
 

 

(16 BIT X 16 BIT) BOOTH MULTIPLIER USING VHDL 

 

 

 

 

 

 

 

 

 

MUHAMMAD SYAFIQ BIN NORASHID 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI MALAYSIA PAHANG 

 

 



 

    UNIVERSITI MALAYSIA PAHANG 

 

      BORANG PENGESAHAN STATUS TESIS
 

 

     JUDUL:        

 

SESI PENGAJIAN:________________ 
 

Saya      ________________________________________________________________ 

(HURUF BESAR) 

 

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di  

              Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 

 

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).  

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi      

                      pengajian tinggi. 

4. **Sila tandakan (   ) 
 

     (Mengandungi maklumat yang berdarjah keselamatan 

   SULIT  atau kepentingan Malaysia seperti yang termaktub  

     di dalam AKTA RAHSIA RASMI 1972) 

     

    TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan 
     oleh organisasi/badan di mana penyelidikan dijalankan) 

  

    

   TIDAK TERHAD                            
                                        

 

              Disahkan oleh: 

 

 

 

 

 ___________________________    ___________________________ 

                      (TANDATANGAN PENULIS)             (TANDATANGAN PENYELIA)                                                

 

Alamat Tetap: 

 

NO. 4 JALAN 3/21,                              NOR FARIZAN BINTI ZAKARIA  
BANGI PERDANA,                                            ( Nama Penyelia ) 

43650 BANDAR BARU BANGI, 
SELANGOR DARUL EHSAN.  

 

Tarikh:  7 NOVEMBER 2008           Tarikh: : 7 NOVEMBER 2008
   

CATATAN: * Potong yang tidak berkenaan. 

  ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak 

   berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu 

   dikelaskan sebagai atau TERHAD.                                                                                           

        Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara 

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan 

penyelidikan, atau Laporan Projek Sarjana Muda (PSM). 

2008/2009 

     MUHAMMAD SYAFIQ BIN NORASHID (860323-38-6447) 

(16 BIT X 16 BIT) BOOTH MULTIPLIER USING VHDL 



 

 

 

 

 

 

 

 

 

 

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award 

of the Bachelor Degree of Electrical Engineering (Electronics)” 

 

 

 

Signature : ______________________________________________ 

 

            Name  : NOR FARIZAN BINTI ZAKARIA 

 

            Date  : 7 NOVEMBER 2008 

 

 

 

 

 

 

 

 



 

 

 

 

(16 BITS X 16 BITS) BOOTH MULTIPLIER USING VHDL 

 

 

 

 

MUHAMMAD SYAFIQ BIN NORASHID 

 

 

 

 

This thesis is submitted as partial fulfillment of the requirements for the award of the 

Bachelor of Electrical Engineering (Hons.) (Electronics) 

 

 

 

 

 

Faculty of Electrical & Electronics Engineering 

University Malaysia Pahang 

 

 

 

 

NOVEMBER, 2008 

 

 



 

 

 

 

 

 

 

 

 

 

 

“All the trademark and copyrights use herein are property of their respective owner. 

References of information from other sources are quoted accordingly; otherwise the 

information presented in this report is solely work of the author.” 

 

 

 

 

Signature  : ____________________________  

 

Author   : MUHAMMAD SYAFIQ BIN NORASHID 

 

Date   : 7 NOVEMBER 2008 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved parents… 

who always pray for me and give me courage to finish this thesis 

 

 

Also, to those people who gave guided and inspired me throughout my journey. 

Thank you for the supports and advices that have been given. 

 

 

 

 

 

 

 

 

 

 

 

 



 i 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

 In the name of Allah S.W.T, the Most Gracious, the Ever Merciful. Praise is to 

Allah, Lord of the Universe and Peace and Prayers be upon His final Prophet and 

Messenger Muhammad s.a.w. 

 

 I would like to take this opportunity to sincerely express my highest gratitude to 

my supervisor madam Nor Farizan Binti Zakaria for her guidance, ideas and advice 

during this project. 

 

 My sincere gratitude also goes to my colleagues for their aid, ideas and advice, 

and my friends who had helped me directly or indirectly. 

 

 Finally, special thanks extended to my beloved family who had given me moral 

support and prayed for my success. 

 

 

 

 

 

 

 

 

 



 ii 

 

 

 

ABSTRACT 

 

 

 

 

Nowadays, digital device is very important to all the people in this world. The 

high speed operation and less space and energy required had made the digital devices 

more preferred. This project is to design digital system which performed fixed point 

Booth Multiplier where the design system would be developed using hardware 

description language (HDL), in this case, VHDL (VHSIC Hardware Description 

Language), VHSIC stands for Very High Speed Integrated Circuit. The Software used 

would be Xilinx ISE 10.1 which is the software used to designed digital system for Xilinx 

manufactured FPGA board. The algorithm to design the system is Booth Multiplier 

Algorithm. The designed digital system will receive two 16 bits input and processes it to 

create a 32 bits output with the value of the multiplied inputs data value. Finally, it is 

proven that the system created can calculate and yield a fixed point multiplied output of 

the input value. 

