcome the 

high dimensionality problem and maintain the improved performance.  

In their major study, (Guo et al. 2010) confirmed by analysis that the sign vector 

of local difference possesses more information than the magnitude vector. This situation 

explains why texture classification using the sign operator achieves much higher accuracy 

than that achieved by the magnitude operator. On the basis of this finding, a new 

descriptor is proposed to overcome the high dimensionality problem by modifying the 

structure of the magnitude operator and reducing the number of extracted features. 
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Similar to the first model structure, the proposed Feat-WCLTP is constructed 

using three operators: sign, magnitude and centre operators. The Feat-WCLTP_S is equal 

to WCLTP_S and calculated using the same Equations (3.5), (3.6) and (3.7) to retain the 

powerful features of the sign component. Figure 3.6 illustrates the Feat-WCLTP 

extraction process. 

 

Figure 3.6 Feat-WCLTP extraction process. 

As mentioned above, the proposed descriptor aims to solve the dimensionality 

problem without affecting the classification accuracy. Thus, the focus is to reduce the 

dimensionality of the magnitude vector.  Accordingly, the feature-based is used to reduce 

the number of features generated from the magnitude from P- dimensional features to 

only two-dimensional features, which are the mean and variance of the magnitude vector. 

The mean feature µ indicates the average difference between the centre pixel and its 

neighbours, while the variance 𝜎 
2 indicates the total changes in the magnitude vector 𝑚𝑝.  

Mathematically, the Feat-WCLTP_M is computed by calculating the mean and the 

variance of the magnitude vector 𝑚𝑝 by using the following equations: 

 µupper =  
1

P
 ∑ mp

upper
                     

P−1

p=0

 
3.14 

µlower =  
1

P
 ∑ mp

lower                   

P−1

p=0

 
3.15 
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σupper
2   =  

1

P
 ∑(mp

upper
− µupper)2   

P−1

p=0

 
3.16 

σlower
2   =  

1

P
 ∑(mp

lower − µlower)2

P−1

p=0

 
3.17 

where P is the number of neighbouring pixels. The mean and variance are the 

average values of all P elements in the magnitude vector. Thus, using these features can 

diminish the impact of noise, rotation and illumination. Moreover, when using these two 

features, all non-uniform patterns do not need to be integrated into a single bin as in 

CLBP_M and CLTP_M, which means better complementary information will be 

provided to the sign component. This approach will positively reflect on the descriptor 

performance. 

However, the mean and variance values are needed to encode because they are 

continuous values, which means they cannot be used directly in the classification process. 

Thus, to convert them to discrete values, an adaptive threshold method is used. In this 

method, the input image is divided into four equal non-overlapping sub-images. Then, a 

threshold value for each mean and variance in each sub-image is calculated as follows:  

The threshold values for the mean are: 

Tµ
upper

=
1

N
 ∑ µupper

N

n=1

  

3.18 

Tµ
lower =

1

N
 ∑ µlower

N

n=1

 

3.19 

where N is the number of local patterns in each sub-image. The following 

equations are used to determine the threshold values for upper and lower variances.  

Tσ
upper

=
1

N
 ∑ σupper

2

N

n=1

 

3.20 

Tσ
lower =

1

N
 ∑ σlower

2

N

n=1

 

3.21 
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Using this threshold method helps properly exploit the relationships between 

pixels. 

The upper and lower mean and variance features are converted to binary format 

by using the following equations: 

Fµ
upper

 (ic) = s (µupper− Tµ
upper

) 
3.22 

Fµ
lower (ic) = s (µlower− Tµ

lower) 
3.23 

Fσ
upper(ic) = s (σupper

2 − Tσ
upper

) 
3.24 

Fσ
lower(ic) =  s (σlower

2 − Tσ
lower) 

3.25 

where 𝑖𝑐 is the centre pixel. In Equations (3.22 to 3.25), s(x) is the same as defined 

in Equation (2.1). 

The upper and lower features used to build the final (Feat-WCLTP_M) as follows: 

Feat-WCLTP_M
𝑃,𝑅
𝑢𝑝𝑝𝑒𝑟 = [ 𝐹µ

𝑢𝑝𝑝𝑒𝑟     𝐹𝜎
𝑢𝑝𝑝𝑒𝑟] 

 

3.26 

Feat-WCLTP_M
𝑃,𝑅
𝑙𝑜𝑤𝑒𝑟

=[ 𝐹µ
𝑙𝑜𝑤𝑒𝑟    𝐹𝜎

𝑙𝑜𝑤𝑒𝑟] 

 

3.27 

𝐹𝑒𝑎𝑡 − 𝑊𝐶𝐿𝑇𝑃_𝑀𝑃,𝑅

= [𝐹𝑒𝑎𝑡 − 𝑊𝐶𝐿𝑇𝑃_𝑀𝑃,𝑅
𝑢𝑝𝑝𝑒𝑟    𝐹𝑒𝑎𝑡 − 𝑊𝐶𝐿𝑇𝑃_𝑀𝑃,𝑅

𝑙𝑜𝑤𝑒𝑟] 

3.28 

This process can be explained using an example, as shown in Figure 3.7. 
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Figure 3.6 Example of the calculation process for magnitude component  for Feat-

WCLTP 

 

Referring to Figure 3.7, A is the input image, which is the LL sub-band image that 

resulted from applying RDWT in the first model. B is the set of 2*2 sub-images. C is the 

calculation process where the local difference is computed according to Equations (3.3) 

and (3.4). Then, the mean and variance are calculated according to Equations (3.14) to 

(3.17). For each sub-image in B, the average of the means and variances is computed and 

used as a threshold value to encode the mean and variance features. Thus, the resultant 

Feat-WCLTP_M becomes a binary number with a histogram size of (2*2)*2 pins.  

 The next step is to compute the Feat-WCLTP_C. To extract more discriminative 

information from the centre pixel, it is encoded in the same way as the mean and variance. 

The threshold value for the centre pixel is the average grey values of the current sub-

image they claculted as in Equation (3.29) and Equation (3.30). 
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Tc
upper

=
1

𝑁
∑ ic

upper

𝑁

𝑛=1

         

3.29 

Tc
lower =  

1

𝑁
∑ ic

𝑙𝑜𝑤𝑒𝑟

𝑁

𝑛=1

 

3.30 

where  𝑖𝑐
𝑢𝑝𝑝𝑒𝑟

 and 𝑖𝑐
𝑙𝑜𝑤𝑒𝑟 are the centre pixels with adding and subtracting the threshold 

value, respectively. To construct the centre operator  𝐹𝑒𝑎𝑡 − 𝑊𝐶𝐿𝑇𝑃_𝐶, the following 

equations are used:  

Fc
upper

 (ic) = s (ic
upper− Tc

upper
)   

3.30 

Fc
lower (ic) = s (ic

lower− Tc
lower) 

3.31 

Feat − WCLTP_C = [Fc
upper

 (ic)    Fc
lower (ic)] 

3.32 

where ic is the centre pixel. After computing all features from Feat-WCLTP_C, 

Feat-WCLTP_M and Feat-WCLTP_S, the three operators are integrated into joint or 

hybrid distributions to build the final histogram as WCLTP. At first, the Feat-WCLTP_S  

and Feat-WCLTP_M could be combined in two ways: concatenation or jointly. In 

concatenation, the histograms of the Feat-WCLTP_S and Feat-WCLTP_M codes are 

calculated separately and then concatenated together, thereby constructing the Feat-

WCLTP_S _M. In the joint approach, a joint 2D histogram of the Feat-WCLTP_S and 

Feat-WCLTP_M codes is calculated to construct the Feat-WCLTP_S/M. The three 

operators Feat-WCLTP_S, Feat-WCLTP_M and Feat-WCLTP_C could also be 

combined in two ways: jointly or hybrid. In the joint method, a 3D joint histogram is 

built, which is represented as Feat-WCLTP_S/M/C. In the hybrid approach, a 2D joint 

histogram Feat-WCLTP_S/C or Feat-WCLTP_M/C is built firstly, and then the 

histogram is converted to a 1D histogram, which is then concatenated with Feat-

WCLTP_M or Feat-WCLTP_S to generate a joint histogram, denoted by Feat-

WCLTP_M_S/C or Feat-WCLTP_S_M/C. 

