ETHANOL CO₂ REFORMING OVER Ce AND La PROMOTED Cu/Al₂O₃ CATALYSTS FOR SYNGAS PRODUCTION

NOR SHAFIQAH BINTI MOHD NASIR

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supervisor's Signature) Full Name : DR VO NGUYEN DAI VIET Position : SENIOR LECTURER Date :

(Co-supervisor's Signature) Full Name : DR SUREENA ABDULLAH Position : SENIOR LECTURER Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NOR SHAFIQAH BINTI MOHD NASIR ID Number : MKC17010 Date :

ETHANOL CO₂ REFORMING OVER Ce AND La PROMOTED Cu/Al₂O₃ CATALYSTS FOR SYNGAS PRODUCTION

NOR SHAFIQAH BINTI MOHD NASIR

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Chemical & Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

AUGUST 2019

ACKNOWLEDGEMENTS

I would like to express my deep and sincere appreciation to my supervisor, Dr. Vo Nguyen Dai Viet for his guidance and patience throughout my study. I am really thankful for his valuable knowledge and expertise in reaction engineering and catalysis field. His tolerance, vision, sincerity and sacrifice to help me completing my master have deeply inspired me and will forever remain in my heart.

I am truly grateful to my GTL research group, Mahadi Bahari, Lau Ngie Jun, Attili Ramkiran, Sharanjit Singh, Thang and Tan Ji Siang for providing with so much help and making my study more fun and pleasant. My sincere gratitude to the assistance from lab mates and staffs of FKKSA, Central lab, FIST lab and CARIFF who always lend their hand and expertise to make my research easier. In addition, I am extremely thankful to UMP for Master Research Scheme (MRS) and Postgraduate Grant Research Scheme (PGRS) for funding my study for two years.

My heartfelt gratitude to my parents, Mohd Nasir and Nor Zakiah as well as my family for their love and prayers throughout my whole life. Their constant support helps me in many ways to keep me pursuing my goals. Lastly, praises to Allah, the most gracious and merciful for His blessings in every moment.

To my late grandmother, I will always cherish our memories together through my prayers.

ABSTRAK

Pembaharuan semula karbon dioksida etanol (ECR) adalah merupakan satu cara yang mesra alam dan baru untuk penghasilan gas sintetik kerana bukan hanya menggunakan bioethanol tetapi menawarkan manfaat tambahan dengan menggunakan gas rumah hijau (CO₂) yang tidak diingini. Walaubagaimanapun, penghasilan karbon semasa proses ECR menyebabkan penyahaktifan pemangkin. Oleh itu, matlamat tesis ini adalah untuk mengkaji kesan CeO₂ dan La₂O₃ sebagai penggalak dan kadar kuantiti penggalak terhadap sifat-sifat fizikokimia bagi pemangkin 10% Cu/Al₂O₃. Pemangkin 10% Cu/Al₂O₃ dengan penggalak 3%Ce- dan 3%La-pemangkin disediakan melalui kaedah pengisitepuan basah baru berturutan manakala, pemangkin tanpa penggalak disediakan melalui teknik pengisitepuan basah baru. Pemangkin dicirikan menggunakan penjerapan fizik N₂ (BET), penurunan suhu berprogram (TPR), pengoksidaan suhu berprogram (TPO), analisis pembelauan sinar-X (XRD), spektroskopi elektron sinar (XPS), mikroskop elektron pengimbasan (SEM), mikroskop elektron transmisi resolusi tinggi (HRTEM) dan spektroskopi Raman. Proses tersebut dikaji di dalam reaktor keluli tahan karat dengan perbezaan suhu dari 948 hingga 1023 K dan nisbah CO₂:C₂H₅OH ratios of 2.5:1 to 1:2.5 di bawah tekanan atmosfera. Luas permukaan BET pemangkin adalah diantara 93.4 to 98.5 m² g⁻¹ manakala purata saiz kristal CuO berkurangan dari 32.4 hingga 27.4 nm dengan penambahan La₂O₃ dan CeO₂ disebabkan oleh kesan pencairan. Penambahan penggalak menguatkan interaksi diantara metal dan sokongan, dibuktikan melalui analisis H₂-TPR. Peningkatan pengambilan H₂ dengan penggalak semasa H₂-TPR menunjukkan peningkatan tahap pengurangan $CuO \rightarrow Cu^0$. Kedua-dua penukaran reaktan meningkat dengan peningkatan suhu dari 948-1023 K untuk semua sampel disebabkan oleh sifat endoterma ECR. Peningkatan tekanan separa CO₂ dari 20 to 50 kPa menambah baik penukaran reaktan untuk semua pemangkin manakala tekanan separa C₂H₅OH yang optimum diperhatikan pada 40 kPa. Kehadiran endotermik serentak dehidrogenasi etanol di dalam ECR meningkatkan nisbah H2/CO dari 1.46-1.91 sesuai dengan sintesis Fischer-Tropsch. Pengukuran XRD oleh pemangkin yang telah digunakan membuktikan fasa aktif Cu⁰ dikekalkan semasa ECR dan pemangkin menentang pengoksidaan semula di dalam bahan mentah yang mengandungi CO₂. Walaupun pembentukan karbon dikesan di atas pemangkin yg telah digunakan melalui ukuran XRD, TPO dan HRTEM, penurunan yang besar dalam jumlah pembentukan karbon dari 40.04% hingga 27.55% telah dicapai dengan penambahan penggalak dengan turutan La-penggalak < Ce- penggalak < pemangkin tanpa penggalak Cu/Al₂O₃. 3%La- Cu/Al_2O_3 adalah pemangkin terbaik untuk kajian dengan penukaran C_2H_5OH (94.64%), penukaran CO₂ (73.21%), hasil H₂ (68.32%) dan hasil CO (32.06%) disebabkan oleh kebolehan kitaran redox, ciri asas dan mempunyai pengambilan H₂ yang tertinggi dan saiz kristal yang paling kecil.