 

 

 

 

 

 

 

 

 



 iii 

 

 

 

ABSTRAK 

 

 

 

 

Pada masa kini, alat digital sangat penting kepada masyarakat sedunia. Operasi 

berkelajuan tinggi dengan ruang yang kecil serta tenaga yang sedikit membuatkan alat 

digital lebih digemari ramai. Projek ini adalah untuk mereka alat digital yang berfungsi 

sebagai integer Pendaraban Booth di mana sistem digital tersebut akan dihasilkan 

menggunakan bahasa penggambaran perkakasan (HDL), di dalam kes ini, VHDL( 

VHSIC bahasa penggambaran perkakasan), VHSIC bermaksud litar integrasi berkelajuan 

tinggi. Pengatur cara computer yang digunakan adalah Xilinx ISE 10.1 dimana pengatur 

cara computer tersebut digunakan untuk mereka sistem digital untuk Xilinx menubuhkan 

papan FPGA. Algoritma yang digunakan untuk mereka sistem digital ini adalah 

Algoritma Pendaraban Booth. Sistem digital tersebut akan menerima dua 16 bit masukan 

dan diproses untuk mengeluarkan 32 bit keluaran dengan nilai masukan yang telah 

didarabkan. Akhirnya, system yang telah direka ini terbukti dapat mengira dan 

mengeluarkan nilai keluaran dalam integer daripada hasil pendaraban nilai masukan. 

 

 

 

 

 

 

 

 



 iv 

 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER TITLE PAGES 

 ACKNOWLEDGEMENT i 

 ABSTRACT ii 

 ABSTRAK iii 

 TABLE OF CONTENTS iv 

 LIST OF TABLES vii 

 LIST OF FIGURES viii 

 LIST OF ABBREVIATIONS ix 

 LIST OF APPENDICES x 

   

   

1 INTRODUCTION  

 1.1    Overview 1 

 1.2    Project Objective 2 

 1.3    Project Scope 2 

 1.4    Problem Statement 3 

 1.5    Project Contribution 3 

 1.6    Thesis Organization 4 

   



 v 

 2 LITERATURE REVIEW  

 2.1    Introduction 5 

 2.2    Booth Multiplier Algorithm 6 

          2.2.1    Procedure and Example 6 

 2.3    VHDL 13 

          2.3.1    History of VHDL 13 

          2.3.2    Levels of Abstraction 14 

          2.3.3    Scope of VHDL 15 

 2.4    Xilinx Integrated Software Environment (ISE) 10.1  15 

          2.4.1    Design Entry 16 

          2.4.2    Synthesis 17 

          2.4.3    Implementation 17 

          2.4.4    Verification 17 

          2.4.5    Device Configuration 18 

   

   

 3 RESEARCH METHODOLOGY  

 3.1    Introduction 19 

 3.2    Overall Methodology 19 

 3.3    Design Methodology 21 

 3.4    Booth Multiplier Algorithm and Main Component 23 

 3.5    Overall Basic Block Diagram 25 

 3.6    Booth Multiplier Design 26 

          3.6.1    Data Path Unit 26 

          3.6.2    Control Unit 27 

 3.7    VHDL Code for Booth Multiplier 27 

 3.8    Booth Multiplier Block Schematic Diagram 28 

   

   

   



 vi 

4 RESULT AND DISCUSSION  

 4.1    Introduction 29 

 4.2    Booth Multiplier Result and Discussion 29 

          4.2.1    Control Unit 30 

          4.2.2    Overall Circuit 31 

 4.3    Performance 32 

   

   

5 CONCLUSION AND RECOMMENDATION  

 5.1    Introduction 33 

 5.2    Conclusion 33 

 5.3    Recommendation 34 

 5.4    Costing and Commercialization 34 

   

   

REFERRENCES 37 

Appendices A – D 38 - 65 

   

   

   

   

   

   

 

 

 

 

 

 



 vii 

 

 

 

LIST OF TABLES 

 

 

 

 

TABLE NO TITLE PAGES 

2.1 Booth Multiplier Algorithm Rules 6 

2.2 Booth Table (Step 1) 7 

2.3 Booth Table (Step 2) 9 

2.4 Booth Table (Step 3) 10 

2.5 Booth Table (Final) 12 

3.1 State, next state condition and output of Control Unit 28 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

 

 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE NO TITLE PAGES 

2.1 Changing value from decimal to binary 7 

2.2 Cycle 1 calculation (Step 2) 8 

2.3 Cycle 2 calculation (Step 2) 8 

2.4 Cycle 3 calculation (Step 2) 8 

2.5 Cycle 4 calculation (Step 2) 9 

2.6 Cycle 1 calculation (Step 3) 10 

2.7 Cycle 2 calculation (Step 3) 11 

2.8 Cycle 3 calculation (Step 3) 11 

2.9 Cycle 4 calculation (Step 3) 12 

2.10 Levels of abstraction in VHDL 14 

2.11 Scope of VHDL in overall spec of electrical system design 15 

2.12 ISE design flow 16 

3.1 Flow chart of overall methodology of this project 20 

3.2 Flow chart of design methodology of this project 22 

3.3 Flow chart of Booth Multiplier Algorithm 24 

3.4 Overall basic block diagram 25 

4.1 Simulation waveform of Control Unit 32 

4.2 Simulation waveform of overall circuit 33 

 



 ix 

 

 

 

 

LIST OF ABBREVIATIONS 

 

 

 

 

VHDL - Very high speed integrated circuit Hardware Description 

Language   

ISE - Integrated Software Environment 

FPGA - Filed-Programmable Gate Array 

VHSIC - Very High Speed Integrated Circuit 

US DoD - United States Department of Defence 

IBM - International Business Machines 

TI - Texas Instruments 

IEEE - Institute of Electrical and Electronic Engineer 

ASIC - Application-Specific Integrated Circuit 

RTL - Register Transfer Level 

H/W - Hardware 

S/W - Software 

HDL - Hardware Description Language 

CPLD - Complex Programmable Logic Device 

FSM - Finite State Machine 

GUI - Graphical User Interface 

LCD - Liquid Crystal Display 

 

 



 x 

 

 

 

 

LIST OF APPENDICES 

 

 

 

 

APPENDIX TITLE PAGES 

   

A VHDL code of each component in Data Path Unit 38 – 48 

B VHDL code of Control Unit (Finite State Machine) 49 – 58 

C VHDL code for Booth Multiplier Design  59 – 63 

D Full block schematic diagram of (16 bit X 16 bit) Booth  64 – 65  

 Multiplier   

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview  

 

 

Digital system nowadays became an important system in this modern era. 