3.3.3 Summary  

In this chapter, the general methodology for this research was presented. The 

methodology consists of three stages: literature review, design and implementation, and 
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evaluation. Two main contributions were introduced based on the problems in CLTP. The 

first one is the enhanced performance classification of CLTP through integration with 

RDWT and proposed WCLTP. The second is the solution to the high dimensionality 

problem by using feature-based technique and the proposed Feat-WCLTP.  The proposed 

Feat-WCLTP can enhance CLTP’s performance and reduce the high dimensionality. The 

magnitude operator in Feat-WCLTP is described using two features instead of the features 

of all neighbouring pixels. An adaptive threshold function is used to encode these 

features.  
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter presents a series of experiments that are performed to evaluate the 

effectiveness of the proposed work. The first section gives details about the experimental 

setup used in the evaluation process. Next, the efficacy of the proposed WCLTP 

descriptor is evaluated by conducting three sets of experiments: (i) evaluating its 

robustness against noise, (ii) evaluating the classification accuracy for texture image 

classification and (iii) evaluating the classification accuracy for medical image 

classification. The third section presents the experimental results of evaluating the 

proposed Feat-WCLTP where three sets of experiments are conducted: (i) evaluating the 

classification accuracy of Feat-WCLTP for texture image classification, (ii) evaluating 

the classification accuracy of Feat-WCLTP for medical image classification and (iii) 

evaluating the computation time of Feat-WCLTP. All results are compared with those of 

other well-known descriptors in the literature. Towards the end, a summary is included. 

4.2 Experimental setup 

In all experiments, the evaluation process depends on the classification accuracy 

measure because it is the most commonly used to evaluate the descriptor performance. 

This measurement can evaluate the overall efficiency of a descriptor. To estimate the 

validity of the results, a confusion matrix was used. In addition, four representative 
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texture datasets and two medical texture datasets were used in the experiments. 

The k-fold cross-validation method was used to estimate the generalisation error of the 

proposed models. The dataset is separated into two sets in which k-1 functions are for the 

training set and the Kth set is utilised for testing.  

4.2.1 Datasets  

 All the experiments in this research were conducted using six publicly 

available benchmark datasets that were mostly used in recent research for assessment 

purposes. Thus, using these datasets helps compare the proposed descriptors with others 

for a fair evaluation. A detailed description of the datasets was provided in Section 2.8. 

Table 4.1 summarises the main characteristics of the datasets. 

 Table 4.1 The benchmark datasets used in the experiments 

4.2.2 Confusion Matrix 

As mentioned before, the evaluation process depends on the classification 

accuracy in all experiments. Thus, in this section, the confusion matrix was used to find 

the classification accuracy. In the confusion matrix, numbers of correctly and incorrectly 

classified cases exist for each class. Table 4.2 shows an example of the confusion matrix. 

Table 4.2 Confusion Matrix 

 

Data Type Number Dataset Classes Sample per 

class 

Total 

samples 
Texture 

datasets 

1 OuTex TC-10 

OuTex TC-12 

24 

24 

20 

20 

4320 

8640 
2 CUReT 61 46 5612 

3 UIUC 25 40 1000 

4 Kylberg 28 160 4480 

Medical 

datasets 

1 2D HeLa 10 87 862 

2 Breast Cancer 3 Unfixed 1394 

Predicted 

Class 

Class 
Actual Class  

True False 

True True Positive (TP) False Positive (FP) 

False False Negative (FN) True Negative (TN) 
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According to Table 4.2; True Positive (TP), False Positive (FP), True Negative (TN), 

False Negative (FN) are defined as follows: 

True Positive (TP): the number of positive cases that were correctly identified. 

False Positive (FP): the number of negative cases that were incorrectly classified as 

positive. 

True Negative (TN): the number of negative cases that were classified correctly.  

False Negative (FN): the number of positive cases that were incorrectly classified as 

negative.  

Equation (4.1) and Equation (4.2) are used to calculate classification accuracy and 

classification error 

classification accuracy =
TP+TN

TP+TN+FP+FN
  4.1 

classification error =  
FP+FN

TP+TN+FP+FN
  4.2 

  

4.2.3 Cross-Validation  

K-fold cross validation is used to evaluate classifier performance. In this method, 

the data is randomly divided into k mutually exclusive sets, where k = 3, k = 5 and k = 10 

denote 3-fold, 5-fold and 10-fold cross-validation, respectively. In this process, the data 

are divided into two parts several times. Each time, one part is used as training data while 

the other part is used as testing. Then, the average error across all k trails is computed. In 

this research, a 100-round 5-fold cross validation is applied to compute the average results 

to ensure that each class properly appears in both training and testing sets.  

4.2.4 Classifier   

The final step in the classification process is feeding the extracted texture features 

to a classifier. The classifier will assign an unknown sample image to a known class. 

Numerous classifiers are used in texture classification. Selecting an appropriate classifier 

will have a good effect on classification results. In this study, the k-NN classifier is used 
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for classification because it reported a good classification result. In addition, it is widely 

used in most common descriptors, which helps in conducting a fair comparison.  

4.2.5 Dissimilarity measurement 

To measure the dissimilarity between two histograms, chi-square statistic is used, 

which is given as follows: 

Dissimilarityx2(H, K) = ∑
(hi − ki)

2

hi + ki

B

i=1

 
4.3 

where the x2 is the distance between two histograms H=hi and K= ki, where (i= 

1,2,3,...,B). 

4.3 Performance Evaluation for the Proposed WCLTP   

As being explained in Chapter 3, the WCLTP was proposed to enhance the 

classification accuracy of CLTP. Thus, to evaluate and examine the effectiveness of the 

WCLTP, three sets of experiments were conducted. The first set examined the robustness 

of WCLTP against noise by using a noisy dataset. The second set evaluated the 

performance of the proposed WCLTP for texture image classification. The third set 

evaluated the performance of the proposed WCLTP for medical image classification. 

Where possible, the results of all experiments were compared with those of other 

approaches in the literature. 

4.3.1 Robustness of WCLTP Against Noise  

The robustness of any texture descriptor toward a noisy image reflects the 

effectiveness of this descriptor and its ability to succeed in a real-life application. Thus, 

implementing any texture descriptor under idealised situations only is almost guaranteed 

to be ineffective in a real-world environment. Therefore, in this section, a challenging 

noisy dataset is utilised to evaluate the performance of WCLTP and compare it with that 

of some well-known descriptors. The CUReT dataset is selected for this task because it 

has the largest number of classes among all selected datasets, thereby ensuring diverse 

image types. Figure 4.1 illustrates an example of noisy image. 
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Figure 4.1  Examples of the images with the noise.  

In these experiments, to follow the same experimental procedures as in (Sree & 

Rao 2017), all the CUReT dataset images are corrupted by additive Gaussian noise with 

specific signal-to-noise ratio (SNR) values (SNR = 60, 50, 40 and 30). For each class, 46 

images are randomly selected as training images. The range of variability and 

classification rate on average is noted by implementing the procedure 100 times for each 

SNR value. A varying value of radius (R = 1, 2,3) and neighbouring pixels (P = 8, 16, 24) 

is used. The experimental results of a noisy CUReT dataset for different pattern sizes are 

shown in Figures 4.2, 4.3 and 4.4. 

 

Figure 4.2 Classification rates on the noisy CUReT dataset with different SNR 

values for pattern size (R=1, P=8) 

 

From Figure 4.2, LBP is evidently the most sensitive to the noise descriptor, where 

its classification accuracy does not exceed 34% even with a high SNR value, while CLTP 

is more robust to noise and maintains its classification results around 95% at different 

SNR values. As can be observed, the proposed WCLTP obtained the best classification 

result and performed stably for noisy images of different SNR values.  
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Figure 4.3 Classification rates on the noisy CUReT dataset with different SNR 

values for pattern size (R=2, P=16). 

In Figure 4.3, LBP with (R = 2, P = 16) shows more robustness to noise than LBP 

with (R = 1, P = 8). However, it still has the worst result among all the LBP variants. 

CLTP and WCLTP still performed well under different noise levels (above 95% 

accuracy). Even so, WCLTP is still the best. 

 

Figure 4.4 classification accuracy of noisy CUReT dataset when (R=3, P=24) 

Figure 4.4 shows that the proposed WCLTP is more robust to noise than LBP, 

LTP, CLBP and CLTP at different SNR values with texture pattern (R = 3 and P = 24). 

While LBP still had poor performance, WCLTP and CLTP maintained their performance 

at different SNR values. The performance of LBP, LTP and CLBP dropped suddenly 

when SNR decreased to 30. This drop ranges from about 10% for LBP and to less than 
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7% for CLBP. All the results confirmed that the proposed WCLTP is more robust to noise 

than other LBP variants, and its performance was not affected in all noise levels. 

