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Abstract: This paper investigates the use of a Magnetite Polydimethylsiloxane (PDMS) Graphene
array sensor in ultra-wide band (UWB) spectrum for microwave imaging applications operated
within 4.0–8.0 GHz. The proposed array microwave sensor comprises a Graphene array radiating
patch, as well as ground and transmission lines with a substrate of Magnetite PDMS-Ferrite, which is
fed by 50 Ω coaxial ports. The Magnetite PDMS substrate associated with low permittivity and low
loss tangent realized bandwidth enhancement and the high conductivity of graphene, contributing
to a high gain of the UWB array antenna. The combination of 30% (ferrite) and 70% (PDMS) as
the sensor’s substrate resulted in low permittivity as well as a low loss tangent of 2.6 and 0.01,
respectively. The sensor radiated within the UWB band frequency of 2.2–11.2 (GHz) with great
energy emitted in the range of 3.5–15.7 dB. Maximum energy of 15.7 dB with 90 × 45 (mm) in small
size realized the integration of the sensor for a microwave detection system. The material components
of sensor could be implemented for solar panel.

Keywords: PDMS graphene array sensor; UWB spectrum; PDMS Ferrite

1. Introduction

Nowadays, the application of antennas as sensors is stressed most in terms of band-
width and efficiency improvement despite miniaturization [1]. Substrate materials could
play a vital role in influencing the characteristics stated above [2]. Normally, fer and
Rogers as well as the FR-4 substrate are utilized to fabricate the antenna sensors for the
conventional method. Reducing the wavelength of the relative permittivity dielectric guide
could improve sensor bandwidth and efficiency, as well as the miniaturization of the sensor
dimension [3,4]. However, these types of techniques result in thin bandwidth [5], low
efficiency, and isolation [6], as well as reduce impedance matching [7].

Recently, a sensor made of a polymer composite substrate with preferable mechanical
and electrical characteristics has attracted the interest of researchers. Various kinds of
elements are composed with a variety of additions, possibly nickel ferrite, ceramic, and
titanium [8]. One of the significant gains of applying dielectric with magnetic based
relative permeability as well as permittivity to exceed the unity (εr and µr > 1) [9] is the
miniaturization of the size of the probe [10]. Furthermore, such substrates also able to
enhance the operated bandwidth of the sensor mentioned in [11,12].

Physically, sensors for microwave imaging must be compact, light, and planar [13].
Another study emphasizes that a sensor to detect a tumor must have features of low profile,
high resolution (higher bandwidth), less complexity, lightweight, good efficiency, and good
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radiation directivity [14]. Other techniques for improving operated bandwidth that require
additional structures towards the sensor, such as metasurface, metamaterial, and planar
inverted, are not suitable to be applied and integrated into the sensor due to bulky and
uneven structures which lead to uneven permeability and permittivity [15,16]. Polymeric
substrates, such as the magnetic element of ferrite, which is well-distributed in nanoscale,
have contributed to the stability of permittivity and permeability. Hence, it is very essential
to have bandwidth improvement without compromising the other ideal features of the
sensor, such as light, compact, low complexity, and low profile, which can be achieved by
improvising the polymerization of the sensor’s substrate [15].

PDMS is one the kind associated with flexibility, less permittivity, resistance to water,
as well as the ability of mixing other elements to enable a variety of fabricated substrates for
the antenna [17–19]. Incorporating PDMS and the magnetic element of ferrite could realize
sensor bandwidth enhancement, as explained by Hansem and Burke, with the thickness (t)
effect of a magneto-dielectric towards bandwidth enhancement [12], as demonstrated in
Equation (1):

BW ∼=
96·

√
µr
εr

t
λ0√

2 ·[4 + 17·√µr εr]
(1)

On the other hand, Graphene has gained much interest among researchers to replace
copper as a radiating material of the patch antenna sensor. A comprehensive Graphene
study revealed graphene to be totally advanced compared to copper, single and multi-wall
carbon nanotubes [20,21]. The features include 3.3 × 10−1 nm (nano size), 108 s/m (high
conductivity), 7.7 × 10−1 mg/1 m (light element), and 150 × 106 psi (strong element) of
the single layer carbon atoms in 2-D honeycomb lattice constructed the Graphene.

