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ABSTRACT 

The present work is focused on the Graphene-based nanofluids with high thermal conductiv-
ity which helps to improve the performance and enhance heat transfer. The thermal systems 
emphasis on the fluid coolant selection and statistical model. Graphene is a super-material, 
lighter than air, high thermal conductivity, and chemical stability. The purpose of the research 
is to work up with Graphene-based Nanofluids i.e., Graphene (G) and Graphene oxide (GO). 
Nanoparticles are dispersed in a base fluid with a 60:40 ratio Water & Ethylene Glycol and at 
different volume concentrations ranging from 0.01%–0.09%. Radiator model is designed in 
modelling software and louvered strip is inserted. The simulation (Finite Element Analysis) is 
performed to evaluate variation in temperature drop, enthalpy, entropy, heat transfer coeffi-
cient and total heat transfer rate of the considered nanofluids, results were compared by with 
and without louvered strip in the radiator for the temperature absorption. 58–60% enhance-
ment of enthalpy observed when Graphene and Graphene oxide nanofluid was utilized. 1.8% 
enhancement of entropy is observed in 0.09% volume concentration of the Graphene and 
Graphene oxide nanofluid when louvered strips are inserted in the radiator tube at a flow 
rate of 3 LPM. With louvered strip inserted in the radiator, heat transfer coefficient enhanced 
by 236% for Graphene and 320% enhancement is identified for Graphene oxide nanofluid 
when compared to without louvered strip insert. The results stated that high performance is 
observed with the utilization of louvered strip in the radiator tube.
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INTRODUCTION 

The Heat exchangers are the set of things work-
ing together as parts of a mechanism used to transfer 
heat from two or more fluids. One such kind of a heat 
exchanger is a radiator which can transfer the sensible 
heat termed as thermal energy to cool or heat from one 
medium to other [1–3]. To improve the performance of 
the engine, it is very much essential to deploy an efficient 
cooling system [4]. Cooling systems are designed with an 
expanded ability to throw away a considerable quantity 
of waste heat, thereby improving engine efficiency [5]. 
Conventional cooling approach made use of fins in radi-
ators to increase the cooling capacity. Irrespective of the 
improved cooling capacity, the fundamental approach of 
using fins has become extinct due to an increase in the 
size of the radiator. The radiator is an essential element 
in any engine system as it is the fundamental component 
of the cooling system [1, 6]. The efficiency of an auto-
mobile engine is measured on high fuel economy , low 
emissions along with the performance of the engine [7]. 
The heat transfer fluid could not meet the design criteria 
to increase the thermal efficiency of the heat exchanger. 
Hence there is huge scope and opportunity for new heat 
transfer fluids which can help to improve heat transfer rate 
[8]. Nanofluids act as an efficient coolant, when nanopar-
ticles are mixed with base fluids such as ethylene glycol to 
improve the capacity of heat transfer in the radiator by an 
approximate value between 15–40% [9].

The purpose of the research is to work up with Graphene 
based Nanofluids i.e., Graphene (G) and Graphene Oxide 
(GO). Radiator model is designed in modelling soft-
ware (CREO) and louvered strip is inserted. The simula-
tion (Finite Element Analysis) is carried out using Ansys 
Workbench tool to estimate the variation in temperature 
drop, enthalpy, entropy, heat transfer coefficient and the 
heat transfer rate of the considered nanofluids, the results 
were compared with and without louvered strip in the radi-
ator for the temperature absorption. The objective of the 
research is to design the radiator in a modeling software 
and perform finite element analysis and evaluate the per-
formance of heat transfer of a Radiator with and without 
Louvered Strip by using Graphene-based Nanofluids and 
to present the difference in radiator performance with the 
insertion of louvered strip. This insertion of a louvered strip 
in radiator tube is a new design and has never been used 
before. 