4.3.2 Experimental Results of WCLTP for  Texture Image Classification. 

In these experiments, four representative texture datasets were used. The proposed 

WCLTP and several texture descriptors, i.e. LBP, LTP, CLBP, CLBC, and CLTP, were 

compared in terms of accuracy. 

4.3.2.1 Experimental Results on the OuTex Dataset 

For experiments on the two suites (TC10) and (TC12), which are considered the 

two most well-known test suites in OuTex, were selected. Each of (TC10) and (TC12) 

has 24 texture classes captured under nine diff erent rotation angles (0°, 5°, 10°, 15°, 30°, 

45°, 60°, 75° and 90°) and three uneven type of illumination source (‘horizon’, ‘inca’ and 

‘t184’). Twenty 128×128 non-overlapping images are available for each rotation angle 

under a given illumination condition. For TC10, 480 images with inca’ illumination 

condition and 0° angle rotation were used as training set whereas the remaining 3840 

images are used as testing set. For TC12 the training set is same to that of TC10 while 

4320 images under ‘t184’ or ‘horizon’ illumination conditions were used as testing set. 

The experimental results of OuTex dataset are presented in Table 4.3. 

Table 4.3 Classification rates (%) on the OuTex dataset 

Method Parameters (R,P) . R =the radius of the circle, P =the number of 

neighbourhood pixels R =1, P = 8 R =2 , P = 16 R =3 , P = 24 

TC10        TC12 

 

TC10                  TC12 

 

TC12       TC10 

  t h Avg

. 

 t h Avg

. 

 t h Avg. 

LBP 84.81 65.46 63.68 71.32 89.40 82.27 75.21 82.29 95.08 85.05 80.79 86.97 

LTP 94.14 75.88 73.96 81.33 96.95 90.16 86.94 91.35 98.2 93.59 89.42 93.74 

CLBP_S 84.41 65.46 63.68 71.18 89.40 82.26 75.20 82.29 95.07 85.04 80.78 86.96 

CLBC_S 82.94 65.02 63.17 70.38 88.67 82.57 77.41 82.88 91.35 83.82 82.75 85.97 

CLTP_S 94.14 75.88 73.96 81.33 96.95 90.16 86.94 91.35 98.20 93.59 89.42 93.74 

WCLTP_S 92.97 83.56 80.00 85.51 94.97 92.04 86.81 91.27 97.89 93.87 90.51 94.09 

CLBP_M  81.74 59.30 62.77 67.94 93.67 73.79 72.40 79.95 95.52 81.18 78.65 85.12 

CLBC_M 78.96 53.63 58.01 63.53 92.45 70.35 72.64 78.48 91.85 75.59 74.58 80.67 

CLTP_M 94.04 75.86 74.05 81.32 97.32 83.40 84.40 88.37 98.00 85.39 84.65 89.35 

WCLTP_M 94.51 77.36 77.71 83.19 97.11 82.71 86.53 88.78 97.89 83.54 84.42 88.62 

CLBP_M/C 90.36 72.38 76.66 79.80 97.44 86.94 90.97 91.78 98.02 90.74 90.69 93.15 
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As shown in Table 4.3, the classification accuracy for the individual operator that 

depends on sign difference calculation is mostly greater than the accuracy achieved by 

magnitude operators, thereby implying that the sign features are more discriminated than 

magnitude features. The proposed WCLTP apparently outperformed the other descriptors 

in most experiments using OuTex (TC10) and (TC12). In the TC10 dataset, the WCLTP 

achieved the highest accuracy rate of 99.35% with WCLTP_S/M24,3, and the second 

rank for CLBP_S/M24,3 had a 99.32% accuracy rate, while the worst result was obtained 

by CLBP_M8,1 with an accuracy of 81.74%. In TC12, the WCLTP_S/M/C24,3 achieved 

the best accuracy rate of 96.76% and 95.77% with both TC12(t) and TC12(h), 

respectively. On average, the WCLTP_S/M/C24,3 achieved the highest accuracy for TC 

family, reaching 97.25%, compared with 96.37% achieved by CLTP_S/M/C24,3, 96.26% 

achieved by CLBP_S/M/C24,3 and 95.34% achieved by CLBC_S/M/C24,3. Given that the 

OuTex dataset is subjected to illumination changes, the improved results confirmed that 

the proposed WCLTP is more robust to illumination variations.  

4.3.2.2 Experimental Results on the CUReT Dataset 

The CUReT dataset has 61 texture classes. Each class includes 205 texture images 

which are subjected to diff erent illumination and viewpoint conditions. 118 images out 

Table 4.3  Continued 

Method R =1, P = 8 R =2, P = 16 R =3, P = 24 

TC10     TC12 TC10      TC12 TC10     TC12 

 t h Avg.  t h Avg.  t h Avg. 

CLTP_M/C 95.94 84.70 86.02 88.89 97.94 90.14 92.38 93.49 98.52 91.23 89.98 93.24 

WCLTP_M/C 95.86 85.56 87.59 89.67 97.99 91.46 93.43 94.29 98.44 92.29 93.08 94.60 

CLBP_S_M/C 94.53 81.88 82.52 86.31 98.02 90.99 91.08 93.36 98.33 94.05 92.40 94.93 

CLTP_ S_M/C 96.43 84.00 86.85 89.09 98.44 92.14 92.80 94.55 98.98 95.00 92.94 95.64 

WCLTP_S_M/

C 

97.27 88.98 89.26 91.84 97.94 93.63 92.94 94.84 98.78 95.56 94.40 96.24 

CLBP_S/M 94.66 82.75 83.14 86.85 97.89 90.55 91.11 93.18 99.32 93.58 93.35 95.42 

CLBC_ S/M 95.23 82.13 83.59 86.98 98.10 89.95 90.42 92.82 98.70 91.41 90.25 93.45 

CLTP_ S/M 96.41 82.85 84.81 88.02 97.84 92.06 92.69 94.20 99.04 94.14 95.59 96.26 

WCLTP_ S/M 96.54 86.97 86.62 90.04 98.44 93.68 93.01 95.04 99.35 94.75 94.14 96.08 

CLBP_S/M/C 96.56 90.30 92.29 93.05 98.72 93.54 93.91 95.39 98.93 95.32 94.53 96.26 

CLBC_ S/M/C 97.16 89.79 92.92 93.29 98.54 93.26 94.07 95.29 98.78 94.00 93.24 95.34 

CLTP_ S/M/C 96.88 90.25 92.92 93.35 98.83 93.59 94.26 95.56 99.17 95.67 94.28 96.37 

WCLTP_ S/M/ 98.13 91.25 93.32 93.56 98.80 95.60 95.19 96.53 99.22 96.76 95.77 97.25 

Bold values indicate the best result 

* The results of LBP and LTP are from (Sree & Rao 2017) 

** The results of CLBP,CLBC and CLTP are from (Rassem & Khoo 2014) 
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of 250 images have viewing angles less than 60°. 92 images are selected after being 

converted to greyscale and cropped to 200 × 200 pixels. Out of 92 images N images are 

selected and used as training data, while the remaining (92-N) are used as testing data. 

The final classification accuracy is the average percentage over a hundred random splits. 

Table 4.4 shows the classification results for N = (6, 12, 23, 46) on CUReT dataset. 

Table 4.4 Classification rates (%) on the CUReT dataset 

Descriptor 

  

Parameters (R,P) . R =the radius of the circle, P =the number of 

neighbourhood pixels 

 R=1, P=8 R=2, P=16  R=3, P=24  

 6 12 23 46 6 12 23 46 6 12 23 46 

LBP
riu2

 

 

60.36 

 

69.05 

 

74.64 

 

81.32 

 

63.38 

 

72.70 

 

79.28 

 

84.53 

 

67.86 

 

75.51 

 

81.65 

 

86.35 

 LTP 

 

65.17 

 

74.61 

 

80.85 

 

87.74 

 

68.72 

 

80.18 

 

86.17 

 

91.16 

 

 

72.76 

 

82.42 

 

87.19 

 

91.52 

 CLBP_S 

 

59.00 

 

67.81 

 

74.62 

 

80.70 

 

63.49 

 

72.68 

 

79.49 

 

85.35 

 

66.94 

 

75.26 

 

81.80 

 

87.31 

 CLBC_S 

 

56.88 

 

66.21 

 

72.89 

 

78.82 

 

60.42 

 

68.95 

 

74.42 

 

79.78 

 

60.82 

 

70.57 

 

74.21 

 

80.14 

 CLTP_S 64.38 72.66 81.73 88.24 68.39 79.09 86.61 91.55 72.57 81.55 

 