ABSTRACT

Ethanol CO₂ reforming (ECR) is an eco-friendly and novel way for syngas production as it not only consumes bio-ethanol but also offers an additional benefit by utilizing the unwanted greenhouse gas (CO₂). Nevertheless, the carbonaceous deposition during ECR process leads to deactivation of the catalyst. Hence, the aim of this thesis was to investigate the effect of CeO₂ and La₂O₃ as promoters and promoter loading on the physicochemical properties of 10%Cu/Al₂O₃. 3%Ce- and 3%La-promoted 10%Cu/Al₂O₃ catalysts were synthesized via sequential incipient wetness impregnation approach meanwhile, unpromoted catalysts were prepared by incipient wetness impregnation technique. The catalysts were characterized using N₂ physisorption (BET), temperatureprogrammed reduction (TPR), temperature programmed oxidation (TPO), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The processes were evaluated in stainless steel fixed-bed reactor at varying temperature from 948 to 1023 K and CO₂:C₂H₅OH ratios of 2.5:1 to 1:2.5 under atmospheric pressure. The BET surface area of these catalysts was about 93.4 to 98.5 m² g⁻¹ whereas the calculated average CuO crystallite size declined from 32.4 to 27.4 nm with La₂O₃ and CeO₂ additions because of the diluting effect. Promoter addition enhanced metal-support interaction as evidenced in H₂-TPR analyses. The increasing H₂ uptake with promoters during H₂-TPR was indicative of enhancing degree for CuO \rightarrow Cu⁰ reduction. Both reactant conversions increased substantially with rising temperature from 948-1023 K for all samples due to ECR endothermic nature. The increase in CO₂ partial pressure from 20 to 50 kPa improved reactant conversions for all catalysts whilst the optimal C₂H₅OH partial pressure was observed at 40 kPa. The existence of concurrent endothermic ethanol dehydrogenation in ECR increased H₂/CO ratio from 1.46 to 1.91 suitable for Fischer-Tropsch synthesis. XRD measurements of spent catalysts proved that Cu⁰ active phase was maintained during ECR and catalysts resisted to re-oxidation in CO₂-containing feedstock. Although carbonaceous formation was detected on spent catalysts by XRD, TPO and HRTEM measurements, the significant decline in total carbon deposition from 40.04% to 27.55% was achieved by promoter addition in this order; La-doped < Ce-doped < unpromoted Cu/Al₂O₃. 3% La-Cu/Al₂O₃ is the best catalyst for this research with C₂H₅OH conversion (94.64%), CO₂ conversion (73.21%), H₂ yield (68.32%) and CO yield (32.06%) due to redox cycle ability, basic properties, possessed highest H₂ consumption and smallest crystallite size.

TABLE OF CONTENT

DEC	CLARATION		
TIT	LE PAGE		
ACK	KNOWLEDGEMENTS	ii	
ABS	STRAK	iii	
ABS	STRACT	iv	
TAB	BLE OF CONTENT	v	
LIST	T OF TABLES	х	
LIST	T OF FIGURES	xi	
LIST	LIST OF SYMBOLS xv		
LIST	T OF ABBREVIATIONS	xix	
CHA	APTER 1 INTRODUCTION	1	
1.1	Introduction	1	
1.2	Problem Statement	3	
1.3	Research Objectives	4	
1.4	Scope of Study	4	
1.5	Overview of Thesis	5	
CHA	APTER 2 LITERATURE REVIEW	7	
2.1	Introduction	7	
2.2	Fossil Fuels	7	
2.3	Ethanol as Alternatives for Fossil Fuels	10	
2.4	Syngas (Synthesis Gas)	13	

2.5	Synga	s Production Technologies	15
	2.5.1	Steam Reforming	16
	2.5.2	Partial Oxidation	17
	2.5.3	Autothermal Reforming	18
	2.5.4	CO ₂ Reforming	19
2.6	Ethan	ol CO ₂ Reforming Catalysts	22
	2.6.1	Noble Metals	23
	2.6.2	Transition Metals	24
	2.6.3	Catalyst Supports	25
	2.6.4	Catalyst Promoters (La ₂ O ₃ and CeO ₂)	27
2.7	Effect	of Operating Conditions on ECR	29
	2.7.1	Effect of Temperature	29
	2.7.2	Effect of Feed Composition	30
	2.7.3	Effect of Space-velocity	32
2.8	Cataly	ests Deactivation	38
	2.8.1	Catalyst Poisoning	38
	2.8.2	Coke Formation	41
	2.8.3	Sintering	43
2.9	Trans	port Resistance Estimation	45
2.10	Concl	uding Remarks	46
CHA	PTER 3	METHODOLOGY	48
3.1	Introd	uction	48
3.2	Mater	ials	49
	3.2.1	Chemicals	49
	3.2.2	Gases	50

	3.2.3	Equipment	51
3.3	Cataly	st Preparation	52
3.4	Catalyst Characterization		54
	3.4.1	Textural Properties	54
	3.4.2	X-ray Diffraction (XRD) Measurement	54
	3.4.3	Temperature-programmed Reduction (H ₂ -TPR)	55
	3.4.4	Temperature-programmed Oxidation (TPO)	56
	3.4.5	Raman Spectroscopy	56
	3.4.6	X-ray Photoelectron Spectroscopy (XPS)	56
	3.4.7	Scanning Electron Microscopy (SEM)	56
	3.4.8	High-resolution Transmission Electron Microscopy (HRTEM)	57
3.5	Transp	oort Resistance Evaluation	57
	3.5.1	External Mass Transfer	57
	3.5.2	Internal Mass Transfer Resistance	58
	3.5.3	External Heat Transfer	59
	3.5.4	Intraparticle Heat Transfer Resistance	60
	3.5.5	Wall and Radial Heat Dispersion	61
3.6	Ethano	ol CO ₂ Reforming Evaluation	62
	3.6.1	Blank Test	62
	3.6.2	Ethanol CO ₂ Reforming Analysis	62
3.7	Produc	et Analysis	63
3.8	Mass I	Flow Controller (MFC) and Syringe Pump Calibration	64
3.9	Ethano	ol CO ₂ Reforming Reaction Metrics	64
СНАР	TER 4	PRELIMINARY WORK	66

4.1 Introduction	66
------------------	----

4.2	Blank	Test	66
4.3	Trans	port Resistance Estimation	68
4.4	Therm	nodynamic Analysis	70
4.5	Concl	uding Remarks	72
СНА	PTER 5	5 CATALYST CHARACTERIZATION	73
5.1	Introd	uction	73
5.2	Nitrog	gen Adsorption Studies	73
5.3	X-ray	Diffraction Analyses	74
5.4	H ₂ Te	mperature-programmed Reduction Evaluations	76
5.5	Concl	uding Remarks	80
СНА	PTER (5 ETHANOL CO2 REFORMING REACTION STUDY	81
6.1	Introd	uction	81
6.2	Influe	nce of Operating Conditions	81
	6.2.1	Influence of Reaction Temperature	81
	6.2.2	Influence of CO ₂ Partial Pressure	91
	6.2.3	Influence of C ₂ H ₅ OH Partial Pressure	95
6.3	Effect	of La ₂ O ₃ Loading	99
6.4	Chara	cterization of Spent Catalysts	102
	6.4.1	X-ray Diffraction Analysis of Used Catalysts	102
	6.4.2	Raman Spectroscopy Analyses	103
	6.4.3	Temperature-programmed Oxidation Measurements	105
	6.4.4	X-ray Photoelectron Spectroscopy Measurements	109
	6.4.5	SEM-EDX Analyses	115
	6.4.6	High-resolution Transmission Electron Microscopy Measurements	117