THEORY

Generally, water, ethylene glycol (antifreeze), oil is 
used as traditional fluids [10, 11]. In the past decade’s num-
ber of researchers have carried various investigations to 
increase the thermal properties of the conventional fluids 
[12, 13]. Colloidal dispersions of various nanoparticles 

with the conventional base fluid result in the formation 
of Nanofluids [14–16]. Heris, Shokrgozar [17] identified 
that the nanometer size particles, when dissolved in any 
traditional conventional fluids, will increase the heat 
transfer. Different works of literature pronounced that the 
thermal execution of various heat systems can be impro-
vised by adopting various Nano-fluids with nanoparticles 
like Al2O3, CuO, and Graphene as an active working fluid 
[18–21]. Graphene, as a Nano-fluid, is used intensively 
as a cooling element [22]. Graphene nanoparticles have 
gained massive attention because of its high thermal con-
ductivity value than carbon nanotubes, oxide ceramics 
(Al2O3, CuO, Sio2, Tio2 etc.) in thermal applications such 
as in photovoltaic system and heat transfer applications 
[16, 23, 24]. Graphene has a hexagonal structure which 
is like a honeycomb with largely dense carbon atoms 
[25]. The research papers which are published in various 
journals by Scopus is retrieved by keyword Graphene 
nanofluids from 2010–2020 is listed in the below graph 
of Figure 1.

This pattern is identical to the structure of various 
nanostructured materials, such as fullerene and car-
bon nanotubes [26]. Thermal conductivity of Graphene 
Nanoparticles is approximately 4000 to 5000 w/m-k, this 
can be synthesized by various techniques. Graphene formed 
by graphite, and it is also synthesized using epitaxial and 
CVD growth methods [27]. Graphene has high surface area 
of 2630 sq.mt/gm [28] and high electrical conductivity 13x 
times better than copper [29] and acts as a best heat con-
ductor than Diamond [30].

THERMOPHYSICAL PROPERTIES OF  
THE NANOFLUIDS

The nanofluid thermophysical properties comprises 
of different volume concentration, density, viscosity, and 
thermal conductivity. The Thermophysical properties show 
the key finding that the nanofluid is efficient and enables 
the researcher to find better measurement to compare the 
nanofluids to conventional fluids. 

The Volume Concentration of The Fluid
In the current study, nanofluid preparation is based 

on two-step technique. Nanoparticles were weighed based 
on the volume concentration by using weighing balance 
machine. Based on the volume concentration of fluid, the 
quantity of nanoparticles is dispersed in the base fluid. 
Following equation helps in finding required quantity of 
the nanoparticles [31].

  100p

bf

p bf

w

ww

ρ
φ

ρ ρ

 
 
 = × 

+ 
  

 (1)



J Ther Eng, Vol. 7, No. 6, pp. 1315–1328, September, 2021 1317

was considered as active fluid for pulsating heat pipes. GO 
was mixed with base fluid, water (0.25, 0.5, 1, and 1.5 g/lit). 
Results indicated that addition of GO improved base fluid 
thermal conductivity. The thermal resistance of pulsating 
heat pipe was reduced up to 42% [41]. The max. enhance-
ment of thermal conductivity at max. relative concentration 
is obtained at value of 0.02 vol% reduced Graphene Oxide 
(rGO) with 1 vol% SDBS surfactant (sodium dodecylben-
zene sulfonate). The rGO exhibited optimum stability and 
thermal conductivity, whereas viscosity value is reduced 
when equated to 0.02 and 0.05 vol% rGO without using any 
surfactants. While using 1 vol% of SDS (Sodium dodecyl 
sulfate) surfactant, the value of zeta potential increased 
30.7 mV to 52.2 mV. Enhancement from 2.6% to 3.9% is 
exhibited for thermal conductivity, reduction in viscosity 
progressed from 8.8% to 12.2% [42]. The Graphene Oxide 
(GO) and Graphene Nano Ribbons (GNR) nano-fluids were 
obtained by using pure water as base fluid. Enhancement 
of Heat transfer is calculated by using experimental data 
of pure water and nanofluids heat transfer coefficients (U). 
5.41% and 26.08% are the mean enhancement values (U) 
obtained at 0.01% and 0.02% vol. concentrations of GO/
water nano-fluid at all temperature. GNR and water nano-
fluids obtained 15.62% and 20.64% enhancement values for 
0.01% and 0.02% vol. concentrations respectively [43]. The 
studied results of Hamze, Berrada [44] stated that the con-
centration of FLG (Few layer Graphene) nanosheets varies 
between 0.05 and 0.5% in mass. Figure 8 shows that nano-
fluids thermal conductivity increased with FLG content. 
FLG concentration of 0.05, 0.10, 0.25, and 0.50 wt.%, ther-
mal conductivity of nanofluid increases by 4.2, 5.5, 12.2, and 
23.9%, respectively, as compared to the corresponding base 