Analog system was replaced by digital system because digital system can do their 

processes with high speed operation, less space and energy required. This event happen 

after the big contribution of the digital system which most commonly used no matter in 

one’s daily life or in industrial field. Due to the crucial developing of digital system, we 

cannot deny that the system is very important for now and future.  

 

VHDL which stand for “Very high speed integrated circuit Hardware 

Description Language” is one of the common techniques for the digital system 

developing process. The technique is done by program using certain software as a 

platform which also can perform simulation and analysis of the designed system. The 

designer only need to describe his digital circuit design in textual form which can erased 



 2 

without the effort to alter the hardware. The programming language is different 

compared to other programming language such as C++ language.  

 

VHDL is more preferred because this technique can reduce cost and time, easy to 

troubleshoot, portable, a lot of platform software support the VHDL function and high 

references availability.  

 

 

 

 

1.2 Project Objective 

 

 

The objective of this project is to design a digital multiplier using Booth 

Multiplier Algorithm in VHDL. 

 

 

 

 

1.3 Project Scope 

 

 

1. The input will be in 16 bits multiply by 16 bits which will produce 32 bits of 

accurate multiplied answer. 

2. The input and output of the system will only process and produce fixed point value. 

3. The system also can accept negative value which is called sign number. 

4. VHDL (Very high speed integrated circuit Hardware Description Language) is used 

as the language for the system. 

5. All the process will be running using Xilinx ISE 10.1 software which means the 

process is simulation only without any hardware implementation.  

 



 3 

1.4 Problem Statement 

 

 

As we know, digital system has been used in daily life or industrial field 

nowadays because of the benefits compared with analog system. Due to crucial 

developing of digital system, many new complex digital devices had been design. Some 

of the devices are called microprocessor, microcontroller or microchip. It is very 

important to have a very high speed performance in all the devices. Multiplier is one of 

the most important parts in the devices which can affect the performance of the devices. 

 

 So, the high speed and efficient multiplier system is important for the designers 

of microprocessor, microcontroller and others digital devices. As we know, 

multiplication operation is not hard to do in decimal number. But, to do the operation in 

binary number (which used in digital system) is very complex operation. 

 

 This project is being done to help create a prototype of digital system design that 

can operate as multiplier operation that would be implemented into microprocessor, 

microcontroller and other digital devices.  

 

 

 

 

1.5 Project Contribution 

 

 

A prototype of 16 bits inputs multiply by 16 bits inputs multiplier using Booth 

Multiplier Algorithm with accurate 32 bits of output. The prototype is using Xilinx ISE 

10.1 software as a platform to design the system which using VHDL as the language for 

designing process.   

 

 



 4 

1.6 Thesis Organization 

 

 

This thesis is organized into five chapters. The first chapter introduced the 

overview, objective, scope and contribution of this project.  

 

 Chapter 2 present the related reference studied that being used to do this project. 

Booth Multiplier Algorithm is also introduced in this chapter.  

  

 Chapter 3 would explain about the project methodology which clearly explained 

about how this project is planned and organized in completing the project.  

 

 Chapter 4 presents the result for the system designed and discussion of overall 

result.  

 

 In the final chapter, the project research is summarized and the recommendations 

for future works are presented here. Costing and commercialization also included in this 

chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

In this chapter, all the literature review that is important to this project will be 

represent The literature review will include Booth Multiplier Algorithm (with procedure 

and example), VHDL and Xilinx Integrated Environment (ISE) 10.1 software. The detail 

of those will be discussed in this chapter. 

 

 

 

 

 

 

 

 

 

 



 6 

2.2 Booth Multiplier Algorithm 

 

 

Table 2.1 show that the Booth Multiplier Algorithm Rules, which very important 

for this project. The algorithm rules give a procedure for multiplying binary integers in 

signed –2’s complement representation. 

 

 

            Table 2.1: Booth Multiplier Algorithm Rules 

Xi Xi-1 Operation 

0 0 Shift Only 

1 1 Shift Only 

1 0 Add (-A) & Shift 

0 1 Add (A) & Shift 

 

 

    

 

2.2.1 Procedure and Example 

 

 

The following example will illustrate how to apply the algorithm to get the exact 

value of multiplication of 210 multiply by (-410). 

 

 

 Step 1: Making The Booth Table. 

 

i) Change the decimal value to binary value. For the negative 

decimal value, 2’s complement method is used to get the binary 

value (Figure 2.1). 



 7 

 

210  = 00102 

-410 = 11002 

 

Figure 2.1: Changing value 

from decimal to binary 

 

ii) Let A = -410 = 11002 (multiplier)  

Let X = 210 = 00102 (multiplicand) 

 

iii) Load A and X value into the Table 2.2. The additional 4 bits 

(0000) and 4 cycles (operation) is required because A and X are in 

4 bits binary value. 

 

Table 2.2: Booth Table (Step 1) 

 Bits Number (i)      

 4 3 2 1      

A 1 1 0 0      

X 0 0 1 0 Additional Bits  

     0 0 0 0  

                 Cycle 1 

                 Cycle 2 

                 Cycle 3 

                 Cycle 4 

 

 

 Step 2: Identify Operation. 

 

i) The Booth Multiplier Algorithm Rules is applied depend on 

number of cycle. 

 



 8 

ii) When cycle 1, value i will be same as the number cycle (Figure 

2.2). 

