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Abstract

The unprecedented growth of mobile technology has generated an increase in malware and raised concerns over malware threats. Different
approaches have been adopted to overcome the malware attacks yet this spread is still increasing. To combat this issue, this study proposes
an Android malware detection system based on permission features using Bayesian classification. The permission features were extracted via
the static analysis technique. The 10,000 samples for the judgement were obtained from AndroZoo and Drebin databases. The experiment was
then conducted using two algorithms for feature selection: information gain and chi-square. The best accuracy rate of detection of permission
features achieved was 91.1%.
c⃝ 2021 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The evolution of mobile devices and mobile applications
has drastically changed our ways of engaging in our everyday
lives. Web browsing, online banking, online shopping, social
networking [1], and online learning are examples of services
of mobile devices through connection with the Internet. There-
fore, mobile devices have played a crucial role and have
become an essential part of human life [2]. The number of
mobile users in 2020 has reached 4.78 billion [3]. For these
4.57 billion people worldwide that used the Internet [4], they
would have spent 1.25 billion years of human time online in
2020, and it is still expanding consistently. However, despite
bringing convenience to users, the mobile device is also facing
malware invasion and attacks due to online social networks
and online services [5]. Mobile malware can trick as a standard
code, then modify any intended application to corrupt and
interfere with the system’s functionality. According to [6],
ransomware has thrived 72% during the COVID-19 pandemic,
and mobile vulnerabilities have increased by 50%.

As a protection method, Google Play has provided a
permission-based system as a security mechanism that re-
strains the application from accessing confidential data [7].
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This permission prompts the users before the installation by
considering the resources of the application accessed. The
users have to accept the agreement explicitly before continuing
with the installation. Unfortunately, the mechanism provided
by Google Play cannot protect the user entirely, as they tend
to accept the agreement without a thorough inspection of the
permission. Consequently, most mobile phone users are prone
to suffer damages, as they ignore the permission risk that
results in abuse of the application. The security researcher
investigated the vulnerabilities of Google’s Bouncer applica-
tion to detect malware applications [8]. Hence, the study of
Android malware is significant to regain the deficiency.

Machine learning studies are becoming popular as it is
an effective approach that can achieve a high detection of
accuracy [9,10]. Machine learning is a system of artificial in-
telligence (AI) that automatically improves and makes the de-
cision to learn from the data and patterns [11]. The concept of
machine learning is a minimised human mediation in the com-
putational system. Machine learning predicts the data through
computational learning theories and learns from experience or
historical data. It has supervised and unsupervised classifiers
that are used to analyse the features and trace the model [12].
The approach provided by machine learning is to assist in the
validation of normal and malicious activities. Support Vendor
Machine (SVM), Naı̈ve Bayes, K-nearest neighbour (KNN),
nd Ensemble classifier are examples of the algorithm used in
el for Android malware detection, ICT Express (2021), https://doi.org/10.1016/j.icte.2021.09.003.
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achine learning. A few studies present malware detection by
sing a genetic algorithm [13–15], and also [16] use the SVM
lgorithm for detecting malware. A study by [1] applied Bayes
lgorithm to analyse cyber-terrorism on the internet. Studies
f [17,18], and [19] also used Bayesian algorithms to detect
alware.
In addition, malware classification is also significant in the

etermination of machine learning detection. Classification of
alware is a process of categorising a collection of malwares

nto target items based on categories, families, and classes.
his process has a similarity with the data mining function.
aı̈ve Bayes and SVM are examples of classification tech-
iques that are frequently engaged in classification research.
he new and favoured classifier in machine learning is the
aı̈ve Bayes classification model, which is used in static anal-
sis methods. It uses the Bayes’ Theorem and is a supervised
achine-learning algorithm. Many studies of Naı̈ve Bayes

re used in different fields of study as indicated in [20,21],
nd [22]. Naı̈ve Bayes calculates the probability of each event
nd predicts the class label to problem instances and presents
he values of the features. It is a simple technique and produces
high degree of accuracy in detection.
This study proposes the Bayesian probability method on

ermission-based features to accomplish the examination of
ignature-based malware. The permission-based features were
xtracted using static analysis that was classified using the
ayesian classifier to yield the results of the prediction of the
alware. Specifically, this study applies malware detection to

enerate an outcome that allows users to recognise the threat in
ndroid apps, thus preventing their mobile phones from being

nfected by the malware threat. The main contributions of the
tudy are as follows:

a. The experiment practised 10,000 datasets, each contain-
ing 5000 malware and benign samples.