Density and Specific Heat of The Fluid
Nanofluids density (Eq.2) is measured based on the fol-

lowing equations. The values of density and specific heat of 
the nanoparticles are considered from vendor. The parame-
ter of concentration of nanofluid is considered the effective 
density [10]

  ρnf = ϕρs + (1 – ϕ)ρf (2)

The specific heat of the nanofluid is measured using 
below (Eq.3). It’s a purpose of concentration and base fluid 
specific heat [32].

  ,
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Thermal Conductivity 
Thermal conductivity has an important role in heat 

transfer applications [33]. Many researchers focused to 
improve the thermal conductivity of the fluid in experi-
mentally, numerically also by many case studies. Maxwell 
[34] equation is utilized by many researchers to find the 
thermal conductivity with different volume ratio and some 
of the thermal conductivity formulas are mentioned in the 
following Table 1.

Thermal conductivity value increased by 27% for 0.2% 
volume concentration of Graphene nanofluids. A linear 
rise in electrical conductivity was observed with increase 
in particle volume concentration [39]. It showed a peak 
value of 56.45% and 41.47% thermal conductivity enhance-
ment in efficiency at 40°C and 50°C [40]. GO nanofluid 

Figure 1. Published Articles each year by Scopus on Graphene nanofluids used in heat transfer applications.



J Ther Eng, Vol. 7, No. 6, pp. 1315–1328, September, 20211318

of 0.001–0.01% [49]. The viscosity of functionalized 
graphene (f-HEG) was studied by [50]. f-HEG along with 
Ethylene Glycol & water 70/30 ratio combined at 0.041 – 
0.395% concentration was recorded with 100 % increment 
as compared with non-Newtonian behavior base fluid. 
Graphene Oxide – Ethylene Glycol nanofluid obtained 
maximum viscosity value of 81.29 cP (pascal-second) at 
temperature value 20 °C, GO nanosheets mass concen-
tration 0.005, at shear rate of 25 s−1. Nanofluids viscosity 
diminished non-linearly for an increasing shear rate, dis-
playing solid “shear-diminishing” conduct at lower shear 
rates. Nanofluids viscosity diminished fundamentally when 
temperature value increases, Viscosity enhances when mass 
concentration increases [51]. 13.4%, 14.4% and 15.8% are 
the maximum viscosity values at 25°C, 50°C and 70°C cor-
respondingly. After 4 days testing, Viscosity of nanofluid 
recorded less values as compared with base fluid [42].

Heat Transfer Characteristics
Thermal conductivity of the material or fluid is high, the 

value of heat transfer coefficient similarly increases along 

fluids when using Triton X-100 as a surfactant. The thermal 
conductivity enhancements are 1.3, 3.0, 9.9, and 18.3% for 
P-123, Pluronic. Finally, using Gum Arabic, thermal con-
ductivity values increased by 2.1%, 4.0%, 10.5%, and 21.5%.

Viscosity
Einstein [45] proposed the viscosity model in 1881, 

(Eq.10). Using the flow around one particle, the viscos-
ity of dilute suspension of small particles are calculated 
[46]. Volume concentration can also be applied to use the 
Einstein viscosity model. Later, many researchers have 
improved the viscosity model to find the nature of the vis-
cosity based on its shape and size, most of research studies 
are focused on finding nanofluids and hybrid nanofluids 
thermal conductivity as well as viscosity. The viscosity of a 
fluid is the measure of its resistance to gradual deformation 
by shear stress or tensile stress. A few viscosity models are 
given in below Table 2.