 

For Cycle 1: 

(cycle 1) = (i  = 1) 

When i = 1, X(1) and X(0) is identified using the rules 

X(0) is assumed 0 

From the rules, when X(1) = 0 and X(0) = 0,  

The operation is shift only. 

                  Figure 2.2: Cycle 1 calculation (Step 2) 

 

iii) Repeat the step until i = Bits number (Maximum) as shown in 

Figure 2.3, 2.4 and 2.5. 

 

 

For Cycle 2: 

(cycle 2) = (i = 2) 

When i = 2, X(2) and X(1) is identified using the rules 

X(2) = 1 and X(1) = 0 

From the rules, when X(2) = 1 and X(1) = 0 

The operation is Add (-A) and Shift. 

             Figure 2.3: Cycle 2 calculation (Step 2) 

 

For Cycle 3: 

(cycle 3) = (i = 3) 

When i = 3, X(3) and X(2) is identified using the rules 

X(3) = 0 and X(2) = 1 

From the rules, when X(3) = 0 and X(2) = 1 

The operation is Add A and Shift 

               Figure 2.4: Cycle 3 calculation (Step 2) 

 



 9 

 

For Cycle 4: 

(cycle 4) = (i = 4) = Maximum Bits Number 

When i = 4, X(4) and X(3) is identified using the rules 

X(4) = 0 and X(3) = 0 

From the rules, when X(4) = 0 and X(3) = 0 

The operation is Shift only. 

               Figure 2.5: Cycle 4 calculation (Step 2) 

 

iv) Load all the identified operation into the table as shown in Table 

2.3. 

 

Table 2.3: Booth Table (Step 2) 

 

 

 Step 3: Operation Executed. 

 

i) The operation will be done in order from cycle 1 until cycle 4. 

 

ii) Every answer that we get after every operation is done is used as 

initial data to do the next operation as shown in Figure 2.6, 2.7, 

2.8 and 2.9. 

 

 



 10 

For Cycle 1: 

The operation is Shift only 

Assume initial data is 0000 

Because there is no answer (data) from the previous operation 

0  0  0  0

0  0  0  0  0
Insert to 

additional 

bits

Initial Data

After Shifting

                  Figure 2.6: Cycle 1 calculation (Step 3) 

 

 

iii) Load the data into the table as shown in Table 2.4. 

 

Table 2.4: Booth Table (Step 3) 

 

 

iv) Repeat the same step until the four cycles is completed as shown 

in Figure 2.7, 2.8 and 2.9. 

 

 

 

 



 11 

 

For Cycle 2: 

The operation is Add (-A) & Shift 

Initial data = 00000 and A = 1100 

–A = 0100 (2’s complement) 

 

 

0  0  0  0  0Initial Data

0  1  0  0  -A +

0  1  0  0  0  

0  0  1  0  0  0  

Adding

Shifting

 

            Figure 2.7: Cycle 2 calculation (Step 3) 

 

 

For Cycle 3: 

The operation is Add A & Shift 

Initial data = 001000 and A = 1100 

 

0  0  1  0  0  0Initial Data

1  1  0  0  A +

1  1  1  0  0  0  

1  1  1  1  0  0  0  

Adding

Shifting

 

             Figure 2.8: Cycle 3 calculation (Step 3) 

 



 12 

 

For Cycle 4: 

The operation is Shift Only 

Initial data = 1111000 

 

Initial Data 1  1  1  1  0  0  0  

1  1  1  1  1  0  0  0  

Shifting

               Figure 2.9: Cycle 4 calculation (Step 3) 

 

v) The last row (cycle 4) is the final answer which get 11111000 in 

binary or -8 in decimal as shown in Table 2.5.  

 

Table 2.5: Booth Table (Final) 

 

 

 

 

 

 

 

 



 13 

2.3 VHDL 

 

 

VHDL is a hardware description language. The word 'hardware', however, is 

used in a wide variety of contexts which range from complete systems like personal 

computers on one side to the small logical gates on their internal integrated circuits on 

the other side. The language VHDL covers the complete range of applications and can 

be used to model (digital) hardware in a general way.[1] 

 

 

 

 

2.3.1 History Of VHDL 

 

 

The development of VHDL was initiated in 1981 by the United States 

Department of Defence to address the hardware life cycle crisis. The cost of reprocuring 

electronic hardware as technologies became obsolete was reaching crisis point, because 

the function of the parts was not adequately documented, and the various components 

making up a system were individually verified using a wide range of different and 

incompatible simulation languages and tools. The requirement was for a language with a 

wide range of descriptive capability that would work the same on any simulator and was 

independent of technology or design methodology.[2] 

 

 1981 - Initiated by US DoD to address hardware life-cycle crisis 

 1983 - Development of baseline language by Intermetrics, IBM and   

TI 

 1986 - All rights transferred to IEEE 

 1987 - Publication of IEEE Standard 

 1987 - Mil Std 454 requires comprehensive VHDL descriptions to be 

delivered with ASIC 



 14 

 1994 - Revised standard (named VHDL 1076-1993) 

 2000 - Revised standard (named VHDL 1076 2000, Edition) 

 2002 - Revised standard (named VHDL 1076-2002) 

 2007 - VHDL Procedural Language Application Interface standard 

(VHDL 1076c-2007) 

 

 

 

 

2.3.2 Levels of Abstraction 

 

 

VHDL can be used to describe electronic hardware at many different levels of 

abstraction. When considering the application of VHDL to FPGA/ASIC design, it is 

helpful to identify and understand the three levels of abstraction shown opposite - 

algorithm, register transfer level (RTL), and gate level as shown in Figure 2.10. 