As for detection purposes, using a microwave frequency range called microwave
imaging, bandwidth and gain of the sensor are among the most important elements to
be considered compared with others element [22]. The antenna performance relates to
bandwidth, gain, radiation pattern directionality, and antenna efficiency, and these are
essential to collect scattered signals to form a high-resolution image. Apart from that, the
vital properties of graphene, namely high conductivity which leads to high gain, will serve
as a promising alternative sensor material for cancer detection purposes due to the higher
microwave signal required for human head structure penetration, including skin and skull,
in order for the signal to reach the brain [23].

In this paper, a Graphene sensor array, which is fully embedded in a composite
substrate of magnetic-based PDMS dielectric (PDMS-Ferrite), is presented as well as the
study of the combination efficiency of the substrate and the graphene. This is done by
comparing the proposed antenna sensor with a similarly dimensioned antenna fabricated
on a dielectric (Taconic) substrate. Although the concept of PDMS-magneto materials has
been reported in literature recently, the validation study towards the scientific relation
between polymer dielectric with magnetic-based substrates and a Graphene sensor in
terms of the bandwidth and gain described in this paper is among the earliest.

An overview of such antennas published in the literature is presented in Table 1
to determine that the antenna proposed in this work results in a significant bandwidth
enhancement and gain in comparison to the state-of-the art. The low permittivity and low
loss tangent of PDMS-Ferrite as well as the high conductivity of graphene have significantly
contributed to the wide bandwidth and high gain of the Magnetite PDMS Graphene array
sensor. Such gain, bandwidth, and small dimensions of 90× 45 mm2 make the UWB sensor
suitable for microwave detection purposes [24].
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Table 1. Different Antennas with Magneto-Dielectric Substrates.

Ref Center Frequency
(GHz) Bandwidth (GHz) Max Gain (dB)

[25] 2.1 0.039 2.4
[26] 0.85 0.1 5
[27] 0.8 0.077 5.1
[28] 2 0.2 1.5
[29] 2.0 6 5.3

This work
(Magnetite PDMS

Graphene Array sensor
4.9 9 15.7

2. Sensor Design and Fabrication Method

The magnetite PDMS Graphene array sensor is generally constructed of Graphene
to form an array circular patch, incorporate a feeding line, parasitic element, and partial
ground, as well as PDMS-Ferrite to form magnetite dielectric substrate. For simulation,
Graphene has been set to 3.8 × 108 s/m for the conductivity value and PDMS-Ferrite is
set to 2.6 and 0.01 for permittivity and loss tangent respectively. The array circular patch
has been measured through specific calculation prior to being simulated using computer
simulation software. Once being improved, the optimized patch size was determined at
15 mm in diameter. A 50 Ω microstrip line acts as feed source placed at the center right back
of the patch for direct connection between the feed source and patch. In order to realize
high gain sensor, a single circular patch is multiplied to produce a 4 × 1 array. A corporate
feeding structure is applied by adding feedlines for the connectivity of each patch. Identical
power delivery of all patches could be realized by applying a quarter-wave transformer
impedance matching method. Hence, 100 Ω and 50 Ω feedlines are coordinated using
quarter wave transformers of 70.71 Ω [30].

Figure 1 demonstrates the front, back, and top dimension of the proposed simulated
sensor, constructed by graphene patches with the thickness of 0.03 nm and PDMS-Ferrite
for the novel substrate element with thickness of 1.6 mm. The introduction of a parasitic
element as the new technique to realize ultra-wide band has the width of 8 mm and length
of 32 mm with 0.02 gap with the transmission line. The parasitic element is the conductor
material located near to radiating elements, yet it is not electrically connected with them. It
functioned to provide electromagnetic coupling with the radiating elements by acting as
a passive resonator. The waves from the parasitic elements do interfere by strengthening
the antenna’s radiation in the desired direction and cancelling out the waves in undesired
directions [31]. The details of the geographical sizes of the sensor are demonstrated in
Table 2.

Table 2. Geometrical Dimensions.

Parameter Value (mm)

W 90
L 45

Rp 15
PEg 0.2
PEl 8
PEw 30
PGl 15
PGw 32
Rg 20
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Figure 2 explains in detail the processing steps (flowchart) for synthesizing the Mag-
netite PDMS Graphene array sensor. The PDMS used has the permittivity of 2.8 while the 
graphene used has the carbon content, thickness, and conductivity of 97%, 25 μm, and 3.5 
× 108 s/m, respectively [32]. On the other hand, Figure 3 demonstrates the synthesized 
Magnetite PDMS Graphene array sensor. 

 
Figure 2. Processing steps for synthesizing the Magnetite PDMS Graphene Array Sensor. 