The viscosity values observed the increment for 
Graphene & DW nanofluid with higher value (>1.2 times at 
15μm compared with 5μm size) at a volume concentration 

Table 1. Thermal conductivity equations given by different authors

Author Formula Equation
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Kc,j is the effective dielectric constant and B2,x is the depolarization factor
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Here u and v are the x and y velocity components respec-
tively, τxy is shear stress & ρ is the density of non-Newtonian 
fluid.

v) k-epsilon model
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Boundary Conditions 
The Radiator model is developed in CREO, a 3D mod-

elling software by using various tools like Sketch, extrude, 
draft and assembly. Dimensions of the Radiator & Louvered 
strip [57] are presented in the Table 3. Once the radiator 
design is completed as shown in Figure 2 (a), the lou-
vered strip is inserted into the radiator as shown in below 
Figure 2(b).

The main boundary conditions of the simulations 
applied for the radiator are below:

• Input flow rate = 3,4,5,6 and 7 LPM 
• Maximum Inlet temperature = 353K 
• Volume concentrations of nanofluids = 0.01, 0.03, 

0.05 and 0.09%

The radiator will be undergone with finite element 
analysis (FEA) with hexagonal fine meshing as shown in 
Figure  3 (a) & (b) and it is solving the turbulence of k- -
epsilon model. The results show that it obtained 380253 
nodes and 298520 elements without louvered strip and 
462015 nodes and 331523 elements are obtained with the 
louvered strip. The elemental and orthogonal quality of 
the mesh along with skewness is detailed in Table 4, Mesh 
 sensitivity is presented in Table 5.

with the volume concentration of the nanofluids [52]. The 
effectiveness of the radiator in terms of thermal conductiv-
ity was increased by 10.5% and about 193% enhancement 
is obtained for heat transfer coefficient [53]. GNP nano-
fluid significantly improves characteristics of heat transfer. 
About 200% enhancement of heat transfer coefficient is 
attained after adding GNP compared to distilled water [54]. 
Peyghambarzadeh et al., performed investigation on forced 
heat transfer by using Al2O3 nanofluid of water-based, 
he observed that the nanofluids of 1 vol% concentration 
increased heat transfer by 45% as compared with normal 
water [55].

Methodology for The Simulation
CFD approach usages the numerical calculation by 

solving mass, momentum and energy conservation govern-
ing equations [56]

i) Continuity equation.

 ( ) 0U
t
ρ ρ∂
+∇⋅ =

∂
 (12)

ii) Momentum equation

 ( ) ( )
t
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iii) Energy equation
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iv) The moment equation for the steady flow.
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Table 2. Viscosity equations given by different authors.

Author Formula for viscosity Equation

Wang, Xu [47] 21 7.3 123eff

f

µ
φ φ

µ
= + +

(9)

Einstein [45] μnf = μ(1 + 2.5ϕ) (10)

Sreedhar, Rao [48]
( )

( ) ( )

p nf
nf

b p nf

c b µb k
µ

k c
×=

(11)

Table 3. Details of the radiator dimensions & louvered strip

Louvered strip details Radiator

Angle of the strip = 30° Length of Radiator = 340mm
Thickness = 1mm Height of Radiator = 350mm
Length = 10mm Diameter of Inlet = 25mm
Pitch = 30mm Diameter of Outlet = 18mm
Number of Tubes = 31 Thickness of Radiator = 22mm
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Figure 2. (a) Drafting of the Radiator without strip (b) Drafting of the Radiator with the strip.