  

Algorithms are unsynthesizable, RTL is the input to synthesis, gate level is the 

output from synthesis. The difference between these levels of abstraction can be 

understood in terms of timing.[2] 

 

 

Algorithm RTL Gates

 

                       

               Figure 2.10: Levels of abstraction in VHDL 

 

 

 

 

 



 15 

2.3.3 Scope of VHDL 

 

 

Figure 2.11 shows a very simplified view of the electronic system design process 

incorporating VHDL. The central portion of the diagram shows the parts of the design 

process which are most impacted by VHDL.[2] 

 

System Analysis and Partitoning

H/W Spec

Digital Functional Spec

Physical Spec

Analog Spec

Algorithm

RTL

Gates

Synthesis

S/W Spec

Sign-Off Simulation

Timing Analysis

Fault Simulation

Mixed Signal Simulation

Layout

 

Figure 2.11: Scope of VHDL in overall spec of electrical system design. 

 

 

 

 

2.4 Xilinx Integrated Software Environment (ISE) 10.1 

 

 

The Integrated Software Environment (ISE®) is the Xilinx® design software 

suite that allows to take the design from design entry through Xilinx device 



 16 

programming. The ISE Project Navigator manages and processes design through the 

following steps in the ISE design flow as shown in Figure 2.12. [3] 

 

 

 

Figure 2.12: ISE design flow. 

 

 

 

 

2.4.1 Design Entry 

 

 

Design entry is the first step in the ISE design flow. During design entry, source 

files based on your design objectives is created. Top-level design file can created using a 

Hardware Description Language (HDL), such as VHDL, Verilog, or using a schematic. 

Multiple formats for the lower-level source files in the design can used.[3] 

 



 17 

2.4.2 Synthesis  

 

 

After design entry and optional simulation, synthesis is run. During this step, 

VHDL, Verilog, or mixed language designs become netlist files that are accepted as 

input to the implementation step.[3] 

 

 

 

 

2.4.3 Implementation  

 

 

After synthesis, design implementation is run, which converts the logical design 

into a physical file format that can be downloaded to the selected target device. From 

Project Navigator, the implementation process can run in one step, or each of the 

implementation processes can run separately. Implementation processes vary depending 

on whether targeting a Field Programmable Gate Array (FPGA) or a Complex 

Programmable Logic Device (CPLD).[3] 

 

 

 

 

2.4.4 Verification  

 

 

The functionality of your design can verified at several points in the design flow. 

Simulator software can used to verify the functionality and timing of design or a portion 

of design. The simulator interprets VHDL or Verilog code into circuit functionality and 

displays logical results of the described HDL to determine correct circuit operation. 



 18 

Simulation allows complex functions to created and verified in a relatively small amount 

of time. In-circuit verification can run after programming your device.[3] 

 

 

 

 

2.4.5 Device Configuration  

 

 

After generating a programming file, device is configured. During configuration, 

configuration files is generated and download the programming files from a host 

computer to a Xilinx device.[3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 3 

 

 

 

 

RESEARCH METHODOLOGY 

 

 

 

 

3.1   Introduction 

 

 

In this chapter, the research methodology which research from literature review 

(in the Chapter 2) will be represented. This chapter also will tell about the process that 

done step by step until this project is finish. All the design method that been used will be 

told in this chapter. 

 

 

 

 

3.2  Overall Methodology 

 

 

This project starts with the Literature Review process. During this process, all 

the information about Booth Multiplier Algorithm and VHDL was collected from many 



 20 

varied sources such as journals, books, articles and internet. All the information are very 

useful in this project in order to learn and understand the detail about this project and 

how it works. 

 

 Then, this project continues with designing process which done in VHDL using 

Xilinx ISE 10.1 software. The design need to be tested and simulated to see that the 

design is working properly. The undesired output resulting that the design process need 

to done again. After the desired output is produce, the documentation of the result, data 

analysis and thesis is done.The flowchart of overall methodology of this project is 

shown in Figure 3.1. 

 

Start

Literature Review

Booth Algorithm VHDL

Design VHDL

Test & 

Simulation

Result

End

YES

NO

Data Analysis

Thesis

 

 

Figure 3.1: Flow chart of overall methodology of this project. 



 21 

3.3  Design Methodology 

 

 

Figure 3.2 show the flow chart of design methodology for this project which 

shows the step to complete this project. Start with understand the Booth Multiplier 

Algorithm in detail and following by identification of main component that used in this 

project. Then, after all the main components has been identified, it is arranged to make 

the design look more systematic and easy to do the next step. This arrangement is done 

by design the overall basic block diagram 

 

 By refering to the overall basic block diagram, the most important component is 

data path unit and control unit. The component is then designed in VHDL by using 

Xilinx ISE 10.1 software as the platform. The software can also simulate the design that 

has been made in VHDL. The troubleshoot process is done when there is undesired 

output when simulation process is done. This process (troubleshoot) is important to 

know the cause of the failure design. After the cause of the failure had been identified, 

the VHDL program will be corrected or new design will be made. This process will be 

repeated until the desired output is produced.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 22 

 

START

Understand Booth Multiplier Operation

Identify Main Component Used

Design Basic Block Diagram (Overall)

Design Data Path Unit

Program In VHDL

Simulation 

Troubleshoot

Design Control Unit

Finite State Machine

Program VHDL

Simulation 

Troubleshoot

Design Full Block Schematic Diagram

Program VHDL (Port Map)

Simulation 

Troubleshoot

END

Functioning

Functioning

Functioning

Not Functioning

Not Functioning

Not Functioning

 

Figure 3.2: Flow chart of design methodology of this project 

 

   



 23 

3.4  Booth Multiplier Algorithm and Main Component 

 

 

The Booth Multiplier Algorithm is difficult to understand the flow of the process. 