6.5	Concluding Remarks	119	
CHA	CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 12		
7.1	Conclusions	120	
7.2	Recommendations	121	
REFERENCES 1		123	
APPENDIX A CATALYSTS PREPARATION CALCULATION 13'			
APPENDIX B TRANSPORT RESISTANCE CALCULATION 14			
APP	APPENDIX C ETHANOL CO ₂ REFORMING CALCULATION 15		
APP	APPENDIX D CALIBRATION CURVE 1		
LIST	F OF PUBLICATIONS	162	

LIST OF TABLES

Table 2.1	Properties of ethanol	11
Table 2.2	List of palm oil production by country	13
Table 2.3	Comparison between different types of ethanol reforming	20
Table 2.4	Estimated models for power law models on ECR	32
Table 2.5	The ECR study reported in literature	34
Table 2.6	Mechanisms of catalyst deactivation	38
Table 2.7	Catalyst poisons based on the chemical types	40
Table 2.8	Catalyst poisons in different types of reaction	40
Table 3.1	List of chemicals	50
Table 3.2	List of gases	51
Table 3.3	List of equipment	51
Table 3.4	Gas standard information of GC analysis	64
Table 4.1	Properties for ECR and correspond calculated values	69
Table 4.2	Summary of calculated values for transport resistance estimation	70
Table 4.3	Summarized thermodynamics features in ECR reaction	71
Table 5.1	Textural properties of fresh γ -Al ₂ O ₃ support, unpromoted and promoted Cu/Al ₂ O ₃ samples	74
Table 5.2	Summary of reduction peak temperature and H_2 consumption during H_2 -TPR analysis	78
Table 5.3	Summary of reduction peak temperature and H_2 consumption during H_2 -TPR evaluation for unpromoted and La-promoted samples	79
Table 6.1	Summary of pre-exponential factor and apparent activation energy for C_2H_5OH conversion from ECR	84
Table 6.2	Comparison of catalytic performance for ECR on transitional and noble metal in literature	90
Table 6.3	Summary of Raman analyses for spent catalysts	105
Table 6.4	The weight loss of spent 10% Cu/Al ₂ O ₃ , 3% Ce- 10% Cu/Al ₂ O ₃ and 3% La- 10% Cu/Al ₂ O ₃ during TPO measurements	108
Table 6.5	Summary of binding energies for XPS peaks of unpromoted and promoted spent catalysts.	115

LIST OF FIGURES

Figure 2.1	Global energy consumption for 2018	8
Figure 2.2	World oil discoveries and utilization	9
Figure 2.3	CO ₂ emissions trend by country with projection until 2030	9
Figure 2.4	Trends of average oil price globally	10
Figure 2.5	Chemical structure of ethanol	11
Figure 2.6	Carbon cycle energy diagram for H_2 production from biomass derived from ethanol	12
Figure 2.7	Malaysia biomass production	13
Figure 2.8	Sources and applications of syngas	14
Figure 2.9	Commercial reactor for Fischer-Tropsch process	15
Figure 2.10	Conceptual model of poisoning by sulphur atoms of a metal surface during ethylene hydrogenation: (C) carbon, (H) hydrogen, (S) sulphur, and (M) metal	39
Figure 2.11	Visual representation of fouling, crystallite encapsulation and pore plugging of a supported metal catalyst due to carbon deposition	42
Figure 2.12	Coke formation and transformation from hydrocarbons on metal surfaces	42
Figure 2.13	Conceptual models for crystallite growth due to sintering: (A) atomic migration and (B) crystallite migration	44
Figure 2.14	Mechanisms of sintering of alumina: (I) unsaturated Al reacts with H ₂ O and the Al-O-Al bond is hydrolysed to surface hydroxyl groups, (II) dehydration by removing of surface hydroxyl groups to form Al-O-Al bond and (III) dehydration process of unsaturated Al-O bond	45
Figure 2.15	Individual steps of a simple heterogeneous catalytic reaction	46
Figure 3.1	Overall experimental flow chart for this study	49
Figure 3.2	Overall flow chart of catalysts preparation	53
Figure 3.3	Schematic diagram of the experimental set-up for ethanol CO ₂ reforming	63
Figure 4.1	C ₂ H ₅ OH and CO ₂ conversions for ECR without catalyst at 1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	67
Figure 4.2	C ₂ H ₅ OH and CO ₂ conversions for ECR with 10%Cu/Al ₂ O ₃ catalyst at 1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	68
Figure 4.3	The change in Gibbs free energy for all reaction in ECR at different temperatures	71

Figure 5.1	XRD analyses of fresh calcined specimens (a) γ -Al ₂ O ₃ , (b) 10%Cu/Al ₂ O ₃ , (c) 3%Ce-10%Cu/Al ₂ O ₃ and (d) 3%La-10%Cu/Al ₂ O ₃	75
Figure 5.2	XRD analyses of fresh (a) γ -Al ₂ O ₃ , (b) 10%Cu/Al ₂ O ₃ , (c) 2%La-10%Cu/Al ₂ O ₃ , (d) 3%La-10%Cu/Al ₂ O ₃ and (e) 5%La-10%Cu/Al ₂ O ₃	76
Figure 5.3	H ₂ -TPR analyses for (a) 10%Cu/Al ₂ O ₃ , (b) 3%Ce-10%Cu/Al ₂ O ₃ and (c) 3%La-10%Cu/Al ₂ O ₃	77
Figure 5.4	$\begin{array}{l} H_2\text{-}TPR analyses of fresh (a) 10\% Cu/Al_2O_3, (b) 1\% La-10\% Cu/Al_2O_3, (c) 2\% La-10\% Cu/Al_2O_3, (d) 3\% La-10\% Cu/Al_2O_3, (e) 4\% La-10\% Cu/Al_2O_3 and (f) 5\% La-10\% Cu/Al_2O_3 \end{array}$	79
Figure 5.5	Summary of reduction temperature and H_2 uptake for different Laloadings	80
Figure 6.1	Temperature effect on C ₂ H ₅ OH conversion of 10%Cu/Al ₂ O ₃ , 3%Ce-10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	82
Figure 6.2	Temperature effect on CO ₂ conversion of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	83
Figure 6.3	Arrhenius plots for estimating apparent ethanol activation energy of 10% Cu/Al ₂ O ₃ , 3% Ce- 10% Cu/Al ₂ O ₃ and 3% La- 10% Cu/Al ₂ O ₃	84
Figure 6.4	Temperature effect on H ₂ yield of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	85
Figure 6.5	Temperature effect on CO yield of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	86
Figure 6.6	Temperature effect on CH ₄ yield of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	87
Figure 6.7	Temperature effect on CH ₄ /CO ratio of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	88
Figure 6.8	Temperature effect on H ₂ /CO ratio of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at	
	$P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	89