87.72 

 

91.75 

 
WCLTP_S 62.73 72.18 79.48 85.90 68.54 78.47 83.17 89.16 70.50 78.68 85.20 90.57 

CLBP_M 

CLBC_M 

CLTP_M 

WCLTP_M 

51.77 

50.12 

61.37 

58.22 

60.33 

58.62 

71.17 

67.94 

67.73 

57.82 

80.53 

76.14 

75.16 

66.61 

86.67 

83.74 

58.557 

50.63 

63.33 

64.49 

68.28 

58.70 

74.47 

72.82 

76.11 

66.05 

82.14 

82.19 

83.03 

73.89 

88.83 

88.00 

62.57 

51.23 

67.14 

64.89 

71.93 

60.53 

76.93 

74.86 

79.89 

68.36 

85.16 

82.89 

68.49 

77.41 

90.52 

89.11 

CLBP_M/C 

CLTP_M/C 

WCLTP_M/C 

56.53 

62.07 

61.83 

67.15 

72.94 

73.01 

75.58 

82.26 

81.68 

82.97 

88.98 

88.96 

64.81 

66.77 

66.61 

75.56 

77.12 

77.96 

82.98 

85.51 

86.43 

89.75 

91.67 

92.52 

68.71 

70.10 

71.55 

78.54 

80.12 

80.99 

86.04 

89.02 

88.20 

91.65 

93.58 

93.60 

CLBP_S_M/C 

CLTP_S_M/C 

WCLTP_S_M/C 

66.63 

67.54 

67.70 

76.54 

78.89 

77.89 

85.02 

85.46 

86.81 

90.55 

91.27 

92.63 

70.27 

71.55 

70.12 

80.47 

82.16 

83.44 

87.57 

87.82 

88.94 

92.78 

94.04 

94.06 

73.29 

74.36 

74.55 

82.28 

85.14 

83.37 

89.28 

91.03 

90.34 

94.07 

94.69 

94.87 

CLBP_S/M 

CLBC_S/M 

CLTP_S/M 

WCLTP_S/M 

71.86 

69.89 

71.30 

70.63 

82.27 

79.88 

82.37 

81.67 

88.57 

86.62 

89.20 

88.46 

93.46 

93.10 

93.50 

93.69 

74.63 

72.16 

74.14 

75.79 

83.44 

81.71 

84.42 

84.87 

89.67 

89.60 

90.78 

90.87 

93.85 

93.78 

95.06 

95.49 

74.95 

70.52 

76.49 

76.31 

84.30 

81.57 

85.11 

85.25 

90.83 

89.12 

92.02 

91.59 

94.53 

93.60 

95.63 

95.43 

CLBP_S/M/C 

CLBC_S/M/C 

CLTP_S/M/C 

WCLTP_S/M/C 

74.35 

72.85 

75.18 

72.81 

85.06 

82.92 

84.06 

83.96 

91.52 

90.12 

90.45 

91.10 

95.07 

94.78 

94.78 

95.86 

76.07 

75.17 

77.72 

77.85 

85.73 

85.91 

85.54 

86.68 

92.15 

91.30 

92.44 

92.53 

95.67 

95.39 

95.95 

96.27 

76.80 

73.18 

77.97 

78.30 

86.54 

84.07 

87.50 

87.27 

92.00 

90.55 

92.72 

93.28 

95.72 

95.26 

96.11 

96.57 

Table 4.4 shows a similar conclusion to Table 4.3. The proposed WCLTP 

performs better than other descriptors in all cases on average. Its highest classification 

accuracy reaches 96.57% with WCLTP_S/M/C24,3, while CLTP_S/M/C24,3 has an 

accuracy of 96.11%. Moreover, the CLBC obtained the worst results in all experiments. 

Although the WCLTP achieved the highest accuracy percentage, CLTP and CLBP 

showed better performance in some cases in this dataset. The performance varies based 



62 

on the texture pattern (i.e. [R = 1, P = 8], [R = 2, P = 16] and [R = 3, P = 24]) with a 

different number of training images. In general, the evaluation results confirmed that the 

WCLTP is more rotation invariant than other descriptors because of the RDWT’s shift 

invariance.  

4.3.2.3 Experimental Results on the UIUC Dataset. 

The UIUC dataset includes 25 texture classes. Each class has 40 images captured 

in different illumination conditions and viewing points. Following the same procedure in 

(Rassem & Khoo, 2014), different training images (N) are randomly selected for each 

class where (N = 5, 10, 15, 20). The remaining (40-N) images are used as the test set. 

Each random selection is repeated 100 times to obtain statistically valid experimental 

results. The experimental results of the UIUC dataset are shown in Table 4.5. 

Table 4.5 Experimental Results on the UIUC Dataset 

Method Parameters (R,P) . R =the radius of the circle, P =the number of 

neighbourhood pixels 
R=1, P=8 R=2, P=16 R=3, P=24 

 5 10 15 20 5 10 15 20 5 10 15 20 

LTP 50.0

6 

58.2

7 

64.6

4 

67.8

0 

61.2

6 

71.3

3 

74.4

0 

78.2

0 

60.9

1 

74.5

3 

78.7

2 

83.4

0 
CLBP_S 40.0

5 

47.5

3 

51.6

3 

55.2

9 

41.8

0 

51.3

4 

56.8

0 

60.6

0 

44.8

7 

54.6

8 

60.6

3 

64.2

0 
CLBC_S 39.8

5 

46.6

9 

51.1

1 

55.6

1 

43.3

7 

53.0

7 

59.1

7 

62.3

9 

47.1

9 

57.4

6 

63.4

8 

66.9

0 
CLTP_S 54.2

9 

61.8

7 

69.9

2 

71.6

0 

64.9

1 

75.0

7 

80.4

8 

83.2

0 

68.8

0 

77.6

0 

83.0

4 

86.0

0 
WCLTP_S 61.6

5 

71.5

3 

76.0

1 

78.6

1 

69.4

5 

78.2

8 

82.5

3 

85.0

6 

72.9

1 

81.1

5 

84.8

0 

87.0

1 
CLBP_M 42.3

9 

49.9

8 

54.4

5 

57.5

2 

56.0

7 

65.6

5 

69.5

1 

72.0

5 

56.1

5 

65.9

2 

71.0

5 

74.3

7 
CLBC_M 39.0

4 

45.5

1 

49.4

2 

52.1

2 

50.6

7 

59.0

1 

64.4

2 

67.1

0 

51.6

8 

60.6

2 

66.6

3 

69.3

3 
CLTP_M 57.4

9 

64.6

7 

69.6

0 

73.6

0 

70.2

9 

79.3

3 

83.3

6 

85.4

0 

69.9

4 

79.3

3 

82.5

6 

85.2

0 
WCLTP_M 66.1

9 

74.0

0 

77.9

7 

80.2

8 

70.2

5 

77.9

7 

81.8

0 

83.4

9 

69.4

3 

76.8

3 

80.4

2 

82.8

5 
CLBP_M/C 56.9

2 

65.0

9 

69.8

1 

72.6

6 

68.4

5 

76.8

3 

80.1

4 

82.7

2 

68.0

8 

76.7

5 

80.8

1 

83.2

7 
CLTP_M/C 70.0

6 

76.9

3 

80.4

8 

81.8

0 

77.3

7 

83.6

0 

87.0

4 

89.4

0 

76.8

0 

83.4

7 

87.2

0 

88.6

0 
WCLTP_M/C 69.8

2 

77.3

3 

81.5

0 

83.7

6 

75.4

2 

82.7

5 

86.0

8 

87.7

6 

76.1

5 

83.2

1 

86.5

8 

88.4

1 
CLBP_S_M/C 62.5

2 

71.2

7 

75.4

8 

78.6

5 

68.6

8 

77.5

7 

81.3

6 

83.5

5 

69.4

3 

78.6

1 

82.8

1 

85.3

3 
CLTP_S_M/C 68.8

0 

77.3

3 

80.4

8 

83.6

0 

77.3

7 

84.2

7 

87.8

4 

89.8

0 

77.2

6 

84.6

7 

88.4

8 

90.6

0 WCLTP_S_M/

C 

72.8

7 

80.2

4 

83.5

9 

86.0

6 

79.0

5 

85.6

6 

89.0

7 

90.7

7 

79.9

2 

86.6

1 

89.5

8 

91.0

9 
CLBP_S/M 64.7

0 

74.6

5 

79.5

5 

82.5

8 

71.8

0 

80.8

5 

85.3

1 

87.6

0 

72.0

5 

82.6

3 

86.8

8 

89.5

6 
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Table 4.5 Continued  

 

 A significant observation that can be drawn from Table 4.5 is that the UIUC 

dataset is difficult for most descriptors especially when using a single operator. Most 

variants such as LTP, CLBP and CLBC achieved classification accuracy less than 60% 

in single operator and even less than 50% in some cases because of the complex 

characteristics of the data, such as high resolution and nonrigid deformations. WCLTP 

shows on average the best performance compared with other methods in all cases. 