Figure 3.3 will help to understand the flow of the data process easier. As we can see, 

there are 3 main operation (shift, add –A then shift and Add A then shift) which will 

repeatedly used depend on the value of X. The looping process (i + 1) will loop until i is 

equal to maximum number of bits in X. After the looping process is finish, the exact 

value of the multiplication value is produce. 

 

From Figure 3.3, the main component can be identified. The main component for 

this algorithm is shifter, adder and negative (change A to negative value in 2’s 

complement). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

 

START

Input

Identify 

Operation

Xi = 1

Xi-1 = 0

Xi = 0

Xi-1 = 0

Shift
Add -A 

then Shift

Add A 

then Shift

i + 1

Output

END

YES YES
YES

NO NO
NO

 

 

Figure 3.3: Flow chart of Booth Multiplier Algorithm 

 

 

 

 

 

 



 25 

3.5  Overall Basic Block Diagram 

 

 

After the main component had been identified, basic block diagram is designed 

as shown in Figure 3.4. This block diagram is used to get the basic idea to design the 

whole system. The process only contained 3 main components (shifter, adder and 

negative) which will be used repeatedly depend on the data of X. Control unit 

component is added to this system to control the stability of the data and the functionally 

of the main component when the process is running. The main component (shifter, adder 

and negative) is placed in Data Path Unit section because all the input data will be 

process in this section until the output is produced. 

 

 

 

Shifter

Adder

Negative

Control Unit

A

OUTPUT

X
Data Path Unit

 

 

Figure 3.4: Overall basic block diagram. 

 

 

 

 



 26 

3.6  Booth Multiplier Design 

 

 

The Booth Multiplier design is divided into two units which are Data Path Unit 

and Control Unit. The units are supplied with different clock signal for data stabilization. 

The clock signal for Data Path Unit is at a higher frequency than the clock signal for 

Control Unit.  

 

 

 

 

3.6.1 Data Path Unit 

 

 

Data Path Unit has three main components which are shifter, adder and negative. 

Because of three main operation which are shift only, add –A then shift and add A then 

shift, three shifter, two adder and a negative need to be designed. Appendix A show all 

the VHDL code for each component that used in the design. 

 

As we can see in Appendix A, there are data registers (drmx, dro and drb) and an 

OR component had been added. This happen because the components are the additional 

components which make the designed work perfectly. In this design, all the data 

registers are for save or hold data operation. All operation will be control by Control 

Unit. 

  

 

 

 

 

 

 



 27 

3.6.2 Control Unit 

 

 

For control unit, Finite State Machine method is used. Table 3.1 shows all the 

state that been used in this project, the condition of the next state of each state and 

output value in the current state. These outputs are connected to Data Path Unit for data 

processing. Each state in the FSM will represent an operation. 

  

Refer to Table 3.1, there are six main state which are op1_st, op2_st, op3_st, 

op4_st, op5_st and op6_st state. The other states (except end_st state) are the states that 

make the data registers done their job as save or hold data. While end_st state is for 

waiting until there are any other input that need to be multiplied or reset all the system 

and done all the other state by follow the FSM that had been programmed. The table in 

Table 3.1 is very important for designing VHDL code for Control Unit. The whole 

VHDL code for Control Unit is viewed in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