Figure 6.9	P_{CO_2} effect on C ₂ H ₅ OH conversion of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = 20 \ kPa$	91
Figure 6.10	P_{CO_2} effect on CO ₂ conversion of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = 20 \ kPa$	92
Figure 6.11	P_{CO_2} effect on H ₂ yield of 10% Cu/Al ₂ O ₃ , 3% Ce-10% Cu/Al ₂ O ₃ and 3% La-10% Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = 20 \ kPa$	93
Figure 6.12	P_{CO_2} effect on CO yield of 10% Cu/Al ₂ O ₃ , 3% Ce-10% Cu/Al ₂ O ₃ and 3% La-10% Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = 20 \ kPa$	93
Figure 6.13	P_{CO_2} effect on H ₂ /CO ratio of 10%Cu/Al ₂ O ₃ , 3%Ce-10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = 20 \ kPa$	94
Figure 6.14	P_{CO_2} effect on CH ₄ /CO ratio of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = 20 \ kPa$	95
Figure 6.15	$P_{C_2H_5OH}$ effect on C ₂ H ₅ OH conversion of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{CO_2} = 20 \ kPa$	96
Figure 6.16	$P_{C_2H_3OH}$ effect on CO ₂ conversion of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{CO_2} = 20 \ kPa$	97
Figure 6.17	$P_{C_2H_5OH}$ effect on H ₂ yield of 10%Cu/Al ₂ O ₃ , 3%Ce-10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and P _{CO2} = 20 <i>kPa</i>	98
Figure 6.18	$P_{C_2H_5OH}$ effect on H ₂ /CO ratio of 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ at T = 1023 K and $P_{CO_2} = 20 \ kPa$	99
Figure 6.19	C ₂ H ₅ OH and CO ₂ conversions on different promoter loading at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	100
Figure 6.20	H ₂ and CO yields on different promoter loading at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	101

Figure 6.21	H ₂ /CO ratio on different promoter loading at T=1023 K and $P_{C_2H_3OH} = P_{CO_2} = 20 \ kPa$	102
Figure 6.22	XRD analyses of (a) fresh 10%Cu/Al ₂ O ₃ , (b) spent 10%Cu/Al ₂ O ₃ , (c) spent 3%Ce-10%Cu/Al ₂ O ₃ and (d) spent 3%La-10%Cu/Al ₂ O ₃ catalysts after ECR reactions at T = 1023 K and $P_{C_2H_3OH} = P_{CO_2} = 20 \ kPa$	103
Figure 6.23	Raman spectra of spent (a) 10% Cu/Al ₂ O ₃ (b) 3% Ce-10% Cu/Al ₂ O ₃ (c) 3% La-10% Cu/Al ₂ O ₃ at T = 1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	104
Figure 6.24	TPO analyses for spent 10%Cu/Al ₂ O ₃ , 3%Ce-10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ after ECR reactions at T = 1023 K and $P_{C_2H_3OH} = P_{CO_2} = 20 \ kPa$	106
Figure 6.25	Weight loss during TPO runs on spent 10%Cu/Al ₂ O ₃ , 3%Ce- 10%Cu/Al ₂ O ₃ and 3%La-10%Cu/Al ₂ O ₃ obtained from ECR at T = 1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	108
Figure 6.26	XPS spectra of spent (a) 10%Cu/Al ₂ O ₃ , (b) 3%Ce-10%Cu/Al ₂ O ₃ and (c) 3%La-10%Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_3OH} = P_{CO_2} = 20 \ kPa$	109
Figure 6.27	La 3d XPS spectra for spent 3%La-10%Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	110
Figure 6.28	Ce 3d XPS spectra for spent 3%Ce-10%Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	111
Figure 6.29	Cu 2p XPS spectra of spent (a) 10% Cu/Al ₂ O ₃ , (b) 3% Ce- 10% Cu/Al ₂ O ₃ and (c) 3% La-10% Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	112
Figure 6.30	C 1s XPS spectra of spent (a) 10% Cu/Al ₂ O ₃ , (b) 3% Ce- 10%Cu/Al ₂ O ₃ and (c) $3%$ La- $10%$ Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	113
Figure 6.31	O 1s XPS spectra of spent (a) 10% Cu/Al ₂ O ₃ , (b) 3% Ce- 10%Cu/Al ₂ O ₃ and (c) 3% La-10%Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	114
Figure 6.32	SEM images of spent (a) 10%Cu/Al ₂ O ₃ , (b) 3%Ce-10%Cu/Al ₂ O ₃ and (c) 3%La-10%Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	116
Figure 6.33	EDX spectrum for spent (a) 10% Cu/Al ₂ O ₃ , (b) 3% Ce- 10%Cu/Al ₂ O ₃ and (c) $3%$ La- $10%$ Cu/Al ₂ O ₃ after ECR at T=1023 K and $P_{C_2H_5OH} = P_{CO_2} = 20 \ kPa$	117

Figure 6.34 HRTEM images of (a) spent 10%Cu/Al₂O₃, (b) spent 3%Ce-10%Cu/Al₂O₃ and (c) spent 3%La-10%Cu/Al₂O₃ after ECR reactions at T = 1023 K and $P_{C_2H_3OH} = P_{CO_2} = 20 kPa$ 118

LIST OF SYMBOLS

A	Pre-exponential factor
В	The line broadening at half the maximum intensity (FWHM)
B_{iw}	Biot number
С	Constant characteristic of adsorbate
$C_{_{Ab}}$	Bulk gas-phase concentration of component A
C_{As}	Concentration of ethanol on catalyst surface
C_{D}	Percentage of amorphous carbon
C_{pg}	Specific heat capacity of feed gas mixture at constant pressure
C_{γ}	Carbides
C_{v}	Vermicular carbon (whisker-like)
$D_{e\!f\!f}$	Effective diffusivity
D_{g}	Diffusivity
D_p	Average pore diameter
d _{CuO}	Average crystallite size of CuO phase
d_p	Diameter of catalyst particle
d_{t}	Diameter of reactor tube
E_a	Activation energy
E_l	The excitation of laser energy
F	Molar flow rates
h	Heat transfer coefficient between gas mixture and catalyst
$h_{_{\scriptscriptstyle W}}$	Heat transfer coefficient of reactor tube wall
j_D	Colbourn's mass transfer factor
$j_{\scriptscriptstyle H}$	J-factor for heat transfer
k _c	Mass transfer coefficient

L_a	Crystallite size
M_{ad}	Molecular weight of adsorbate
n _m	Number of molecules adsorbed
n	Reaction order
Р	Partial pressure of gaseous species
P_r	Prandtl number
P_s	Saturation pressure of adsorbed gas
R	Ideal gas constant
R_t	Radius of reactor tube
R_p	Particle radius of catalyst
r	Production of formation rates
$(-r_{exp})$	Rate of reaction
S _A	Total surface area of sample
S _c	Schmidt number
T_b	Reactant gas bulk temperature
T_s	Reactant gas bulk temperature
T_w	Tube wall temperature
t _{ads}	Thickness of adsorbed layer
U	Superficial gas velocity
V_a	Volume of gas adsorbed
V_p	Total pore volume
W _{cat}	Catalyst weight
X_i	Reactant conversion
Y _i	Yield of product
λ	Wavelength