WCLTP achieved the highest accuracy rate of 94.80% when integrating the three 

operators together WCLTP_S/M/C24,3. In some cases when (R = 2 and 3), CLTP_M and 

CLTP_M/C performed better than WCLTP_M and WCLTP_M/C, respectively.  

4.3.2.4 Experimental Results on the Kylberg Dataset. 

 The Kylberg dataset consists of 28 classes, where each class contains 160 images. 

In this experiment, different training images (N = 16, 40, 64, 80) are randomly selected 

from each class, while the remaining (160-N) images in each class are used for testing. 

To obtain statistically valid experiment results, each random selection is executed 100 

times and the average classification rate is used as the final experimental result. Table 4.6 

shows the classification accuracy of WCLTP and other LBP variants using the Kylberg 

dataset.   

 

 

Method Parameters (R,P) . R =the radius of the circle, P =the number of 

neighbourhood pixels 
R=1, P=8 R=2, P=16 R=3, P=24 

5 10 15 20 5 10 15 20 5 10 15 20 

CLBC_S/M 65.2

8 

74.8

8 

78.8

6 

82.4

0 

73.1

6 

82.0

4 

86.3

1 

88.5

1 

75.1

6 

83.9

2 

87.6

8 

89.7

2 
CLTP_S/M 65.0

3 

74.4

0 

79.6

8 

83.0

0 

77.1

4 

85.6

0 

89.4

4 

91.8

0 

79.3

1 

87.7

3 

90.5

6 

93.2

0 
WCLTP_S/M 74.9

9 

82.3

2 

86.1

2 

88.0

2 

82.5

1 

89.1

5 

91.5

5 

92.8

7 

83.8

0 

89.9

2 

92.2

7 

93.8

0 
CLBP_S/M/C 74.5

3 

82.2

6 

85.8

5 

87.8

6 

78.7

5 

86.3

3 

89.2

5 

91.0

3 

78.0

5 

85.8

7 

89.1

7 

91.0

7 
CLBC_S/M/C 74.5

7 

82.3

5 

85.6

6 

87.8

3 

79.4

8 

86.6

3 

89.6

6 

91.0

4 

79.7

5 

86.4

5 

90.1

0 

91.3

9 
CLTP_S/M/C 74.5

1 

81.7

3 

85.9

2 

86.8

0 

82.6

3 

87.8

7 

90.4

0 

92.6

0 

82.9

7 

88.9

3 

91.5

2 

94.4

0 WCLTP_S/M/

C 

77.5

5 

84.7

2 

87.6

8 

89.2

8 

84.2

1 

90.1

1 

92.2

8 

93.4

8 

84.6

3 

90.2

2 

92.7

2 

94.8

0 
* The results for CLBP, CLBC and CLTP are from (Rassem & Khoo, 2014) 
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Table 4.6 Experimental Results on the Kylberg Dataset. 

 

Table 4.6 clearly shows that almost all descriptors performed well on the Kylberg 

dataset. The proposed WCLTP achieved impressive results in most cases. The best 

classification result was obtained by WCLTP_S/M/C24,3 of 99.88%, with a slight 

difference of 0.01% for the CLTP_S/M/C24,3 result because of the simplicity of this 

dataset. The combination of the three operators in WCLTP (WCLTP S/M/C) performs 

much better than the CLBP S/M/C and CLTP S/M/C at every radius and training size. In 

general, the WCLTP outperforms other LBP variants in all texture dataset experiments. 

4.3.3 Experimental Results of WCLTP for Medical Datasets. 

In these experiments, the proposed WCLTP was evaluated using two medical 

datasets.  

Method Parameters (R,P) . R =the radius of the circle, P =the number of 

neighbourhood pixels 

 R=1, P=8 R=2, P=16 R=3, P=24 

 16 40 64 80 16 40 64 80 16 40 64 80 

CLBP_S 90.58 95.03 96.47 97.03 90.13 95.06 96.76 97.40 93.27 97.10 98.13 98.44 

CLTP_S 90.63 94.97 96.36 96.84 95.73 98.35 99.01 99.20 96.86 99.18 99.52 99.60 

WCLTP_S 93.11 96.64 97.61 98.01 95.56 98.53 99.14 99.31 95.78 98.71 99.33 99.47 

CLBP_M 85.68 91.34 93.38 94.09 91.52 95.23 96.45 96.89 93.11 95.72 96.57 96.99 

CLTP_M 93.01 96.82 97.86 98.23 96.00 98.28 98.87 99.08 97.19 98.99 99.35 99.47 

WCLTP_M 94.44 97.04 97.97 98.32 96.49 98.30 98.87 98.99 96.98 98.76 99.20 99.36 

CLBP_M/C 94.54 97.46 98.31 98.58 96.40 98.37 98.90 99.14 97.28 98.94 99.35 99.51 

CLTP_M/c 95.92 98.03 98.72 98.87 97.58 98.88 99.28 99.40 98.21 99.36 99.62 99.66 

WCLTP_M/C 96.19 98.28 98.96 99.22 97.48 99.03 99.49 99.62 98.46 99.41 99.68 99.73 

CLBP_S_M/C 96.11 98.35 98.98 99.14 96.43 98.72 99.33 99.45 97.26 99.07 99.46 99.62 

CLTP_S_M/C 95.94 98.02 98.62 98.82 97.46 98.98 99.37 99.51 97.92 99.41 99.67 99.75 

WCLTP_S_M/C 96.20 98.21 98.87 99.14 97.36 99.12 99.53 99.66 98.05 99.36 99.69 99.70 

CLBP_S/M 96.07 98.53 99.08 99.32 97.71 99.30 99.65 99.75 97.96 99.46 99.77 99.82 

CLTP_S/M 95.21 97.85 98.60 98.80 97.58 99.31 99.65 99.75 98.11 99.54 99.78 99.80 

WCLTP_S/M 96.56 98.65 99.21 99.37 97.88 99.42 99.67 99.76 98.17 99.58 99.72 99.81 

CLBP_S/M/C 97.34 99.24 99.60 99.70 98.35 99.55 99.79 99.84 98.62 99.60 99.78 99.83 

CLTP_S/M/C 96.61 98.39 98.92 99.11 98.36 99.49 99.71 99.78 98.67 99.65 99.82 99.87 

WCLTP_S/M/C 97.42 98.97 99.74 99.84 98.46 99.63 99.79 99.86 98.79 99.68 99.84 99.88 

Bold values indicate the best result 



65 

4.3.3.1  Experimental Results on the 2D HeLa Dataset. 

The 2D HeLa dataset consists of 10 classes of Hela cells. Each class contains 

images ranging from 73 to 98. Table 4.7 shows the classification rates of the WCLTP and 

other LBP variants using this dataset. In this experiment, 5-fold cross-validation was 

used, where the images of each class were randomly split into five parts, with four parts 

for training and one part for testing. Different radius (R = 1,2,3) and pattern neighbours 

(P = 8, 16, 24) were utilised to show the effect of increasing the radius and neighbours on 

the classification rate.  

Table 4.7 Experimental Results on the 2D HeLa Dataset. 

 

Table 4.7 shows a significant variation in the results. CLTP and WCLTP achieved 

good performance at the expense of CLBP at every radius. The proposed WCLTP shows 

clear superiority in all experiments. In pattern (R = 1, P = 8), the classification accuracy 

of WCLTP_M/C and WCLTP_S_M/C has a significant 6% improvement compared with 

Method 

 
Parameters (R, P) . R =the radius of the circle, P =the 

number of neighborhoods pixels 

R=1, P=8 R=2, P=16 R=3, P=24 

CLBP_S 59.77 65.00 66.98 

CLTP_S 70.35 73.14 77.21 

WCLTP_S 73.72 77.44 79.42 

CLBP_M 51.63 58.37 60.23 

CLTP_M 63.02 66.98 68.26 

WCLTP_M 67.67 70.93 71.16 

CLBP_M/C 60.58 64.77 65.70 

CLTP_M/C 70.93 72.33 73.14 

WCLTP_M/C 76.16 77.33 79.30 

CLBP_S_M/C 64.42 66.74 69.77 

CLTP_S_M/C 71.98 75.58 75.70 

WCLTP_S_M/C 77.56 82.21 81.05 

CLBP_S/M 62.79 68.84 70.23 

CLTP_S/M 78.02 79.77 78.60 

WCLTP_S/M 78.49 81.40 81.74 

CLBP_S/M/C 66.74 70.93 70.23 

CLTP_S/M/C 78.84 79.88 80.81 

WCLTP_S/M/C 81.40 83.73 84.19 
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the classification accuracy of CLTP_M/C and CLTP_S_M/C. With R = 2,3 and P = 

16,24, WCLTP _S/M/C has on average a 6 to 7% higher classification accuracy than 

CLTP. The highest accuracy rate achieved by WCLTP_S/M/C24,3 is 84.19% with a 

considerable difference of more than 3% for the CLTP_S/M/C24,3 result. In general, the 

proposed WCLTP achieved satisfactory results.  