b. The experiment applied the permission features using
the static analysis technique.

c. The malware detection applied information gain and
chi-square algorithms with a Bayesian classifier.

. Related work

Bayesian classification is the latest machine learning model
n the static analysis method. It uses Bayes’ Theorem and
s one of the supervised learning machines that considers
elf-reliance features statistically [20,23]. The comprehensive
tudies of Naı̈ve Bayes have persisted a standard method
ith appropriate pre-processing. The Bayesian measure is the
elief that probability is subjective and refers to the future.
nderstanding Bayesian starts with a belief called ‘prior’.
hen, by using some data to update the belief, the out-
ome is called ‘posterior’. Probability refers to past experience
prior) and predicts the future (posterior). The old posterior
ecomes a new prior in the big data cycle and process, and
he cycle repeats. The Bayes rule included in this step is as
ollows:
P (A|B) = P (B|A) ∗ P(A)/P(B) (1) a

2

P(A|B) is the ‘probability’, indicating a conditional proba-
ility. It means ‘what is A if B happens?’ and is also called
ayesian machine learning. In the equation above, P(A) is

he prior belief, P(B|A) is the likelihood of data B, P(B)
s the normalising constant or evidence, and P(A|B) is the
osterior obtained after the process. The interpretation of odds
s relative frequencies is one of the meanings of probability.
asy games containing coins, balls, dice, and roulette wheels
re used as examples of probability. Similarly, predictions
f the likelihood of malware being present in an Android
pplication are based on the relative frequency of incidence
n a wide number of cases.

The Bayesian Theorem is used in various fields of clas-
ification studies [20,21], and [22]. The simple technique in
aı̈ve Bayes that produces the detection, has the lowest error

ate, assigns the class label, and represents the values of the
eature as a vector. [24] uses the Naı̈ve Bayes classification
ethod and combines it with the chi-square filtering test.
harma et al. [18] proposed a method on the M0Droid dataset
y completing the test on a large dataset from AndroZoo and
rebin. By using 400 samples from M0Droid, it was possible

o achieve high accuracy by improving the F-measure. In
omparison, the proposed method in this study has a similarity
ith the features used, but differs in the process that uses
ayesian classification through static analysis for detecting
alware present in an application.
Wu et al. [25] generated an application software during

untime and analysed network traffic using Bayesian updat-
ng. The experiment was conducted with 557 samples from
4 types of malware. The features were selected using an
nformation gain algorithm. The malware was detected on the
nalysis of traffic characteristics and feasible in IoT operative
o achieve higher accuracy. The study by [25] differs from the
urrent studies but has similarity with the classifier used.

Suleiman et al. [26] have presented a practical approach
o alleviating the problem of detecting malicious apps using
tatic analysis based on Bayesian classification. The study used
000 samples retrieved from static analysis, with 49 of them
dentified in malware families and a comprehensive benign
pplication. A Java-based package has been implemented to
btain the features set for the Bayesian model. The similarity
n the study is that it used a reverse engineering technique
ut differs by using a big scale sample with re-trained new
amples.