λ_m	Thermal of catalyst material
λ_{p}	Thermal conductivity of catalyst pellet
θ	Bragg angle
Е	Void fraction in catalyst bed
τ	Tortuosity
σ_{c}	Construction factor
\mathcal{O}_p	Porosity of catalyst pellet
μ_{g}	Viscosity of gas mixture
$ ho_b$	Bulk density of catalyst bed
$ ho_c$	Density of catalyst pellet
$ ho_{g}$	Density of gas mixture
ΔH	Heat of reaction
ΔG	Gibbs free energy
Al ₂ O ₃	Aluminium oxide
Ce	Ceria
CeO ₂	Cerium oxide
Cu	Copper
CuO	Copper oxide
CO_2	Carbon dioxide
Ni	Nickel
Pt	Platinum
Ru	Ruthenium
Rh	Rhodium
Ir	Iridium
Sm	Samarium
Pm	Promethium

LIST OF ABBREVIATIONS

ATR	Autothermal reforming
BET	Brunauer-Emmett-Teller
CNF	Carbon nanofilament
DME	Dimethyl ether
DOE	Department of Energy
ECR	Ethanol CO ₂ reforming
EDX	Energy dispersive X-ray
ESR	Ethanol steam reforming
FTS	Fischer-Tropsch synthesis
GC	Gas chromatography
GHSV	Gas hourly space velocity
GTL	Gas to liquid
HRTEM	High resolution transmission electron microscopy
H ₂ -TPR	H ₂ -temperature programmed reduction
I.D	Inner diameter
JCPDS	Joint committee on powder diffraction standards
MDR	Methane dry reforming
МТ	Metric ton
MTBE	Methyl tert-butyl ether
O.D	Outer diameter
POX	Partial oxidation
SEM	Scanning electron microscopy
SR	Steam reforming
TCD	Thermal conductivity detector
TGA	Thermogravimetric analysis
TPO	Temperature-programmed oxidation
TPR	Temperature-programmed reduction
WGS	Water-gas shift
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction

REFERENCES

- Abdullah, B., Abd Ghani, N.A. and Vo, D.V.N. (2017). Recent advances in dry reforming of methane over Ni-based catalysts. Journal of Cleaner Production, 162, 170–185.
- Ail, S.S. and Dasappa, S. (2016). Biomass to liquid transportation fuel via Fischer Tropsch synthesis - Technology review and current scenario. Renewable and Sustainable Energy Reviews, 58, 267–286.
- Albarazi, A., Gálvez, M.E. and Da Costa, P. (2015). Synthesis strategies of ceria-zirconia doped Ni/SBA-15 catalysts for methane dry reforming. Catalysis Communications, 59, 108–112.
- Alvarez-Galvan, M.C., Navarro, R.M., Rosa, F., Briceno, Y., Alvarez, F.G. and Fierro, J.L.G. (2008). Performance of La, Ce-modified alumina-supported Pt and Ni catalysts for the oxidative reforming of diesel hydrocarbons. International Journal of Hydrogen Energy, 33, 652–663.
- Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J. and Ahmad, M.N. (2018). Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews, 82, 2570–2585.
- Araujo, J.C.S., Zanchet, D., Rinaldi, R., Schuchardt, U., Hori, C.E., Fierro, J.L.G. and Bueno, J.M.C. (2008). The effects of La₂O₃ on the structural properties of La₂O₃-Al₂O₃ prepared by the sol-gel method and on the catalytic performance of Pt/La₂O₃-Al₂O₃ towards steam reforming and partial oxidation of methane. Applied Catalysis B: Environmental, 84, 552-562.
- Arcotumapathy, V., Vo, D.V.N., Chesterfield, D., Tin, C.T., Siahvashi, A., Lucien, F.P. and Adesina, A.A. (2014). Catalyst design for methane steam reforming. Applied Catalysis A: General, 479, 87–102.
- Argyle, M. and Bartholomew, C. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5, 145–269.
- Asencios, Y.J.O. and Assaf, E.M. (2013). Combination of dry reforming and partial oxidation of methane on NiO MgO ZrO₂ catalyst : Effect of nickel content. Fuel Processing Technology, 106, 247–252.
- Badwal, S P S., Giddey, S., Kulkarni, A., Goel, J. and Basu, S. (2015). Direct ethanol fuel cells for transport and stationary applications - A comprehensive review. Applied Energy, 145, 80–103.
- Bahari, M.B., Goo, B.C., Pham, T.L.M., Tan, J.S., Danh, H.T., Ainirazali, N. and Vo, D.V.N. (2016). Hydrogen-rich syngas production from ethanol dry reforming on Ladoped Ni/Al₂O₃ catalysts : Effect of promoter loading. Procedia Engineering, 148, 654–661.

- Bahari, M.B., Phuc, N.H.H., Abdullah, B., Alenazey, F. and Vo, D.V.N (2015). Ethanol dry reforming for syngas production over Ce-promoted Ni/Al₂O₃ catalyst. Journal of Environmental Chemical Engineering, 4, 4830–4838.
- Bahari, M.B., Phuc, N.H.H., Alenazey, F., Vu, K. B., Ainirazali, N. and Vo, D.V.N. (2017). Catalytic performance of La-Ni/Al₂O₃ catalyst for CO₂ reforming of ethanol. Catalysis Today, 291, 67–75.
- Bakenne, A., Nuttall, W. and Kazantzis, N. (2016). Sankey-Diagram-based insights into the hydrogen economy of today. International Journal of Hydrogen Energy, 41, 7744–7753.
- Balat, H. and Kirtay, E. (2010). Hydrogen from biomass Present scenario and future prospects. International Journal of Hydrogen Energy, 35, 7416–7426.
- Bang, Y., Park, S., Han, S.J., Yoo, J., Song, J.H., Choi, J.H., Kang, K.H. and Song, I.K. (2016). Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al₂O₃ catalyst prepared by an EDTA-assisted impregnation method. Applied Catalysis B: Environmental, 180, 179–188.
- Bang, Y., Seo, J.G. and Song, I.K. (2011). Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni-La-Al₂O₃ aerogel catalysts: Effect of La content. Int. International Journal of Hydrogen Energy, 36, 8307-8315.
- Bartholomew, C.H. (2001). Mechanism of catalyst deactivation, 212, 17-60.
- Bej, B., Bepari, S., Pradhan, N.C. and Neogi, S. (2016). Production of hydrogen by dry reforming of ethanol over alumina supported nano-NiO/SiO₂ catalyst. Catalysis Today, 291, 80–88.
- Bellido, J.D.A., Tanabe, E.Y. and Assaf, E.M. (2009). Carbon dioxide reforming of ethanol over Ni/Y₂O₃-ZrO₂ catalysts. Applied Catalysis B: Environmental, 90, 485–488.
- Benito, M., Sanz, J.L., Isabel, R., Padilla, R., Arjona, R. and Daza, L. (2005). Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151, 11–17.
- Blanchard, J., Oudghiri-Hassani, H., Abatzoglou, N., Jankhah, S. and Gitzhofer, F. (2008). Synthesis of nanocarbons via ethanol dry reforming over a carbon steel catalyst. Chemical Engineering Journal, 143, 186–194.
- Bobrova, L.N., Bobin, A.S., Mezentseva, N.V., Sadykov, V.A., Thybaut, J.W. and Marin, G.B. (2016). Kinetic assessment of dry reforming of methane on Pt + Ni containing composite of fluorite-like structure. Applied Catalysis A: General, 182, 513-524.