start_st start = 1 op0_st 0 0 0 0 0 0 0 0 0 0 0 0

n = 0 and X(n) = 1 op1_st

n = 0 and X(n) = 0 op2_st

op1_st Unconditional l11_st 1 1 1 0 1 0 0 0 1 0 1 1

op2_st Unconditional l21_st 1 1 1 0 1 0 1 0 0 0 0 0

op3_st Unconditional l31_st 1 1 1 0 1 0 1 0 0 0 0 0

op4_st Unconditional l41_st 1 1 1 0 1 0 0 0 1 0 1 1

op5_st Unconditional l51_st 1 1 1 0 1 0 0 1 0 1 0 0

op6_st Unconditional end_st 1 0 1 0 1 1 0 0 0 0 0 0

drb1_st Unconditional l12_st 1 0 1 1 1 0 0 0 1 0 1 1

drb2_st Unconditional l22_st 1 0 1 1 1 0 1 0 0 0 0 0

drb3_st Unconditional l32_st 1 0 1 1 1 0 1 0 0 0 0 0

drb4_st Unconditional l42_st 1 0 1 1 1 0 0 0 1 0 1 1

drb5_st Unconditional l52_st 1 0 1 1 1 0 0 1 0 1 0 0

l11_st Unconditional drb1_st 1 0 1 0 1 0 0 0 1 0 1 1

X(n) = X(n-1) op3_st

X(n) = 1 and X(n-1) = 0 op4_st

X(n) = 0 and X(n-1) = 1 op5_st

l21_st Unconditional drb2_st 1 0 1 0 1 0 1 0 0 0 0 0

X(n) = X(n-1) op3_st

X(n) = 1 and X(n-1) = 0 op4_st

X(n) = 0 and X(n-1) = 1 op5_st

l31_st Unconditional drb3_st 1 0 1 0 1 0 1 0 0 0 0 0

X(n) = X(n-1) or n = 16 op3_st

X(n) = 1 and X(n-1) = 0 op4_st

X(n) = 0 and X(n-1) = 1 op5_st

n = 17 op6_st 

l41_st Unconditional drb4_st 1 0 1 0 1 0 0 0 1 0 1 1

X(n) = X(n-1) op3_st

X(n) = 1 and X(n-1) = 0 op4_st

X(n) = 0 and X(n-1) = 1 op5_st

l51_st Unconditional drb5_st 1 0 1 0 1 0 0 1 0 1 0 0

X(n) = X(n-1) op3_st

X(n) = 1 and X(n-1) = 0 op4_st

X(n) = 0 and X(n-1) = 1 op5_st

end_st reset = 1 start_st 1 0 1 0 1 0 0 0 0 0 0 0

00 0 1 0 1 0

1 0 1 1

l52_st 1 0 1 0 1

0

l42_st 1 0 1 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0

l32_st 1 0 1 0 1

1

l22_st 1 0 1 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0

l12_st 1 0 1 0 1

en
_

n
3

op0_st 1 1 1 1 0 0 0 0

ld
_

d
ro

en
_

s1

en
_

s2

en
_

s3

en
_

a
2

en
_

a
3

Table 3.1: State, next state condition and output of Control Unit

State Condition Next State

Output

en
_

d
rm

x

ld
_

d
rm

x

en
_

d
rb

ld
_

d
rb

en
_

d
ro



 29 

 

3.7  VHDL Code for Booth Multiplier 

 

 

After all VHDL code for Data Path Unit and Control Unit is done, the process 

for combining the Data Path Unit and Control Unit is done to finish this project. VHDL 

code for the Booth Multiplier is shown in Appendix C. 

 

 

 

 

3.8  Booth Multiplier Block Schematic Diagram 

 

 

Full schematic block diagram of this system is viewed at Appendix D. The 

diagram is design to show the exact circuit of the full schematic block diagram of Booth 

Multiplier which had been design using VHDL code.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 4 

 

 

 

 

RESULT AND DISCUSSION 

 

 

 

 

4.1 Introduction 

 

 

The result of this project is represented in this chapter, which mostly from 

simulation graph which is generated using Xilinx ISE 10.1 software. Result for every 

stage would be represented here by the simulation waveform. 

 

 

 

 

4.2 Booth Multiplier Result and Discussion 

 

 

After the result is produced, we can see that the data is processing successfully 

according to the Booth Multiplier Algorithm. The waveform simulation is produced for 



 31 

Control Unit and overall circuit which is after Control Unit had been combined with 

Data Path Unit. 

 

 

 

 

4.2.1 Control Unit 

 

 

Figure 4.0 show the simulation waveform of Control Unit which has been 

generated by using Xilinx ISE 10.1 software. As we can see, value X had been assigned 

by 45F9 which in hexadecimal form. This is because the Control Unit data process 

cannot be seen through the simulation waveform without any data assigned from X. So, 

after assigning data in X, the data process of Control Unit can be seen clearly trough the 

simulation waveform as shown in Figure 4.1. 

 

From the simulation waveform in Figure 4.1, the left column is the input and 

output port for the Control Unit except for period, duty_cycle and offset. Reset, start, clk 

and X are input for this system. Reset input is for reset the Control Unit (when reset = 

1), start input is for start the Control Unit (when start = 1) and clk input is for data 

stabilization. While en_drmx, ld_drmx, en_drb, ld_drb, en_dro, ld_dro, en_s1, en_s2, 

en_s3, en_a2, en_a3 and en_3 are output for this system which is the control vector in 

Data Path Unit. 

 

 



 32 

 

 

Figure 4.1: Simulation waveform of Control Unit 

 

 

 

 

4.2.2 Overall Circuit 

 

 

Figure 4.2 show that simulation waveform of overall circuit after Control Unit 

had been combined with Data Path Unit. As we can see value a_in is assigned with 

5BA0 (hexadecimal) which is 23456 in decimal and value x_in is assigned with DD93 

(hexadecimal) which is -8813 in decimal. From the waveform in Figure 4.2, the output 

that produced is -206717728. It is show that the output value is the exact value of 23456 

multiply by -8813.    

 

As we can see, there are two different clock signals for this system. Signal 

clk_cu is clock signal for Control Unit while clk_in is clock signal for Data Path Unit. 

The different frequency of the clock signal is because Data Path Unit need process the 

data faster than Control Unit. 



 33 

 As we can see, from 0µs until about 43µs, the output value is 0. After about 

43µs, then the output value is produced. This happen because the program need some 

time to do all the Booth Multiplier Algorithm operation before the exact value of 

multiplication is produced. 

 

 

 

 

Figure 4.2: Simulation waveform of overall circuit 

 

 

 

 

4.3 Performance 

 

 

According to simulation waveform, this system take time 42.9µs with 5Mhz 

Control Unit clock signal and 1.66MHz Data Path Unit clock signal to complete all the 

system process.  

 

 

 

 

 



 

 

 

CHAPTER 5 

 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 

 

5.1 Introduction 

 

 

For the last chapter, conclusion and recommendation for this project will be 

discussed including the costing and commercialization of this project.  

 

 

 

 

5.2 Conclusion 

 

 

Design a high speed (16 bits X 16 bits) Booth Multiplier in VHDL is the main 

purpose of this project. The digital system design used Xilinx ISE 10.1 as the platform to 

verify the design and functionality by simulation waveform. It is working perfectly and 

able to process a fixed-point multiplication value precisely by implementing Booth 

Multiplier Algorithm. 



 35 

5.3 Recommendation 

 

 

The work of this project can be improved for better functionality and 

performance. Below is some of recommendation of Booth Multiplier for future 

improvement: 

 

 First recommendation is to make the Booth Multiplier can accept and produced 

floating point value. This will produced a more precise data if user want the value of 

floating point multiplication value.   

 

Second recommendation is to implement this project into FPGA board for 

hardware implementation. Further analysis can be done on the digital design on how 

effective it operates on real hardware compared to simulation result. The Xilinx ISE 10.1 

software also had the functionality to upload VHDL to Xilinx FPGA board.  