Apart from Bayesian algorithms, machine learning also em-
loys a few algorithms for malware detection, such as SVM,
F, Adaboost, and KNN. Each algorithm takes a different role

n the detection of the presence of malware. SVM is a machine
earning algorithm for statistical learning theories, such as
imension theory and structural risk minimisation theory. RF
nsembles learning on a decision tree by integrating numerous
rees. Adaboost classifier practice is a weak classifier and acts
s a base by allocating different weights, and then assembles
he prediction weight as an output. KNN is a supervised
lgorithm that runs the detection by using the training dataset
nd classifies the data that frequently appears in KNN. It is

lso known as a lazy learning algorithm.
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.1. Permission-based features

Google Play has introduced ‘permission-based’ as a method
o prevent the infection of malware into Android mobile [27].
he user is prompted to permit access before the installa-

ion of the application or network access. To proceed with
he installation, users need to accept the requested permis-
ion or halt the installation. The list of permissions used in
he Android application is stored in the AndroidManifest.xml

uses-permissions> tag file. Permission is the security mech-
nism [13] that restricts the access of applications to the
redential part stored in a mobile phone, such as API and
rucial information. The restriction is created to protect sensi-
ive data by limiting access to a suspicious application. Thus,
ermission requested is necessary upon the installation of
ny application in a mobile device and is incorporated with
PI analysis features, which is the most useful for detecting
alware on Android devices.
The protection of permission is split into normal, signature,

nd dangerous [28]. The permission provided is a shield to
rotect the confidential matters of Android users [29]. The
ystem would grant automatically if normal permission is
eclared in an application manifest file. In contrast, dangerous
ermission affects crucial information stored by a user or
reates chaos for other applications. Besides, the signature
ermission is only granted at the time of installation and is able
o be used when the permission signed is the same as defined
n the certificate [29]. Some of the permissions carry a risk to
he information and data of the user and need permission to
e granted by the system.

. Proposed method

Bayesian probability is used for malware detection, focus-
ng on permission-based features. The application characteris-
ic was retrieved from static analysis using extensive malware
amples that contain a variety of benign and malware. The
roposed system considers the most dominant permission that
ontributes to malware detection. Bayesian probability was
elected as a method due to its sturdy mathematical base
nd stability of classification competency. Moreover, Bayes’
ule is one of the fundamental pillars of probability and the
robability theory implemented in the computerised system.
he equation of Bayes’ rule is as follows:

P (A|B) =
P (B|A) P(A)

P(B)
(2)

According to Eq. (2), A is the event for the probability,
and B is the new evidence that is related to A in some way. The
event to be estimated is called posterior P(A|B), which is the

robability of getting malware when the phone gets the virus.
hen the probability is observed, the new evidence is P(B|A),
hich is also called likelihood, becomes the initial hypothesis.
he prior is P(A); that is, the event that is not required is the
dditional information of prior. The theory is similar to the
xample that probability has malware. The marginal likelihood
s P(B), which contains the total probability of observing the
vidence.
3

Fig. 1. The Bayesian classifier detection system.

.1. General architecture

The architecture of the main system is presented in Fig. 1.
hey are divided into three phases: dataset collection, pre-
rocessing phase, and a detection phase. These phases are
ntegrated into each other.

.1.1. Dataset collection phase
The detection process starts with collecting benign and

alware datasets from Drebin and AndroZoo, which com-
rises 10,000 samples. The benign application consists of 5000
pplications retrieved from AndroZoo, owned by Google Play
tore. Meanwhile, the malware application consists of 5000
pplications that were downloaded from the Drebin database.
his collection comprises all permissions for benign and mal-
are applications. This process includes decompiling the .apk
le, extracting, and filtering permissions. The permissions are
ollected and saved as a .arff file in a readable format. The .arff
le holds all the attributes of the functionality used to optimise
unctionality so that noise and irrelevance are excluded. Then,
he downloaded datasets are extracted and compiled in a .csv
le format.