Table 4. Quality of the mesh

Element 
quality

Aspect 
ratio 

Skewness Orthogonal 
quality 

Minimum 6.75e–5 1.1618 3.799e–5 1.687
Maximum 0.99 202.26 0.99 0.99
Average 0.637 3.5391 0.4633 0.68
Standard 
deviation 

0.2676 3.741 0.306 0.241

Table 5. Mesh sensitivity
Minimum size (mm) 7.678e–2

Maximum face size (mm) 1.0250
Maximum size (mm) 2.568
Maximum edge length (mm) 0.18994

Figure 3. (a) Radiator with hexagonal fine mesh  
(b) Hexagonal fine mesh

Using the k–ε turbulence model with improved wall 
treatment, a steady-state simulation was performed. Recent 
studies revealed that the k-ε turbulence model has yielded 
positive results in terms of measurement. This method was 
allowed to run 500 iterations and converged to converge 
10-5. The plot of residuals with a number of iterations is 
shown in Figure 4.

The thermophysical properties are calculated for the 
Graphene and Graphene Oxide nanofluids with the base 
fluid as Water: Ethylene glycol (60:40). The volume concen-
tration is 0.01, 0.03, 0.05 and 0.09. The density, specific heat, 
thermal conductivity, and viscosity were calculated based 
on equations (2),(3),(4) and (11). The pressure drops, tem-
perature drop, enthalpy, entropy, heat transfer coefficients 
etc., are estimated by using CFD. In the following images, 
the maximum value is indicated by red and minimum value 
is indicated by blue colour. From the Temperature distribu-
tion of radiator image, with and without louvered strip of 
Figure 5 and 6 explains that, the fluid temperature about 
353K will be applied into the radiator at the inlet and pass 
through the tubes, with given forced convection the tem-
perature reduction will take place. At the outlet point of the 
radiator it is observed that temperature gradually decreases 
from inlet to the outlet. 

RESULTS AND DISCUSSIONS

For the original radiator and louvered strip inserted 
radiator, the pressure drop is very huge due to inserted 
strips. In the original model, the fluid is passed through the 
radiator tubes without any disturbance, but then with an 
obstacle there creates the turbulence which caused drop-in 
pressure, velocity, temperature.

There is 80–86% (50kpa to 74kpa) drop observed in 
louvered strip radiator compared with the original radiator 
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Figure 4. Residual vs. number of iterations plot.

(10kpa to 10.6 kpa), which seems that pressure is reduced 
in working fluid. This result is observed for both fluids. 
The author Karthik, Kumaresan [58] by changing of lou-
vered strip angle from 26˚C to 30˚C then pressure drop is 
42.3%. The pitch is maintained 0.8mm with same angles, it 
is noticed that 90.1% pressure drop is enhanced when the 
water is utilized.

where M refers to modified radiator model with insert 
in the tube. In Figure 7, G (0.01) is Graphene nano particles 
at 0.01 % concentration and G (0.01) M is the concentration 
of the Graphene with louvered strip inserted in the radia-
tor tube, similarly GO indicates Graphene Oxide at their 

Figure 5. Temperature distribution of radiator without louvered strip.

respective concentrations with and without louvered strip 
inserted. Thermal conductivity plays a prominent role in 
heat transfer. The fluid which has high thermal conductivity 
will be having high heat transfer rate. Water with ethylene 
glycol has a high transfer rate so this fluid is mostly used 
in the radiators. But, to achieve a high heat transfer coef-
ficient value, thermal conductivity of the fluid needs to be 
increased. In this research, the Graphene nanoparticles are 
added at various concentrations to the base fluid for obtain-
ing high thermal conductivity. 23–31% of pressure drop is 
identified when the combination of water with ethylene gly-
col (60:40) used and when compared with water. i.e., 4.4 to 
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Figure 6. Temperature distribution of radiator with louvered strip.

Figure 7. Comparison of the Pressure drop with different 
working fluids at different volume concentrations.

6.2oC drop was observed in water whereas for the water + 
ethylene glycol 6.4 to 8.2oC drop is observed. 

When the Graphene based nanofluid is used in this 
radiator, the temperature drop is very huge. It was observed 
that 34 to 45% (11 to 14oC) of the temperature drop when 
Graphene and Graphene oxide nanofluid is used with dif-
ferent concentration and mass flow rate. The highest tem-
perature drop is observed at 3LPM because the mass flow 
rate is inversely proportional to temperature. 0.2 to 1oC 
variation is observed in between Graphene with different 
volume concentration along with different mass flow rate 
and same results showed up for the Graphene oxide. In 
between Graphene and Graphene oxide, the temperature 
drop is 0.5 to 2% is varied based on the different flow rate. 