4.3.3.2 Experimental Results on the Breast Cancer Dataset. 

The Breast Cancer dataset has 3 classes with a total of 1394 images. In these 

experiments, the same setup of the 2D-HeLa dataset is used, where 4/5 of the images from 

every class are randomly chosen as training data and the remaining 1/5 is adopted as 

testing data. Table 4.8 shows the classification rate for different LBP variants using the 

Breast Cancer dataset.  

Table 4.8 Experimental Results on the Breast Cancer Dataset. 

Method 

 

Parameters (R, P) . R =the radius of the circle, P =the 

number of neighborhoods pixels 

R=1, P=8 R=2, P=16 R=3, P=24 

CLBP_S 59.77 65.00 66.98 

CLTP_S 70.35 73.14 77.21 

WCLTP_S 73.72 77.44 79.42 

CLBP_M 51.63 58.37 60.23 

CLTP_M 63.02 66.98 68.26 

WCLTP_M 67.67 70.93 71.16 

CLBP_M/C 60.58 64.77 65.70 

CLTP_M/C 70.93 72.33 73.14 

WCLTP_M/C 76.16 77.33 79.30 

CLBP_S_M/C 64.42 66.74 69.77 

CLTP_S_M/C 71.98 75.58 75.70 

WCLTP_S_M/C 77.56 82.21 81.05 

CLBP_S/M 62.79 68.84 70.23 

CLTP_S/M 78.02 79.77 78.60 

WCLTP_S/M 78.49 81.40 81.74 

CLBP_S/M/C 66.74 70.93 70.23 

CLTP_S/M/C 78.84 79.88 80.81 

WCLTP_S/M/C 81.40 83.73 84.19 
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Table 4.8 shows that WCLTP and CLTP outperform the CLBP descriptor in many 

cases. WCLTP achieved the highest classification accuracy of 92.14% when 

WCLTP_S16,2, followed by CLTP_S8,1, which reached 90.69%, and WCLTP_S24,3, which 

reached 90.11%. In this dataset, the combination of the sign, magnitude and centre affects 

the accuracy because of the image formats used in the experiments. As shown in Figure 

2.25, the segmented Breast Cancer images are used in these experiments. As a result of 

the segmentation, many of the pixels’ values are 0s, thereby affecting the extracted texture 

features in particular with combinations of sign, magnitude and centre information. 

4.4 Performance Evaluation for the Proposed Feat-WCLTP   

The results obtained in the previous section show the effectiveness of the proposed 

WCLTP descriptor in improving CLTP’s performance. However, the proposed WCLTP 

inherits the high dimensionality problem of the CLTP original descriptor. Thus, a second 

descriptor called Feat-WCLTP was proposed to overcome the high dimensionality 

problem and maintain the improved performance. To evaluate the performance of 

proposed Feat-WCLTP, three sets of experiments were conducted. In the first one, four 

texture benchmark datasets were used. In the second experiment, two medical benchmark 

datasets were utilised. In the third experiment, two medical and texture datasets were used 

to evaluate the computational time of Feat-WCLTP. In this section, the performance of 

the two proposed descriptors will be compared with that of CLTP. A dimensionality and 

time classification comparison is included. In these experiments, the evaluation results 

were obtained for the case where the three operators for each descriptor were combined 

(i.e. sign, magnitude and centre). 

4.4.1 Experimental Results of Feat-WCLTP Using Texture Dataset. 

In these experiments, the accuracy of the proposed Feat-WCLTP is evaluated and 

compared with that of CLTP. The dataset setup and evaluation metrics used to evaluate 

this descriptor are the same as those described in WCLTP experiments in Section 4.3.   

4.4.1.1 Experimental Results on the CUReT Dataset  

Figure 4.5 illustrates the results of the proposed WCLTP, Feat-WCLTP and 

original CLTP over the CUReT dataset under different texture patterns (i.e. [P = 8, R = 1], 
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[P = 16, R = 2] and [P = 24, R = 3]) using different numbers of training images N where 

(N = 6, 12, 23, 46). 

 

 

Figure 4.5 Performance comparison of proposed Feat-WCLTP with CLTP using 

CUReT dataset under different pattern size (a) (R=1,P=8). (b) (R=2,P=16). (c) 

(R=3,P=24). 
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Figure 4.5 Continued  

Figure 4.6 shows that the results for the three descriptors were competitive. The 

Feat-WCLTP achieved the highest classification accuracy rates of 96.12%, 96.42% and 

96.89% at (P = 8, R = 1), (P = 16, R = 2) and (P = 24, R = 3) respectively. In general, the 

Feat-WCLTP performed better than WCLTP and CLTP using P = 8, P = 1 texture pattern 

with all N’s training images. With the bigger size of the texture patterns, the Feat-WCLTP 

performed better in most cases expect in three cases, as shown in Figure 4.6. In general, 

the proposed WCLTP and Feat-WCLTP performed better than the original CLTP.  

4.4.1.2 Experimental Results on the OuTex Dataset 

Figure 4.7 illustrates the accuracy results of the proposed WCLTP, Feat-WCLTP 

and original CLTP using the OuTex dataset under different texture pattern sizes (i.e. 

[P = 8, R = 1], [P = 16, R = 2] and [P = 24, R = 3]). In these experiments, three OuTex 

datasets were used, as shown in Figure 4.7. 
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Figure 4.6 Performance comparison of proposed descriptors with CLTP using  

OuTex dataset.(a) OuTex TC12(h). (b) OuTex TC12(t) (c) OuTex TC10 
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Figure 4.6 Continued 

 Figure 4.7 shows that the performance increases significantly with a large radius 

because the small radius may not be well reflected in the pattern structure. In (a) when 

using the TC12 Horizon dataset, the Feat-WCLTP outperforms the others in all 

experiments. The results of Feat-WCLTP and WCLTP when R = 2 were almost the same. 

However, the results of Feat-WCLTP were higher than those of WCLTP at an increased 

rate above 3%. Similar observations were found when using TC12(t), where the Feat-

WCLTP outperformed the WCLTP with a significant accuracy rate difference. In (c), 

when using the TC10 dataset, the Feat-WCLTP is proved to be superior in all experiments 

where its results were above 99% under the three radius values (R = 1, 2 and 3).  

4.4.1.3 Experimental Results on the UIUC Dataset. 

 Figure 4.8 illustrates the accuracy results of the proposed WCLTP, Feat-WCLTP 

and original CLTP using the UIUC dataset under different texture pattern sizes (i.e. 

[P = 8, R = 1], [P = 16, R = 2] and [P = 24, R = 3]) with different numbers of training 

images (i.e. 5, 10, 15, 20) 



72 

  

Figure 4.7    Performance comparison of proposed descriptors with CLTP using UIUC 

dataset. (a) with pattern size (R=1,P=8). (b) with pattern size (R=2,P=16). (c) with 

pattern size (R=3, P=24). 

 



73 

 

Figure 4.7 Continued 

From Figure 4.7, increasing the number of training images and using a large 

pattern size helps achieve the highest classification accuracy. The results show the clear 

superiority of the proposed Feat-WCLTP especially with patterns (P = 8, R = 1), where it 

achieved a considerable improvement rate of about 3% over the WCLTP accuracy rate. 

In pattern (P = 16, R = 2) the Feat-WCLTP achieved the highest classification accuracy, 

reaching 94.55%, while WCLTP achieved 93.48% and CLTP achieved 92.6%. Overall, 

the Feat-WCLTP enhanced the performance of WCLTP in all experiments using the 

UIUC dataset. Generally, the Feat-WCLTP achieved the highest classification accuracy 

of 95.23%, while WCLTP achieved 94.80% and CLTP achieved 94.40%.  