The samples were predefined manually, then labelled, such
s benign or malware. The inspection of the Android appli-
ation status in VirusTotal is completed with the labelling
rocess of malware and benign. It is widely used by re-
earchers in their fields [30,31]. VirusTotal is an online website
rovided for checking viruses through URLs and uploaded
les. The samples of malware were run through VirusTotal as

he VirusTotal completed the validation. Additionally, benign
atasets are screened in VirusTotal to determine if they are
alicious or not. The dataset sample was then used for feature

election.
Table 1 presents the top 20 malware families used in this

xperiment. This table contains four (4) columns, namely
eatures (SHA256), virus total, family, and total permission.
HA-256 is a proprietary cryptographic hash function that
roduces a 256-bit value. SHA256 is retrieved from the Virus-
otal website and prepares a unique key in each sample. The
irus total next to the SHA256 column presents the difference
etween the malware and benign dataset. This experiment
nly used an application dataset with a ranking of 0/50,
eaning that the APK is deceptive according to the number

f optimistic claims.
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able 1
op 20 malware families.

Features (SHA256) Virus total Family Total permission

1d22924bbe5dce7696e18d880482b63ce19ca0746f8671aaec865cce143f6e6f 37 Arspam 14
a3a8ec093ba12db3b6e82a385985b84829c84de9abbe5db17a4b2d2fb1715cb7 27 Plankton 22
78c1c57100bc14f9689c3f670d48405d9eb7487df1a34a846296f8dd4ab34e33 36 Plankton 21
602205ae45915a3954897b83d7261a39b5d0b0803b1c36e79633ffe027c83983 39 Plankton 21
8728a1a0b31748f97695c26dc94a4124cf84001444980df01fcc2b731beb30bc 31 Plankton 19
8cb40e8dce05482907ff83b39911831daf20e4a69ee63a6cff523c880eed1acf 38 Rootsmart 8
06b53d3ea2aeee828123194b4cea8135f5b868296d8d7ab3cb839e34b2f04d6a 39 Adrd 13
294cfb2bc890b65d7bc9135225369ab9bbd0ca81baa109f829e2c22478b4db2f 37 Adrd 13
4cff30bad920382c6e2f6833b5cdd8b4b0fcde3df0b47167a552c82096d97fc3 40 Adrd 13
4d05c2c2f0c0881f8e0c3421da4d6656cc8507ac15658a2fb1309f77e72bd94d 39 Adrd 13
5a5dae9254618bb49428654050069387c8cb2931159953c9566fba9341f31666 40 Adrd 13
5e8c8a69fc749194f86bfcdf285be45b47e675cbe4792616fcd0d00b4584eec0 42 Adrd 13
6e28480d51bf723529c48c6320eb7fcb2a5a8ace8ea2415201da7bae87adb48d 41 Adrd 13
70fd9fbcc343eca79152aacba595bece9d3ca6e5d4bcae02da0d90d8138d952a 38 Adrd 13
9bcf0a67e128813b8cfcc2bc37df0b7ced18459a16ef11e79c7eb6385e4763b7 38 Updtkiller 12
aabe5b64af5e841e02392865dc10dcd2df499ec644839227020999b3ee9a87ec 40 Adrd 13
b092c3fb1def71dba11efc28ccb2e29c8aea779e82037538875834152ca0967f 39 Adrd 13
c82ab78288ac8b5fd9cce0b2701f034320dcc6cfbe2118527713b9121a9d35b0 35 Plankton 21
cb116cefc4cb1004b06d7726258006bb2db468c3dd4ce486b1035a29f6b43305 40 Adrd 13
e2190399392695d8768d8315278e739d0453b3047c2b76dc4dd19911f3fd9598 38 Adrd 10
3.1.2. Pre-processing phase
APK is decompiled to parse AndroidManifest.xml con-

taining permissions and compiles classes.dex with all Dalvik
bytecodes, such as API calls through static analysis. The
feature extraction needs different tools, such as Androguard
and ApkTool, to gain AndroidManifest.xml and classes.dex
files that comprise permission, system call, intent, and native
code. The AndroidManifest file stores all the information of
the Android application like permission. The tag of <uses-

ermission/> classifies the types of permission requested in
he application. The APK file is decompressed and converted
rom the binary manifest file to readable XML format. The
ndroguard tool is used to obtain permission tags.
The sample of a dataset that contains permission features