- Budiman, A.W., Song, S.H., Chang, T.S., Shin, C.H. and Choi, M.J. (2012). Dry reforming of methane over cobalt catalysts: A literature review of catalyst development. Catalysis Surveys from Asia, 16, 183–197.
- Bussi, J., Musso, M., Veiga, S., Bespalko, N., Faccio, R. and Roger, A.C. (2013). Ethanol steam reforming over NiLaZr and NiCuLaZr mixed metal oxide catalysts. Catalysis Today, 213, 42–49.
- Cai, W., Wang, F., Daniel, C., van Veen, A.C., Schuurman, Y., Descorme, C., Provendier, H., Shen, W. and Mirodatos, C. (2012). Oxidative steam reforming of ethanol over Ir/CeO₂ catalysts: A structure sensitivity analysis. Journal of Catalysis, 286, 137– 152.
- Campos-Roldán, C.A., Ramos-Sánchez, G., Gonzalez-Huerta, R.G., Vargas García, J.R., Balbuena, P.B. and Alonso-Vante, N. (2016). Influence of sp-sp carbon nanodomains on metal/support interaction, catalyst durability, and catalytic activity for the oxygen reduction reaction. ACS Applied Materials and Interfaces, 8, 23260– 23269.
- Caņado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L N., Magalhães-Paniago, R. and Pimenta, M.A. (2006). General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 88, 1–4.
- Castillo-Hernández, G., Mayén-Hernández, S., Castaño-Tostado, E., DeMoure-Flores, F., Campos-González, E., Martínez-Alonso, C. and Santos-Cruz, J. (2018). CuAlO₂ and CuAl₂O₄ thin films obtained by stacking Cu and Al films using physical vapor deposition. Results in Physics, 9, 745-752.
- Cao, D., Cai, W., Li, Y., Li, C., Yu, H., Zhang, S. and Qu, F. (2017). Syngas Production from ethanol dry reforming over Cu/Ce_{0.8}Zr_{0.2}O₂ catalyst. Catalysis Letters, 12, 2929-2939.
- Cao, D., Zeng, F., Zhao, Z., Cai, W., Li, Y., Yu, H. and Zhang, S. (2018). Cu based catalysts for syngas production from ethanol dry reforming: Effect of oxide supports, 219, 406–416.
- Cavallaro, S., Chiodo, V., Freni, S., Mondello, N. and Frusteri, F. (2003). Performance of Rh/Al₂O₃ catalyst in the steam reforming of ethanol: H₂ production for MCFC. Applied Catalysis A: General, 249, 119–128.
- Chen, B., Li, F., Huang, Z. and Yuan, G. (2017). Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Applied Catalysis B, Environmental, 200, 192–199.
- Chen, H., Yu, H., Peng, F., Wang, H., Yang, J. and Pan, M. (2010). Efficient and stable oxidative steam reforming of ethanol for hydrogen production : Effect of in situ dispersion of Ir over Ir/La₂O₃. Journal of Catalysis, 269, 281–290.

- Chen, K., Xue, Z., Liu, H., Guo, A. and Wang, Z. (2013). A temperature-programmed oxidation method for quantitative characterization of the thermal cokes morphology. Fuel, 113, 274–279.
- Choi, J., Oh, H., Han, S., Ahn, S., Noh, J. and Park, J.B. (2017). Preparation and characterization of graphene oxide supported Cu, Cu₂O and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Current Applied Physics, 17, 137–145.
- Christensen, K., Chen, D., Lødeng, R. and Holmen, A. (2006). Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Applied Catalysis A: General, 314, 9–22.
- Contreras, J.L., Salmones, J., Colín-Luna, J.A., Nuño, L., Quintana, B., Córdova, I., Zeifert, B., Tapia, C. and Fuentes, G.A. (2014). Catalysts for H₂ production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39, 18835–18853.
- Cui, Y., Zhang, H., Xu, H. and Li, W. (2007). The CO₂ reforming of CH₄ over Ni/La₂O₃/α-Al₂O₃ catalysts: The effect of La₂O₃ contents on the kinetics performance. Applied Catalysis A: General, 331, 60–69.
- Curran, C.D., Lu, L., Kiely, C.J. and McIntosh, S. (2017). Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions. Journal of Materials Chemistry A, 6, 244–255.
- da Silva, A.M., da Costa, L.O.O., Souza, K.R., Mattos, L.V. and Noronha, F.B. (2010). The effect of space time on Co/CeO₂ catalyst deactivation during oxidative steam reforming of ethanol. Catalysis Communications, 11, 736–740.
- da Silva, A.M., Mattos, L.V., den Breejen, J.P., Bitter, J.H., de Jong, K.P. and Noronha, F.B. (2011a). Oxidative steam reforming of ethanol over carbon nanofiber supported Co catalysts. Catalysis Today, 164, 262–267.
- da Silva, A.M., de Souza, K.R., Jacobs, G., Graham, U.M., Davis, B.H., Mattos, L.V. and Noronha, F. B. (2011b). Steam and CO₂ reforming of ethanol over Rh/CeO₂ catalyst. Applied Catalysis B: Environmental, 102, 94–109.
- Dal Santo, V., Gallo, A., Naldoni, A., Guidotti, M. and Psaro, R. (2012). Bimetallic heterogeneous catalysts for hydrogen production. Catalysis Today, 197, 190–205.
- de Araujo, G.C., Lima, S., Rangel, M.D.C., Parola, V.L., Peña, M.A. and García Fierro, J.L., (2005). Characterization of precursors and reactivity of LaNi_{1-x}Co_xO₃ for the partial oxidation of methane. Catalysis Today, 107–108, 906–912.