4.4.1.4 Experimental Results on the Kylberg Dataset. 

 Figure 4.8 illustrates the accuracy results of the proposed WCLTP, Feat-WCLTP 

and original CLTP using the Kylberg dataset under different texture pattern sizes (i.e. 

[P = 8, R = 1], [P = 16, R = 2] and [P = 24, R = 3]) with different numbers of training 

images (i.e. 16, 40, 64, 80) 
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Figure 4.8 Performance comparison of proposed descriptors with CLTP using 

Kylberg dataset. (a) with pattern size (R=1,P=8). (b) with pattern size (R=2,P=16). (c) 

with pattern size (R=3, P=24). 
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Figure 4.8 Continued 

From Figure 4.8, the following can be noted: In Figure (a), the Feat-WCLTP 

achieves comparable results to WCLTP with 64 and 80 training images. However, the 

WCLTP achieved a better result of 99.01% with 40 training images. In Figure (b), the 

WCLTP obtained better accuracy rates. However, Feat-WCLTP ranks second. In Figure 

(c), Feat-WCLTP outperforms others in all experiments with a slight difference of less 

than 1%.  

In general, the best result was achieved by Feat-WCLTP with an accuracy of 

99.92%, followed by WCLTP (99.88%) and CLTP (99.87%) for pattern size (R = 3, 

P = 24) when 80 images were used for training.   

4.4.2  Experimental Results of Feat-WCLTP Using Medical Dataset. 

In these experiments, the proposed Feat-WCLTP was evaluated using two 

medical datasets. These experiments follow the same data setup in Section 4.3.3. 
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4.4.2.1 Experimental Results on the HeLa Dataset. 

Figure 4.10 shows the experimental results of Feat-WCLTP, WCLTP and CLTP 

using the 2D HeLa dataset under different texture pattern sizes. Similar to Section 4.3.3.1, 

the images of each class are randomly split into five parts using 5-fold cross-validation 

technique. Four parts are used for training, while the one part is used for testing. 

 

Figure 4.7 Performance comparison of proposed descriptors and CLTP using 2D 

HeLa dataset.  

The figure shows that Feat-WCLTP performed the best in all experiments. Feat-

WCLTP achieved the best classification accuracy of 84.42% with the pattern (P = 24, R 

= 3), while the WCLTP and CLTP achieved 84.19% and 80.81%, respectively. 

4.4.2.2 Experimental Results on the Breast Cancer Dataset. 

Figure 4.10 shows the experimental results for evaluating Feat-WCLTP in 

comparison with WCLTP and CLTP using the Breast Cancer dataset.    



77 

 

Figure 4.8 Performance comparison of proposed descriptors with CLTP using 

Breast Cancer  dataset. 

 

The WCLTP outperforms Feat-WCLTP and CLTP, obtaining the highest 

accuracy rate in all experiments. The proposed Feat-WCLTP and original CLTP are close. 

Feat-WCLTP uses only 1184 feature vectors compared with 26928 feature vectors for 

both WCLTP and CLTP. Therefore, Feat-WCLTP is the best because it achieved the 

balance between reducing dimensionality without degrading the accuracy of the original 

descriptor.  

4.4.3 Dimensionality Comparison  

The previous experimental results indicate the effectiveness of the proposed 

descriptors in improving the classification accuracy of the CLTP descriptor. These results 

achieved the first objective of this thesis, which is to enhance CLTP’s classification 

accuracy. As illustrated in Chapter 3, the proposed Feat-WCLTP mainly aims to reduce 

the high dimensionality and maintain enhanced performance. The high dimensionality 

increases the computational complexity and slows down the classification process. The 

term ‘dimensionality’ denotes the number of extracted features, which is the size of the 

histogram that represents the image features. Figure 4.11 shows a dimensionality 

comparison between the proposed WCLTP, Feat-WCLTP and CLTP. 
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Figure 4.9 Dimensionality comparison of proposed descriptors with CLTP using 

P=8 and R= 1,2,3 and 4. 

When using a multi-scale of R. The histogram size increased sharply when the 

radius increased. At R = 1 and P = 8, both CLTP and WCLTP have the same size of 400 

bins, while the Feat-WCLTP has a size of 160 bins. When the R increased to = 4, the 

histogram size of the proposed WCLTP exceeded 4500, while the size of Feat-WCLTP 

was less than 550 bins. Thus, Feat-WCLTP successfully reduced the dimensionality even 

when a multi-scale of radii was used, and it achieved higher accuracy classification rates 

in many cases or maintained the same performance of WCLTP in a few cases. A large 

number of bins is needed in terms of P =16 or 24 as shown in Figure 4.12.  

   Figure 4.10 Dimensionality comparison of proposed descriptors with CLTP using 

P=16,24 and R= 1,2,3 and 4 
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Figure 4.12 Continued 

As observed in Figure 4.13, increasing the value of P increased the histogram size 

considerably. For example, in the pattern (R = 4 and P = 24), the WCLTP histogram size 

exceeded 38000 bins, while the histogram size for Feat-WCLTP was only around 

1000 bins. This significant difference proved the efficiency of Feat-WCLTP in reducing 

the high dimensionality of WCLTP. Increasing the number of bins and size of the 

descriptor will reflect on its performance, as shown with CLBP and CLTP in the texture 

and medical datasets. Moreover, this will affect the computation complexity and storage 

space. To confirm the priority of the Feat-WCLTP, the experiments in the next section 

compare the computational complexity of the proposed descriptors and of CLTP.   

4.4.4 Computation Complexity 

Generally, the computation complexity for any descriptor can be determined using 

two key factors: computation time and dimensionality (Liu et al., 2017). In this section, 

the classification time of the proposed descriptors and CLTP is computed using two 

datasets (i.e. OuTex TC_10 and 2D HeLa) with different pattern sizes. All experiments 

were performed using MATLAB 2017a on a PC with 3.40 GHz Intel® Core ™ i7-2600 

CPU and 4 GB RAM. Figure 4.13 shows a classification time comparison between the 

proposed WCLTP, Feat-WCLTP and CLTP using the OuTex dataset. 
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Figure 4.13 Classification time comparison of proposed descriptors  and CLTP using 

OuTex dataset with different radius (i.e. R=1,2,3,4)  (a) using P =8    (b) using P=24     

Figure 4.13 shows that the Feat-WCLTP is faster than WCLTP and CLTP in all 

experiments. In Figure 4.14(a), the time cost for both CLTP and WCLTP for texture 

classification is around four times that of Feat-WCLTP. The minimum classification time 

consumed by Feat-WCLTP was around 2.1 seconds, while the maximum of around 16.37 

seconds was consumed by WCLTP. Figure 4.14 (b) shows that increasing the number of 

neighbouring pixels results in additional classification time. The classification time for 

CLTP and WCLTP using P = 24 is about 10 times that for Feat-WCLTP because of the 
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number of extracted features fed to the classifier. The maximum classification time is 

around 187 seconds for CLTP and around 182 seconds for WCLTP, whereas it is only 

about 20 seconds for Feat-WCLTP when P = 24 and R = 4. 

Figure 4.14 shows a classification time comparison between CLTP, WCLTP and 

Feat-WCLTP using the 2D HeLa dataset. The differences in classification time are 

significant. 

 Figure 4.14 Classification time comparison of proposed descriptors using 2D HeLa 

dataset with different radius (i.e. R=1,2,3,4)  (a) using P =8    (b) using P=24. 
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Feat-WCLTP obtained the shortest classification time of 0.63 seconds, with about 

a 5-second difference with both CLTP and WCLTP using pattern (P = 8, R = 1). The 

maximum time was obtained by CLTP (63.05) seconds using pattern (P = 24, R = 4), 

followed by WCLTP (58.29 seconds). Feat-WCLTP took only 6.31 seconds for the same 

pattern. The following table shows the best classification results on all used benchmark 

datasets. 

Table 4.9 The best classification accuracy on benchmark datasets. 

Table 4.9 shows that Feat-WCLTP performs best in all datasets except in the 

Breast Cancer dataset, where the WCLTP achieved the best classification rate of 92.14%. 

Feat-WCLTP achieved the highest classification rate of 99.92% in all datasets, 

particularly in the Kylberg dataset. The following table shows a comparison of the 

computational complexity of the proposed descriptors, CLTP and CLBP.   