s labelled as benign or malware in the last column to be
tored as .arff file in the database. A total of 10,000 samples
ndicated by hash numbers to avoid duplications was saved
n binary format (.csv) and subsequently, transformed into the
arff (attribute relation file format) format file. These features
erved as attribute values and were termed as ’feature sets’.
he binary value representing permission requested or not by

hat application was stated as ‘1’ for permission requested by
specific application, while ‘0’ for permission not requested

y the specific application.
The feature selection technique is widely used for data

re-processing. This is to find the most valuable features by
xtending and filtering certain features that are irrelevant or
ave a negative impact on the results of classification. The
dvantages of feature selection are decreasing the period for
raining and testing, and improving efficiency and accuracy.
wo studies [32] used permission-based features, [33] used
PI call sequence features, while [32] and [34] used intent.

mplementing feature optimisation in the permission features
s time-consuming in training and testing, but reduces over
ifting and simplifies malware detection. On the other hand,
ptimisation is able to increase the accuracy of detection in the
4

experiment. The process of optimisation starts with cleaning
the dataset to remove artefacts and redundant features. The
missing value data were filled with zero before the randomis-
ing process. This is because the filtering process predicted
is at random. This process allows possible tendencies to be
removed during the experiment.

The next step is optimising the best algorithm to use in
the experiments. Several algorithms were implemented using
WEKA (Waikato Environment for Knowledge Analysis) to
gain randomisation of data and the classification purpose. The
purpose is to optimise and regulate the dataset to achieve the
highest possible feature sensitivity. As a result of the best
algorithms, we have employed information gain and chi-square
to optimise feature selection, as these algorithms produce the
best performance according to our dataset. Chi-square and
information gain are able to increase the efficiency of classifier
performance [24,35,36]. The chi-square and information gain
play the role in identifying and selecting the most important
features. The purpose of using these algorithms in this study
is to find the best performance of accuracy.

Two algorithms were chosen to find the dissimilarity and
to get the best accuracy according to feature selection. As
many as 10,000 Android applications for benign and malware
samples were used in the experiment. The feature selection in
this study was implemented by the Waikato Environment For
Knowledge Analysis (WEKA). It is a well-developed software
that provides a set of algorithms for machine learning [9]. The
information gain and chi-square were implemented directly to
our dataset.

3.1.3. Detection phase
This study applied Bayesian probability in a machine learn-

ing approach to detect malicious codes in Android applica-
tions. Bayesian probability has excellent statistical properties
that classify some malicious code as benign and some benign
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Fig. 2. Malware detection using machine learning.

code as malicious, and can potentially detect unknown mali-
cious code. Fig. 2 illustrates the architecture of the Android
malware detection system using probability prediction.

The likelihood of a feature vector application in Y class,
x = (x1,x2, . . . , xn) is defined by the theorem of Bayes:

P
(
Y = y|X = x

)
=

P (Y = y)
∏n

i=1 P(X i = x i |Y = y)∑
j∈{0,1}

P(Y = y j )
∏n

i=1 P(X i = x i |Y = y j )
(3)

here the predictable frequencies measured for the learning
pp are P (X i = xi |Y = y) and P(Y = y j ). n represents
he number of a feature used in the classification, while
y0 and y1 are the benign and suspicious class, respectively.

vector app x = (x1,x2, . . . , xn) is classed as benign if
P

(
Y = benign| X = x

)
> P(Y = suspicious|X = x).

In order to evaluate the detection performance of the
ayesian classifier, the dataset was divided into two parts:

he training set and the testing set during the learning phase.
he training set is a crucial part of training the dataset to
btain accurate detection. The samples used for the training
et consisting of malware and benign applications were used.
or the testing and evaluation, ten-fold cross-validation was
sed based on the evaluation criteria provided. Thus, 70% of
he samples were used for training, and the remaining 30%
ere used for testing. All the permissions used in this phase
y benign and malware were determined, and the features
ith the minimum possibility to identify the class target were
ltered. The result of the process will be measured based on

he measurement of accuracy. The measurement of the Positive
ate is described as, Positive Rate =

T P R
T P R+F N R , Negative

ate described as, Negative Rate =
F P R

T N R+F P R and the
verall accuracy is given as T P R+T N R

T P R+T N R+F P R+F N R .