The louvered strip is inserted in the radiator and simu-
lated to identify the temperature drop. 4.5 to 8.3oC variation 
is observed in between the Graphene with different volume 
concentration along with different mass flow rate and sim-
ilarly for the Graphene oxide. In between Graphene and 
Graphene oxide, the temperature drop is 1 to 4% is varied 
based on the different flow rate. When compared to with 
and without louvered strip radiator, it was found that 27 to 
42 % improvement in temperature drop for louvered strip 
radiator. 

Temperature is directly proportional to enthalpy and 
entropy. Temperature of fluid depends on the engine con-
dition, here about 353k temperature of fluid is entered into 
the radiator, different fluids are investigated to identify the 
maximum temperature drop. From the Figure 8, the results 

Figure 8. Comparison of the Temperature drop with differ-
ent fluids at different volume concentrations.
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Heat transfer coefficient is directly proportional to mass 
flow rate. In result, from the Figure 11 it is observed that 
high heat transfer is observed for 7LPM. The heat trans-
fer coefficient difference between water & ethylene gly-
col/ water is 0.54 to 3%. 5.7 to 10.7% enhancement was 
observed when using 0.01 – 0.09 volume concentration of 
Graphene nanofluid. From 0.01 to 0.09 volume concentra-
tion of Graphene oxide nanofluid utilization, 8.7 to 10.7% 
enhancement was observed. It increased up to 22% when 
Graphene and Graphene oxide nanofluid is utilized in radi-
ator. Similar observation is found when strip is inserted in 
radiator tubes.

Graphene nanofluid circulating in the radiator tube with 
strip inserted, the Heat transfer coefficient is enhanced by 
236% similarly Graphene oxide nanofluid observed 320% 

stated that the temperature drop is high for the less mass 
flow rate similarly, enthalpy is also high at a low mass flow 
rate. 

Enthalpy is a thermodynamic property of a system. The 
sum of the internal energy added to the product of the pres-
sure and volume of the system. It shows non-mechanical 
work and also capacity to release heat. As obtained below 
from Figure 9, 14.5 – 15.5% improvement of enthalpy for 
the water+ ethylene glycol is obtained compared with only 
water. 58–60% enhancement of enthalpy observed when 
Graphene and Graphene oxide nanofluid was utilized. 
Nanofluid thermophysical properties have improved the 
enthalpy. Less than 0.1% improvement is observed in- 
between Graphene and Graphene oxide with different mass 
flow rate along with volume concentration of the nanofluid 
for the original radiator. With louvered strip inserted radi-
ator, the enthalpy improvement of Graphene is observed at 
1.5% and Graphene oxide nanofluid achieved 2.5% incre-
ment of enthalpy.

Entropy is directly proportional to temperature and 
enthalpy. The results from Figure 10, indicate that when the 
mass flow rate increases, the entropy is slightly decreased. 
8.5 to 13.2% entropy increased when the water with eth-
ylene glycol is used as a fluid used in radiator. The entropy 
is increased to 19% when the Graphene and Graphene 
oxide nanofluid is utilized. Internally utilization of different 
volume concentration of the nanofluid, it was stated that 
0.6% enhancement for the Graphene nanofluid and 1.3% 
enhancement for the Graphene oxide nanofluid. It seems 
that Graphene oxide plays a major role to achieve high 
entropy. 1.8% enhancement of entropy is observed in 0.09 
volume concentration of the Graphene and Graphene oxide 
nanofluid at 3LPM when strips are inserted in the radiator 
i.e., high entropy is obtained at strips are inserted in the 
radiator. 

Figure 9. Comparison of the Enthalpy with different fluids 
at different volume concentrations.

Figure 10. Comparison of the Entropy with different fluids 
at different volume concentrations.