- De Oliveira-Vigier, K., Abatzoglou, N. and Gitzhofer, F. (2005). Dry-reforming of ethanol in the presence of a 316 stainless steel catalyst. Canadian Journal of Chemical Engineering, 83, 978–984.
- Deluga, G.A., Salge, J.R., Schmidt, L.D. and Verykios, X.E. (2004). Renewable hydrogen from ethanol by qutothermal reforming. Science, 303, 993–997.
- Demirci, U.B. and Miele, P. (2013). Overview of the relative greenness of the main hydrogen production processes. Journal of Cleaner Production, 52, 1–10.
- Deutsch, K.L. and Shanks, B.H. (2012). Active species of copper chromite catalyst in C-O hydrogenolysis of 5-methylfurfuryl alcohol. Journal of Catalysis, 285, 235–241.
- Di Marcoberardino, G., Sosio, F., Manzolini, G. and Campanari, S. (2015). Fixed bed membrane reactor for hydrogen production from steam methane reforming: Experimental and modeling approach. International Journal of Hydrogen Energy, 40, 7559–7567. 5
- Drif, A., Bion, N., Brahmi, R., Ojala, S., Pirault-Roy, L., Turpeinen, E., Seelam, P.K., Keiski, R.L. and Epron, F. (2015). Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Applied Catalysis A: General, 504, 576–584.
- Farhad, S., Saffar-Avval, M. and Younessi-Sinaki, M. (2008). Efficinet design of feedwater heaters network in steam power plants using pinch technology and exergy analysis. International Journal of Energy Research, 32, 1–11.
- Fayaz, F., Bach, L.G., Bahari, M.B., Nguyen, T.D., Vu, K.B., Kanthasamy, R., Samart C., Nguyen-Huy, C. and Vo, D.V.N. (2018). Stability evaluation of ethanol dry reforming on lanthania-doped cobalt-based catalysts for hydrogen-rich syngas generation. International Journal of Energy Research, 1–12.
- Fayaz, F., Danh, H.T., Nguyen-Huy, C., Vu, K.B., Abdullah, B. and Vo, D.V.N. (2016). Promotional effect of Ce-dopant on Al₂O₃-supported Co catalysts for syngas production via CO₂ reforming of ethanol. Procedia Engineering, 148, 646–653.
- Figen, H.E. and Baykara, S.Z. (2015). Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts. International Journal of Hydrogen Energy, 40, 7439–7451.
- Fogler, H.S. (2006). Elements of Chemical Reaction Engineering. 4th ed. Upper Saddle River, NJ, USA: Pearson Education, Inc.
- Foo, K.Y. and Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

- Foo, S.Y., Cheng, C.K., Nguyen, T.H. and Adesina, A.A. (2011). Evaluation of lanthanide-group promoters on Co-Ni/Al₂O₃ catalysts for CH₄ dry reforming. Journal of Molecular Catalysis A: Chemical, 344, 28–36.
- Foo, S.Y., Cheng, C.K., Nguyen, T.H., Kennedy, E.M., Dlugogorski, B.Z. and Adesina, A.A. (2012). Carbon deposition and gasification kinetics of used lanthanidepromoted Co-Ni/Al₂O₃ catalysts from CH₄ dry reforming. Catalysis Communications, 26, 183–188.
- Fu, Z., Wang, Z., Lin, W., Song, W. and Li, S. (2017). High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al₂O₃ catalyst with formic acid as a hydrogen donor. Applied Catalysis A: General, 547, 248-255.
- Furtado, A.C., Alonso, C.G., Cantão, M.P. and Fernandes-Machado, N.R.C. (2011). Support influence on Ni-Cu catalysts behavior under ethanol oxidative reforming reaction. International Journal of Hydrogen Energy, 36, 9653–9662.
- Ghenciu, A.F. (2002). Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Current Opinion in Solid State and Materials Science, 6, 389–399.
- Glaser, R. and Riemann, D. (2009). A thousand-year record of temperature variations for Germany and Central Europe based on documentary data. Journal of Quaternary Science, 24, 437–449.
- Goula, M.A., Charisiou, N.D., Papageridis, K.N., Delimitis, A., Pachatouridou, E. and Iliopoulou, E. F. (2015). Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method. International Journal of Hydrogen Energy, 40, 9183–9200.
- Goula, M.A., Charisiou, N D., Siakavelas, G., Tzounis, L., Tsiaoussis, I., Panagiotopoulou, P., Goula, G. and Yentekakis, I.V. (2017). Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO₂ or La₂O₃ catalysts. International Journal of Hydrogen Energy, 42, 13724–13740.
- Green, D.W. and Perry, R.H. (2008). Perry's Chemical Engineers' Handbook. 8th ed. New York, USA: The McGraw-Hill Companies, Inc.
- Gregg, S.J. and Sing, K.S.W. (1982). Adsorption, surface area and porosity. 2nd ed. New York, USA: Academic Press, Inc.
- Gu, W., Liu, J., Hu, M., Wang, F. and Song, Y. (2015). La₂O₂CO₃ encapsulated La₂O₃ nanoparticles supported on carbon as superior electrocatalysts for oxygen reduction reaction. ACS Applied Materials and Interfaces, 7, 26914–26922.

- Guarido, C.E.M., Cesar, D.V., Souza, M.M.V.M. and Schmal, M. (2009). Ethanol reforming and partial oxidation with Cu/Nb₂O₅ catalyst. Catalysis Today, 142, 252–257.
- Hagen, J. (2006). Industrial Catalysis: A Practical Approach. 2nd ed. Weinheim, Germany: Wiley-VCH.
- Halabi, M.H., de Croon, M.H.J.M., van der Schaaf, J. Cobden, P.D. and Schouten, J.C. (2011). Reactor modeling of sorption-enhanced autothermal reforming of methane. Part I: Performance study of hydrotalcite and lithium zirconate-based processes. Chemical Engineering Journal, 168, 872–882.
- Han, X., Yu, Y., He, H. and Zhao, J. (2013). Low CO content hydrogen production from oxidative steam reforming of ethanol over CuO-CeO₂ catalysts at low-temperature. Journal of Energy Chemistry, 22, 861–868.
- He, Z. and Wang, X. (2015). Renewable energy and fuel production over transition metal oxides: The role of oxygen defects and acidity. Catalysis Today, 240, 220–228.
- Holladay, J.D., Hu, J., King, D.L. and Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139, 244–260.
- Höök, M. and Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change - A review. Energy Policy, 52, 797–809.
- Hou, T., Lei, Y., Zhang, S., Zhang, J. and Cai, W. (2015a). Ethanol dry reforming for syngas production over Ir/CeO₂ catalyst. Journal of Rare Earths, 33, 42–45.
- Hou, T., Zhang, S., Chen, Y., Wang, D. and Cai, W. (2015b). Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renewable and Sustainable Energy Reviews, 44, 132–148.
- Hu, X. and Lu, G. (2009). Syngas production by CO₂ reforming of ethanol over Ni/Al₂O₃ catalyst. Catalysis Communications, 10, 1633–1637.
- Hu, Y.H. and Ruckenstein, E. (2004). Catalytic conversion of methane to synthesis gas by partial oxidation and CO₂ reforming, 35, 297-345.
- Huang, L., Xie, J., Chen, R., Chu, D. and Hsu, A.T. (2010). Nanorod alumina-supported Ni-Zr-Fe/Al₂O₃ catalysts for hydrogen production in auto-thermal reforming of ethanol. Materials Research Bulletin, 45, 92–96.
- Jankhah, S., Abatzoglou, N. and Gitzhofer, F. (2008). Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments production, 33, 4769–4779.
- JCPDS powder diffraction file. International centre for diffraction data. PA: Swarthmore, 2000.