. Result & discussion

Information gain and chi-square are the algorithms used
or feature selection, combined with Naı̈ve Bayes classifier
or detection. The experiment is divided into four different
ets of features ranked from 15, 20, 25, and 30. As illustrated
n Table 2, the features of both algorithms have a similarity.
he performance of the classifier has been evaluated by four

4) metric assessments, such as TPR, FPR, precision, and
-measure. The accuracy of the detection is presented in
able 2.

As noted in Table 2, the performance of detection using a
ayesian classifier with different features selected by using
 w

5

Table 2
Detection performance result using Naïve Bayes.

Features
optimisation

Number of
features

TPR FPR Precision F-measure

Information
Gain

30 90.2% 0.096 0.906 0.902
25 89.4% 0.104 0.899 0.894
20 88.65% 0.116 0.891 0.886
15 87.55% 0.123 0.879 0.875

Chi-Square 30 91.1% 0.091 0.914 0.911
25 89.6% 0.103 0.900 0.896
20 90.6% 0.094 0.906 0.906
15 91.0% 0.091 0.911 0.91

Fig. 3. Illustration of accuracy performance.

he information gain and chi-square algorithms. For both
lgorithms, the accuracy of detection increased according to
he number of features selected. It seems when the features
re optimised, the accuracy increases. However, the accuracy
f both algorithms was slightly lower in 20 features. The four
eatures excluded in the 20 features in the information gain
lgorithm were READ SETTING, WRITE APN SETTING,

READ CONTACT, and ACCESS WIFI STATE. On the other
side, five features excluded in chi-square were INSTALL
SHORTCUT (Motorola.launcher), INSTALL SHORTCUT
(lge.launcher), INSTALL SHORTCUT (Motorola.dlauncer),
READ SETTING (fede.launcher), and READ SETTING
adw.launcher). Thus, the decrease in accuracy for 20 features
s related to the exclusion of features in the selected 20
eatures. Moreover, removing the five features from each algo-
ithm impacts the detection accuracy as the removed features
ignificantly influence the accuracy of detection. However,
he feature selection using chi-square and information gain
lgorithms in this study achieve high accuracy with 91.1% and
0.2%, respectively. Hence, it can be concluded that feature
ptimisation is also critical in defining reliable features [37].

Fig. 3 illustrates the comparison of the algorithm used in
his study. The curve shows that the accuracy of chi-square is
igher compared to information gain. As noted, the detection
rops to 25 features for both algorithms. To conclude, the high-
st detection performed by 30 features is 91.1% for chi-square
nd 90.2% for information gain.

In addition, we compared our detection results of the same
lassifier to other related studies, as demonstrated in Table 3.

Table 3 reveals the comparison of the proposed method

ith previous studies, considering the same classifier. Studies
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able 3
etection performance result using Naïve Bayes.

Reference Dataset (source) Accuracy Algorithm

[17] 100 samples (Drebin and Google Play) 94% Naïve Bayes
[13] 1119 malware (Android Malware Genome) and 621

benign (Google Play)
93.85% Genetic Algorithm and Naïve Bayes

[32] 5560 malware (Drebin) and 1846 benign (Google
Play)

83% Naïve Bayes

[38] Worm dataset 95% Naïve Bayes
Proposed method 5000 malware (Drebin) and 5000 benign (AndroZoo) 91.1% Chi-Square & Naïve Bayes
i
c
a
t
c
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f
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m
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Fig. 4. Performance of ROC curve.

y [17] and [38] achieved higher accuracy with a few signif-
cant features. Other studies [13] achieved 93.85% accuracy
sing 1740 samples of benign and malware datasets. The
alware dataset (1119) was taken from the Android Malware
enome Project (AMGP) that was issued by Yajin Zhou and
uxian Jiang in 2012. They used 152 permission features

or training and tested using Naı̈ve Bayes, SVM, and DT
lassifiers. Studies by [17] and [32] have similarities with this
tudy that used the Drebin database for malware detection.