Figure 11. Comparison of the Wall function heat trans-
fer coefficient with different fluids at different volume 
 concentrations.
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CONCLUSION 

Suspended Nanofluid is a mixture of colloidal suspen-
sion of nanoparticles in base fluids. The nanofluids have 
excellent thermal property enhancement than conventional 
fluids. These fluids containing nanometer-sized particles. 
Graphene and Graphene Oxide nanofluids are utilized into 
the radiator to boost cooling performance and heat transfer. 
The simulation results are stated in the following statements.

1. 80–86% (50kpa to 74kpa) pressure drop was 
observed in louvered strip radiator compared with 
the original radiator model (10 kpa to 10.6 kpa).

2. 4.4 to 6.2°C drop in temperature is observed with 
water whereas for the water + ethylene glycol 6.4 
to 8.2°C drop is observed. It was observed that 34 
to 45% (11 to 14°C) of the temperature drop when 
Graphene and Graphene oxide nanofluid is used 
with different concentration and mass flow rate. 
When compared to with and without louvered strip 
radiator, it was found that 27 to 42 % improvement 
in temperature drop for louvered strip radiator. 

3. 58–60% enhancement of enthalpy observed when 
Graphene and Graphene oxide nanofluid was utilized.

4. 1.8% of enhancement for entropy is observed in 
0.09 volume concentration of the Graphene and 
Graphene oxide nanofluid at 3LPM when louvered 
strips are inserted in the radiator

5. With the louvered strip inserted in the radiator, 
236% enhancement of heat transfer coefficient is 
observed for Graphene and Graphene oxide nano-
fluid is 320% identified.

6. The comparison of Graphene nanofluid used in the 
radiator and with strip inserted in the radiator, 45% 
enhancement of heat transfer coefficient is observed 
and for Graphene oxide nanofluid, 54% improve-
ment identified at 7LPM.

By considering all the above factors, it can be concluded 
that the performance of Radiator is enhanced with inser-
tion of louvered strip using Graphene based nanofluids 
with optimum concentration.
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NOMENCLATURE 

A Constant
D diameter of tube, mm
d diameter of particle
h heat transfer coefficient, W/m2-K

improvement. From the observation, it was found that a 
huge heat transfer is obtained when the strip is inserted in 
radiator tubes.

Heat transfer rate is directly proportionate to mass flow 
rate. In result from Figure 12, it is observed that high heat 
transfers for 7LPM for all fluids. The total heat transfer rate 
difference between water and water with ethylene glycol is 
10 to 22%. For volume concentration from 0.01 to 0.09 of 
Graphene nanofluid utilization, 40 to 45% enhancements 
were observed. 40 to 47% enhancement was observed 
between 0.01 to 0.09% volume concentration of the 
Graphene oxide nanofluid. Up to 25% enhancement was 
observed when louvered strip inserted in radiator tubes. 
When the comparison of Graphene nanofluid used in the 
radiator and without strip inserted in the radiator, Heat 
transfer coefficient increased by 45% and improved by 54% 
for Graphene oxide nanofluid at 7LPM. The heat transfer 
rate is improved up to 50% by Hussein, Bakar [59] when 
SiO2 based nanofluid was employed and in comparison 
with pure water in the automotive cooling system. In the 
experimental study conducted by Ali, El-Leathy [60] it is 
noticed that for the Toyota Yaris 2007 model car for cooling 
system (radiator), by using Al2O3 nanoparticles mixed with 
water as a nanofluid, and by varying the volume concentra-
tions: 0.1%, 0.5%, 1%, 1.5%, and 2%. The heat transfer rate 
and heat transfer coefficient were improved 14.79 & 14.72, 
which occurred at maximum load 1. Another researcher 
Wen and Ding [61] experimentally studied & observed up 
to 47% heat transmit improvement when 1.6% volume por-
tion of Al2O3 nanoparticles was distributed in water. From 
the present study, it was found that a huge heat transfer rate 
is obtained at 7LPM when the strip inserted in radiator 
tubes.

Figure 12. Comparison of the Total heat transfer coefficient 
with different fluids at different volume concentrations.
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