Figure 1. Simulated graphical propose sensor, (a) front and (b) back (transparent without reflector).

Figure 2 explains in detail the processing steps (flowchart) for synthesizing the Mag-
netite PDMS Graphene array sensor. The PDMS used has the permittivity of 2.8 while the
graphene used has the carbon content, thickness, and conductivity of 97%, 25 µm, and
3.5 × 108 s/m, respectively [32]. On the other hand, Figure 3 demonstrates the synthesized
Magnetite PDMS Graphene array sensor.
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3. Result and Discussion

Magnetic Ferrite in three different ratios (25%, 30%, and 35%) and PDMS (75%, 70%,
and 65%) is well blended respectively to realize three different mixed solutions of novel
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PDMS-Ferrite dielectric substrate with magnetic characteristics and a diversity of unique
features. It is proven that the ratio of 30% iron oxide nanoparticles leads to improving
dielectric properties which directly enhance the sensor performance. However, the sensor
performance started to degrade once the ratio achieved 50% of Ferrite because of the
excessive magnetic element existence leads to high magnetic losses. Figure 4 exhibits
permittivity and loss tangent values according to different mixture composition of PDMS-
Ferrite. Figure 4 demonstrates that 30% of ferrite concentration ratios recorded the lowest
permittivity (2.6) and nearest value of zero (0.01) loss tangent constantly across the operated
frequency as compared with concentration of 25% and 35%. Hence, 30% and 70% of ferrite
and PDMS concentration, respectively, is the ideal ratio to form the novel substrates for
having a larger, more useful bandwidth. The negative loss tangent of the PDMS (75%)
and Ferrite (25%) mixture, as shown in Figure 4b, is mainly obtained by the metallicity of
the nanocomposites and the plasma oscillation of delocalized electrons. Theoretically, the
negative permittivity can be explained by the Drude model. Due to the mass of atomic
nucleus being much more than the electrons, the dipole phenomenon is attributed to the
movement of a large number of electrons [33].
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Figure 4. PDMS−Ferrite measurement results for permittivity (a) and loss tangent (b).

The PDMS-Ferrite substrate has been measured in terms of permittivity as well as
loss tangent using a dielectric probe and VNA. The PDMS-Ferrite substrate measurement
results for permittivity as well as loss tangent with 30% of Ferrite concentration in the
form of liquid and solid are shown in Figure 5. Averages of 2.7 and 0.01 are the values
recorded for permittivity and loss tangent measurement results respectively for the liquid
PDMS-Ferrite substrate. Nevertheless, these values slightly increased to averages of 2.8 and
0.047 once PDMS-Ferrite substrate turned into solid form. On the other hand, the PDMS-
Ferrite substrate recorded 1.4 for permeability determined using the Nicolson–Ross–Weir
approach, as explained by [33]. Due to the different element construct FR4 and the proposed
substrate, which are fiberglass and PDMS-Ferrite respectively, the sensor with FR4 substrate
would exhibit a small bandwidth as compared to a sensor with PDMS-Ferrite as substrate
which demonstrates large bandwidth because of the correlated effects of permeability,
permittivity, and loss tangent [33].
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On the other hand, the waveguide approach is another method to determine PDMS-
Ferrite permeability. Figure 6a illustrates how the approach applies the strong electric
field at the waveguide center while Figure 6b shows the strong magnetic field at the
waveguide wall. Hence, material permittivity and permeability will be dominant as the
material located at the middle and at the side wall respectively during transmission co-
efficient (S21). Figure 6c shows the measurement setup, which consists of an adapter for
the coaxial waveguide, network analyzer, and G-band waveguide (support frequency:
3.95−5.85 GHz), while Figure 6d indicates the location of sample for testing within the
waveguide. Nevertheless, we failed to obtain a permeability calculation due to the ex-
tremely small reading of the sidewall, which resulted in an error through the transmission
coefficient (S21). Thus, PDMS-Ferrite substrate electrical properties did not significantly
alter with the presence of 30% magnetic Ferrite. Due to that, the determination of the
permittivity value obtained by taking into account the permeability of the sample is the air
permeability obtained through the fitting method [34].
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A study has been performed to investigate the optimum thickness of PDMS-Ferrite by
varying the thickness of simulated PDMS-Ferrite in the range of 0.4–2.0 mm, as shown in
Figure 7. Based on the reflection coefficient (S11) simulated results shown in Figure 8, the
optimum thickness of PDMS-Ferrite substrate is 1.6 mm, as proposed in this paper due to
the widest operated frequency (9 GHz) recorded, from 2.2 GHz to 11.2 GHz, as compared
with the other operated frequency thicknesses.
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Figure 8. Operated bandwidth for Magnetite−PDMS Graphene Array sensor with different thickness
of substrate.