In contrast, this proposed study has used the AndroZoo
atabase for benign detection, while the other studies used
oogle Play as their database. The results of this study’s ex-
eriments may be marginally smaller compared to the previous
tudy. However, the malware dataset used in this study is mas-
ive in comparison to other studies. A wide range of datasets
ontributes to enhanced malware classification efficiency [39,
0]. In addition, the significant and minimal features can
roduce acceptable detection performance of more than 90%
hile reducing model resources and constraints. To conclude,

he collection of database and source retrieved affected the
ccuracy of the detection of malware.

.1. ROC curve

The ROC curve visualised and interpreted the evaluation
nd performance of TPR in graphical form. The ROC curve
easured the value and effectiveness of the prediction clas-

ifier. Fig. 4 presents the different TPR and FPR through
ross-validation with 15, 20, 25, and 30 features using the
aı̈ve Bayes classifier. The left axis denotes the percentage
f samples that are appropriately detected as malware. It
 f

6

Table 4
Result of AUC.

Features optimisation Number of features AUC

Information Gain 30 0.9655
25 0.9597
20 0.9609
15 0.9548

Chi-Square 30 0.9675
25 0.9653
20 0.9575
15 0.9639

Fig. 5. Precision.

s clearly shown in this figure that the entire features are
lose to left and top border. Hence, the ROC curve shows
high accuracy rate with minimal false alarm. Additionally,

he region under the ROC curve, known as an area under the
urve (AUC), is to optimise the detection and balance classifier
utput on malware collection.

Table 4 lists the results of AUC taken from the experiment
or 15, 20, 25 and 30 features. The details of the results of
UC are described as where the malware detection perfor-
ance is measured with a threshold of 1.0, which is equal

o perfect detection. The result of AUC in Table 4 indicates
hat all the detection based on different features have excellent
rediction rates, and AUC values are appropriate to detect
alware on the Android platform.

.2. Empirical assessment

To obtain the following results, the experiment is validated
sing a different parameter for the measurement process of
etection. This study chooses the result obtained from the
hi-square algorithm, as this algorithm achieves better perfor-
ance. Figs. 5, 6 and 7 present the validation test results for

recision, recall, and F-measures, respectively.
The results demonstrated in the figures indicate that most

eature detection revealed high precision, recall, and F-measure
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Fig. 6. Recall.

Fig. 7. F-measure.

values achieved. Recall and accuracy are vital in the evaluation
of detection performance [41]. The increase in precision rate
proves the model classification is linked to a positive rate.
The detection of malware also presents an accurate result.
Nevertheless, the high recall illustrates that malware features
are similar to benign. Thus, the visualised result in the box plot
describes that the precision with high recall effectively detects
malware performance.

5. Conclusion

This study has presented an analysis of permission-based
features using static analysis. In order to improve the malware
detection, these features were optimised using information
gain and chi-square algorithms. In this work, the selected
permission features were separated into several groups to find
the best performance of accuracy. As a result, the chi-square
algorithm with 15 features, produced the best performance
among the features with a 91% accuracy rate. With the high
accuracy achieved, the proposed system appeared to provide
good performance for malicious applications on Android mo-
bile. As a future work, the existing work may extend to other
features and evaluate the risk of each feature, as well as the
study of Sharma et al. Risk assessment is considered a crucial
part of malware detection to categorise, prioritise, and zone
the permission request [42]. The practice of risk assessment
would be able to raise the awareness of mobile users about
potential malware damages.

The information is expected to encourage more research in
the future as a way to overcome the rapid growth of malware.
Additionally, the outcome of this study may improve the
marketability of mobile security in Android operating systems,
particularly for permission-based. In conclusion, this study
provides a general overview of the topic and aims to show
the importance of expansion in Android malware research.
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