A modified trilayer membrane for suppressing Li dendrite growth in all-solid-state lithiummetal batteries

```
Shimelis Lemma Beshahwured<sup>a,b</sup>, Yi-Shiuan Wu<sup>a</sup>, Thi Be Ta Truong<sup>a</sup>, Rajan Jose<sup>c</sup>, Chun-Chen
Yang<sup>a,b,d</sup>
```

- ^a Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- ^b Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- ^c Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, 26300 Kuantan, Malaysia
 - ^d Department of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Taoyuan City 333, Taiwan, ROC

ABSTRACT

Mechanically robust trilayer HSE membrane modified with an optimized amount of functionalized vapor-grown carbon fiber (f-VGCF) is prepared using a solution-casting method. This trilayer membrane had the structure SPE0 (PVDF-HFP/LiTFSI/SN)|SPE2 (PVDF-HFP/AI-doped-LLZO/LiTFSI/SN)|SPE1 (PVDF-HFP/LiTFSI/SN/f-VGCF). The SPE0 (unmodified) and SPE1 (modified) layers faced the cathode and anode sides, respectively; SPE2 is the same as SPE0 but loaded with needle-like Li_{6.25}Al_{0.25}La₃Zr₂O₁₂ filler. The modified trilayer HSE membrane possessed an ionic conductivity $(4.72 \times 10^{-4} \text{ S cm}^{-1})$ and a Li transference number (0.52) higher than unmodified trilayer HSE membrane $(3.68 \times 10^{-4} \text{ S cm}^{-1} \text{ and } 0.41,$ respectively). A Li/SPE1-SPE2-SPE1/Li symmetric cell displayed extremely stable Li plating/stripping performance when tested sequentially at 0.1, 0.2, 0.5, and 1 mA cm⁻² for 800 h (200 h for each current density). A 2032 coin cell incorporating NCM622/SPE0-SPE2-SPE1/Li delivered a desirable capacity output with excellent cycling stability (85.04% capacity retention after 627 cycles with an average coulombic efficiency of 99.17% at a rate of 0.5C at room temperature). A pouch cell based on NCM622/SPE0-SPE2-SPE1/Li also achieved excellent capacity retention of 95.37% after 100 cycles with an average coulombic efficiency of 99.81% at 0.2C at room temperature. Thus, ASSLMBs incorporating such modified trilayer HSE membranes have potential for practical applications.

KEYWORDS

All-solid-state lithium-metal batteries; Modified trilayer HSE membrane; f-VGCF; NCM622 cathode material; Needle-like filler

ACKNOWLEDGEMENT

We thank the Ministry of Science and Technology of Taiwan (Project no. MOST 109-3116-F-131-001-CC1) for financial support, and also to Dr. Shing-Jong Huang of Instrumentation Center, National Taiwan University for the assistance in 600 MHz solid-state NMR experiments.