 

 The last recommendation is to make GUI (Graphical User Interface). For the 

person who is not familiar with VHDL, it is hard to insert input manually in VHDL. By 

design GUI user can easily insert their desired input. But, before that, this project need 

to implement into the FPGA board and design a communication system which make the 

FPGA board can communicate with computer. GUI can be done after FPGA can 

communicate with the computer. 

 

 

 

 

5.4 Costing and Commercialization  

 

 

This project is developed the cost about RM200.00. This cost is for the purchase 

of Xilinx ISE 10.1 software which is available from Xilinx Inc.  



 36 

Furthermore, this project cannot be commercialize because there will be more 

process need to be done before it can be commercialize. This project need to implement 

into the hardware first and added with other electronic devices such as keypad (for 

input) and LCD screen (for output). This multiplier system is also one small important 

part in the microprocessor, microcontroller and microchip which make the devices work 

properly. So, there will be a lot of other parts (such as memory, divider, subtracter and 

others) that must be designed to complete the whole system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

 

 

 

REFERENCES 

 

 

 

 

[1] VHDL Online Tutorial For Beginners. Citing Internet Source URL: 

http://www.vhdl-online.de/tutorial/englisch/inhalt.htm 

 

[2] Brief History Of VHDL. Citing Internet Source URL: 

http://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl/ 

 

[3] Xilinx ISE Help and Tutorial. Citing Internet Source URL: 

http://toolbox.xilinx.com/docsan/xilinx10/isehelp/isehelp_start.htm 

 

[4] A.D Booth. A Signed Binary Multiplication Technique. Quarterly Journal of 

Machanics and Applied Mathematics, 4(2):236-240, June 1951 

 

[5] High Speed Multiplier. Citing Internet Source URL: 

http://mainesail.umcs.maine.edu:80/COS140/Notes\ 

 

[6] Sudhakar Yalamanchili, (2005). VHDL A Starter’s Guide, Pearson Prentice Hall. 

 

 

 

  

 

 

http://www.vhdl-online.de/tutorial/englisch/inhalt.htm
http://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl/
http://toolbox.xilinx.com/docsan/xilinx10/isehelp/isehelp_start.htm
http://mainesail.umcs.maine.edu/COS140/Notes/


 

 

 

  

  

 

 

 

 

 

 

 

 

APPENDIX A 

VHDL CODE OF EACH COMPONENT IN DATA PATH UNIT 

 

 

 

 

 

 

 

 

 

 

 



 39 

 

Adder 2 

 

 

 

 

 

 

 

 

 



 40 

 

Adder 3 

 

 

 

 

 

 

 

 

 



 41 

 

Data Register B 

 

 

 

 

 

 

 



 42 

 

Data Register MX 

 

 

 

 

 

 

 



 43 

 

Data Register O 

 

 

 

 

 

 

 



 44 

 

Negative (Change A to –A) 

 

 

 

 

 

 

 

 

 



 45 

 

Or 

 

 

 

 

 

 

 

 

 

 

 



 46 

 

Shifter 1 

 

 

 

 

 

 

 

 



 47 

 

Shifter 2 

 

 

 

 

 

 

 

 



 48 

 

Shifter 3 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

APPENDIX B 

VHDL CODE OF CONTROL UNIT (FINITE STATE 

MACHINE) 

 

 

 

 

 

 

 

 

 

 

 



 50 

 

 



 51 

 



 52 

 



 53 

 



 54 

 



 55 

 



 56 

 



 57 

 



 58 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

APPENDIX C 

VHDL CODE FOR BOOTH MULTIPLIER DESIGN 

 

 

 

 

 

 

 

 

 

 

 



 60 

 

 

 

 



 61 

 



 62 

 



 63 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

FULL BLOCK SCHEMATIC DIAGRAM OF (16 BIT X 16 BIT) 

BOOTH MULTIPLIER 

 

 

 

 

 

 

 

 

 

 



load_drmx

en_drmx

clk_drmx

drmx_in
32

drmx_out
 

D
R

M
X

32

load_drb

en_drb

clk_drb

b
32

b_out
 

D
R

B

32

en1_s

clk1_s

shifter1_in
32

shifter1_out
 

S
h

if
te

r 32
s

as

ss

or_out
32

32

32

32

en2_a

clk2_a

A2
16

add2_in
16

add2_out
 

A
d

d
e

r 

16

en2_s

clk2_s

shifter2_in
32

shifter2_out
 

S
h

if
te

r 32

16

en_n

clk_n

neg_in
16

neg_out
 

N
e

g
. 16

en3_a

clk3_a

A3
16

add3_in
16

add3_out
 

A
d

d
e

r 

16

en3_s

clk3_s

shifter3_in
32

shifter3_out
 

S
h

if
te

r 32

16

load_dro

en_dro

clk_dro

o
32

o_out
 

D
R

O

32

reset ld_s3
 

start en_a3
 

en_dro
 

en_s1
 

en_n3
 

clk
 

ld_drmx
 

ld_drb
 

en_drmx
 

X
16

en_drb
 

en_s2
 

en_a2
 

ld_dro
 

start_in

reset

clk_cu

X_in

clk_in

A_in

output

Data Path Unit

C
o

n
tr

o
l 
U

n
it

Booth Multiplier 

Schematic Diagram


	tesis xder page
	pengesahan_status_tesis(SAPIK)
	tesis xder page
	tesis roman
	chapter1
	chapter2
	chapter3
	FSM
	chapter3
	chapter4
	chapter5
	references
	AppendixA
	AppendixB
	AppendixC
	AppendixD
	multiplier2
	multiplier2.vsd
	Page-1