The FESEM image of graphene in Figure 9a illustrates the formation of scattered
groups of graphene sheets with a clear sign stacking. The graphene sheets look like a layer
sheet morphology more than the outsized area owing to the large surface to volume ratio.
A similar morphological nature of the graphene as closely stacked due to the elimination
of an oxygen group to form a closely associated stack arrangement [35]. Meanwhile, XRD
patterns of graphene are presented in Figure 9b, where the most intensive characteristic
peak observed at 26.60◦ corresponds to the (002) plane. This is clearly indicating the
formation of pure graphite. As presented in Figure 9, the stacking sheets are closely linked
to each other due to the interplanar distance and d-spacing reduction. The existence of
graphene single layer structures and vanishing multilayer component will increase the
greater spreading peak. The decreasing of the size of sheets with a shapeless arrangement
is formed from a broad hump at 2θ = 20–30◦ [36].
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A four point probe device was used to measure graphene conductivity, as shown
in Figure 10. From the measurements, graphene is found to feature a conductivity of
3.38 × 108 s/m, resistivity of 2.01× 10−3 Ω.m, voltage of 0.2 V, and current of 9.48× 10−1 A.
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The measured high conductivity and low resistivity values are good in agreement with early
reported work on the conductivity and resistivity of graphene by several researchers [37].
The observed electrical properties are enough to be utilized as a conductive material to
replace copper and other metals for various applications. The chemical with microwave
assisted combination process-based reduction method is playing a prime role to enhance
the electrical properties [38].

Figure 10. Four point probe device.

Fabricated sensors of the Magnetite PDMS Graphene array and Copper-Taconic are
illustrated in Figure 11a,b correspondingly while Figure 12a,b presents the measured
comparisons of S-parameters and gain of the two sensors. The proposed Magnetite PDMS
Graphene array sensor operated within the frequency range of 2.2–11.2 (GHz) while
Copper-Taconic resonates within the range of 4.2–11.2 (GHz). The gain of Magnetite PDMS
Graphene array sensor is significantly higher (15.7 dB) than Copper-Taconic, which is 13.5
dB. The bandwidth and maximum gain of the Magnetite PDMS Graphene array sensor has
been increased up to 28% (2 GHz) and 2.2 dB respectively. The ideal dielectric properties
of low permittivity and low loss tangent of Magnetite PDMS-Ferrite as well as the high
conductivity of graphene significantly contributed to the wide bandwidth and high gain of
the Magnetite PDMS Graphene array sensor.
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On the other hand, the Magnetite PDMS Graphene array sensor E-plane radiation
pattern at frequency of 3, 4, 5, and 6 GHz is shown in Figure 13. Those frequencies
achieved among the highest gain and the longest wavelengths recorded by the sensor.
A uni-directional radiation pattern recorded ensured that the sensor was able to emit
the signals throughout ultra-wideband frequency [39]. The patterns exhibit the average
directivity of 7.4 dB while the highest was recorded at 15.7 dB.
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4. Conclusions

In a nutshell, the addition of a magnetic element, Ferrite, to a PDMS solution enables
to reduce the permittivity value and loss tangent of the sensor substrate. Ferrite and PDMS
with in the proportion of 30% and 70% each were selected and integrated to realize low
permittivity as well as low loss tangent of 2.6 and 0.01 correspondingly for the Magnetite
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PDMS Graphene array sensor substrate. The proposed sensor recorded UWB operated
frequency within the range of 2.2−11.2 (GHz) and great energy was emitted in the range of
3.5–15.7 dB due to ferrite relative permeability as well as permittivity exceeding the unity
(εr and µr > 1) and low permittivity of PDMS. The sensor with PDMS-Ferrite substrate
managed to have bandwidth enlargement as much as 28%, which is equal to 2 GHz for
this paper as compared with the conventional Taconic substrate. In terms of the gain, the
proposed Magnetite PDMS Graphene Array sensor recorded the maximum gain of 15.7 dB
compared with Copper-Taconic antenna which recorded 13.5 dB for maximum gain due to
the presence of graphene as the radiating element that has a conductivity value (3.7 × 108)
higher than copper (3.7 × 107).
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