Table 4.10 The number of bins and classification time using OuTex TC10 dataset 

 

Table 4.10 shows the superiority of Feat-WCLTP in reducing the dimensionality, 

which minimises the classification time. The Feat-WCLTP obtained the minimum 

classification time (2.1 seconds) and the minimum number of bins (160) with pattern (R 

Number Dataset Classes CLBP CLTP WCLTP Feat-WCLTP 

1 OuTex 24 99.32% 99.17% 99.35% 99.66% 

3 CUReT 61 94.74% 96.11% 96.57% 96.89% 

4 UIUC 25 91.07% 94.40% 94.80% 95.23% 

5 Kylberg 28 99.83% 99.87% 99.88% 99.92% 

5 2D HeLa 10 70.93% 80.81% 84.19% 84.42% 

6 Breast Cancer 3 86.69% 90.86% 92.14% 89.12% 

Pattern size Dimensionality / Time 

(seconds)  

CLBP CLTP WCLTP Feat-

WCLTP 

R=1, P=8 
No. of bins 200 400 400 160 

Classification Time. 2.14 17.89 16.125 2.1 

R=2, P=16 
No. of bins 2,312 4,624 4,624 544 

Classification Time. 30.24 72.12 71.35 10.4 

R=3, P=24 
No. of bins 10,952 21,904 21,904 1,184 

Classification Time. 82.37 172 169 16.8 
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= 1, P = 8). While CLTP obtained the maximum classification time (172 seconds) and 

21,904 bins with the pattern (R = 3, P = 24). 

Generally, the experimental evaluation results showed that Feat-WCLTP achieves 

the best classification results and considerably enhance the classification accurecy of 

CLTP. That’s due to many reasons: first, using wavelet transform will help to increase the 

classification accuracy due to the shift invariant property of RDWT, second, using only mean 

and variance features help to diminish the impact of noise, rotation and illumination. 

Moreover, when using these two features, all non-uniform patterns do not need to be 

integrated into a single bin as in CLBP_M and CLTP_M, which means better 

complementary information will be provided to the sign component thereby better 

classification performance. Third, dividing the images into blocks helps to further 

enhancement on classification accuracy because the correlation between pixels in each 

sub-image is stronger than the correlation between pixels in the whole image. 

4.5 Summary  

 In this chapter, the performance of the proposed WCLTP and Feat-

WCLTP was evaluated using four texture (i.e. OuTex, CUReT, UIUC and Kylberg) and 

two medical (i.e. 2D HeLa and Breast Cancer) benchmark datasets and compared with 

some well-known descriptors. The WCLTP outperformed the other descriptors in terms 

of classification accuracy and exhibited significant resistance to noise and illumination 

variations. Feat-WCLTP not only overcame the dimensionality problem but also 

significantly improved in classification accuracy. 

In conclusion, the proposed WCLTP and Feat-WCLTP showed improved 

accuracy and dimensionality as compared with the original CLTP.  
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

5.1 Introduction  

This chapter summarises the outcomes of this research, highlights the 

contributions of this study and provides some recommendations for future work.  

5.2 Conclusions  

This thesis focuses on texture classification, particularly on the feature extraction 

task. Feature extraction is considered the most significant task in the texture classification 

process. LBP is one of the simplest yet most powerful feature extraction descriptors. 

Hence, different variants of LBP are presented in the literature. CLTP is one of the 

important LBP variants that was proposed to overcome the drawbacks of LBP. However, 

despite the impressive performance of CLTP, it suffers from some limitations, such as 

high dimensionality, which mainly increases the computation time and may affect the 

classification accuracy. 

This thesis presented a new descriptor called WCLTP, which uses RDWT to 

decompose an input image into four sub-bands (LL, LH, HL, HH). The LL sub-band was 

selected because it contains considerable information of the original image. Next, CLTP 

was extracted based on the LL’s wavelet coefficients. Using RDWT helps increase the 

classification accuracy due to its shift invariant property. The proposed WCLTP 

demonstrated good performance using four texture (i.e. OuTex, CUReT, UIUC and 

Kylberg) and two medical (i.e. 2D HeLa and Breast Cancer) benchmark datasets. The 



85 

results showed the superiority of the WCLTP over other descriptors in the 

literature. Also, the descriptor’s performance may vary based on the dataset and the 

extraction conditions, such as texture pattern size and the number of training images. 

Furthermore, the CUReT texture dataset was used to evaluate the robustness of the 

WCLTP descriptor against noise. All the CUReT dataset images were corrupted by 

additive Gaussian noise with specific SNR values (SNR= 60, 40, 50 and 30). In these 

experiments, the WCLTP successfully outperformed other well-known descriptors in the 

literature. However, despite its impressive performance and resistance to noise and 

illumination variations, WCLTP still suffers from the dimensionality problem. 

This thesis also presented a new texture descriptor called Feat-WCLTP, which 

reduced dimensionality by using two features (i.e. mean and variance) instead of P 

features that described the magnitude operator, where P denotes all neighbours around 

the pattern centre pixel. The proposed Feat-WCLTP showed impressive performance 

using four texture (i.e. OuTex, CUReT, UIUC and Kylberg) and two medical (i.e. 2D 

HeLa and Breast Cancer) benchmark datasets. The experimental results showed that the 

Feat-WCLTP not only overcomes the dimensionality problem but also further improves 

the classification accuracy. Moreover, the OuTex TC_10  texture dataset and 2D HeLa 

medical dataset were used to evaluate the time complexity of the proposed WCLTP and 

Feat-WCLTP. The experimental results showed the effectiveness of the proposed Feat-

WCLTP and its ability to reduce the classification time significantly compared with 

several previous descriptors.   

This study achieves its objectives by developing, implementing and evaluating 

the WCLTP and Feat-WCLTP descriptors. The objectives of this research are outlined in 

Table 5.1 along with the chapters where these objectives are addressed. 

Table 5.1 The research objectives achievement 

Number  Objectives  Chapter achievement 

1 To improve the classification accuracy of the CLTP.  

 

Chapter 3  

2 To propose a new Feature-based texture descriptor 

by overcome the computational limitation of the 

wavelet CLTP.  

 

Chapter 3 

3 To evaluate the performance of the new texture 

descriptor in medical and texture image 

classification. 

Chapter 4 
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5.3 Contributions of the Study 

This study contributes to texture classification research by identifying the 

limitations in several texture classification descriptors, including the CLTP descriptor, 

given that it is the backbone texture descriptor of this research. To address these 

limitations, this research introduces two main contributions: 

The first contribution is the proposal of a new descriptor (WCLTP) by integrating 

RDWT with the original CLTP. This descriptor considerably improved the classification 

accuracy rate. 

The second contribution is related to the proposed Feat-WCLTP, which reduced 

the dimensions of the WCLTP descriptor by addressing the high dimensionality problem 

in feature extraction of the WCLTP descriptor, in which the feature-based technique was 

used. 

These contributions considerably improved the performance of the descriptors 

and reduced the complexity of the original CLTP. Reducing the number of extracted 

features positively affected the computational time of the descriptor and the 

dimensionality of the resultant histogram. 

5.4 Suggestions for Future Research  

This section presents several perspectives on directions for future research to 

improve the contributions of this study in particular and to enhance the performance of 

image classification in general. 

The Feat-WCLTP and WCLTP descriptors can be enhanced with colour features. 

This improvement of Feat-WCLTP and WCLTP will add new value in terms of giving 

the proposed descriptors the capability of working with colour image datasets by handling 

some colour models such as RGB. 

Although the Feat-WCLTP and WCLTP descriptors achieved good classification 

performance and outperformed the previous descriptors using the threshold value that 

was successfully tested and selected in previous research, this fixed value might not be 

appropriate in different cases. To address this limitation, optimisation algorithms can be 

used to select the best threshold value for each dataset.  
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The proposed Feat-WCLTP descriptor was evaluated using different texture and 

medical benchmark datasets. In this work, both descriptors were evaluated by using two 

types of datasets, i.e. medical and texture. In the future, these descriptors can be 

implemented in different domains, such as face recognition datasets and remote sensing, 

after considering the speciality of these different fields.    

This study uses KNN classifier to evaluate the performance of the proposed 

methods. Various classifiers (i.e. SVM, naïve Bayes, random forest, multi-layer 

perceptron, radial basis function, AdaBoost and CNN) can be used for further evaluation.    

In this works, WT is used for feature extraction. However, other transforms such 

as Fourier transform, Hough transform and different levels of WT can be used to further 

improve the performance of the proposed methods.    

Integrating feature selection technique (i.e. wrapper, filtering) with proposed 

descriptors may help reduce the number of features, which may reduce the computational 

complexity and the descriptor’s dimensionality. 
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