- Karinen, R., Gutierrez, A., Krause, A.O.I., Airaksinen, S. and Kaila, R. (2011). Autothermal reforming of ethanol on noble metal catalysts. International Journal of Hydrogen Energy, 36, 8967–8977.
- Khila, Z., Hajjaji, N., Pons, M.N., Renaudin, V. and Houas, A. (2013). A comparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes. Fuel Processing Technology, 112, 19–27.
- Lee, W.J. and Li, C. (2008). Opposite effects of gas flow rate on the rate of formation of carbon during the pyrolysis of ethane and acetylene on a nickel mesh catalyst. Carbon, 46, 1208–1217.
- Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S. and Gong, J. (2015). Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Applied Catalysis B: Environmental, 176, 532-541.
- Li, K., Wang, H., Wei, Y. and Yan, D. (2010). Direct conversion of methane to synthesis gas using lattice oxygen of CeO₂-Fe₂O₃ complex oxides. Chemical Engineering Journal, 156, 512–518.
- Li, M., Wang, X., Li, S., Wang, S. and Ma, X. (2010). Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. International Journal of Hydrogen Energy, 35, 6699–6708.
- Liander, H. (1929). The utilisation of natural gases for the ammonia process. Transactions of the Faraday Society, 25, 462–472.
- Liu, D., Quek, X.Y., Wah, H.H.A., Zeng, G., Li,Y. and Yang, Y. (2009). Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catalysis Today, 148, 243–250.
- Llera, I., Mas, V., Bergamini, M.L., Laborde, M. and Amadeo, N. (2012). Bio-ethanol steam reforming on Ni based catalyst. Kinetic study. Chemical Engineering Science, 71, 356–366.
- Mattos, L.V., Jacobs, G., Davis, B.H. and Noronha, F.B. (2012). Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. Chemical Reviews, 112, 4094–4123.
- Menendez, R B., Graschinsky, C. and Amadeo, N.E. (2018). Sorption-enhanced ethanol steam reforming process in a fixed-bed reactor. Industrial & Engineering Chemistry Research, 57, 11547-11553.
- Monshi, A., Foroughi, M.R. and Monshi, M.R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2,154–160.

- Nanda, S., Rana, R., Zheng, Y., Kozinski, J.A. and Dalai, A.K. (2017). Insights on pathways for hydrogen generation from ethanol. Sustainable Energy and Fuels, 1, 1232–1245.
- Ni, M., Leung, D.Y.C. and Leung, M K.H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32, 3238–3247.
- Noureldin, M.M.B., Elbashir, N O. and El-halwagi, M M. (2014). Optimization and selection of reforming approaches for syngas generation from natural/shale gas. Industrial & Engineering Chemistry Research, 53, 1845-1855.
- Oemar, U., Kathiraser, Y., Mo, L., Ho, X.K. and Kawi, S. (2016). CO₂ reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modelling. Catalysis Science and Technology, 6, 1173– 1186.
- Omoregbe, O., Danh, H.T., Abidin, S.Z., Setiabudi, H.D., Abdullah, B., Vu, K.B. and Vo, D.V.N. (2016). Influence of lanthanide promoters on Ni/SBA-15 catalysts for syngas production by methane dry reforming. Procedia Engineering, 148, 1388– 1395.
- Osaki, T. (2015). Effect of nickel diameter on the rates of elementary steps involved in CO₂ reforming of CH₄ over Ni/Al₂O₃ Catalysts. Catalysis Letters, 145, 1931–1940.
- Osorio-Vargas, P., Campos, C.H., Navarro, R.M., Fierro, J L.G. and Reyes, P. (2015a). Improved ethanol steam reforming on Rh/Al₂O₃ catalysts doped with CeO₂ or/and La₂O₃: Influence in reaction pathways including coke formation. Applied Catalysis A: General, 505, 159–172.
- Osorio-Vargas, P., Flores-González, N.A., Navarro, R.M., Fierro, J.L.G., Campos, C.H. and Reyes, P. (2015b). Improved stability of Ni/Al₂O₃ catalysts by effect of promoters (La₂O₃, CeO₂) for ethanol steam-reforming reaction. Catalysis Today, 259, 27–38.
- Paksoy, A.I., Caglayan, B.S. and Aksoylu, A.E. (2015). A study on characterization and methane dry reforming performance of Co-Ce/ZrO₂ catalyst. Applied Catalysis B: Environmental, 168, 164–174.
- Panwar, N.L., Kaushik, S.C. and Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15, 1513–1524.
- Patterson, A.L. (1939). The scherrer formula for X-ray particle size determination. Physical Review, 56, 978–982.
- Patzek, T.W. and Croft, G.D. (2010). A global coal production forecast with multi-Hubbert cycle analysis. Energy, 35, 3109–3122.

- Peela, N.R. and Kunzru, D. (2011). Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. International Journal of Hydrogen Energy, 36, 3384–3396.
- Qu, F., Wei, Y., Cai, W., Yu, H., Li, Y., Zhang, S. and Li, C. (2018). Syngas production from carbon dioxide reforming of ethanol over Ir/Ce_{0.75}Zr_{0.25}O₂ catalyst: effect of calcination temperatures. Energy Fuels, 32, 2104–2116.
- Rahemi, N., Haghighi, M., Babaluo, A.A., Allahyari, S. and Jafari, M.F. (2014). Syngas production from reforming of greenhouse gases CH₄/CO₂ over Ni-Cu/Al₂O₃ nanocatalyst: Impregnated vs. plasma-treated catalyst. Energy Conversion and Management, 84, 50–59.
- Rass-Hansen, J., Johansson, R., Møller, M. and Christensen, C.H. (2008). Steam reforming of technical bioethanol for hydrogen production. International Journal of Hydrogen Energy, 33, 4547–4554.
- Rogatis, L D, Montini, T., Lorenzut, B. and Fornasiero, P. (2008). Ni_xCu_y/Al₂O₃ based based catalysts for hydrogen production. Energy and Environment Science, 1, 501–509.
- Rostrup-Nielsen, J. (2002). Syngas in perspective. Catalysis Today, 71, 243–247.
- Salge, J.R., Deluga, G.A. and Schmidt, L.D. (2005). Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis, 235, 69–78.
- San-José-Alonso, D., Juan-Juan, J., Illán-Gómez, M.J. and Román-Martínez, M.C. (2009). Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Applied Catalysis A: General, 371, 54–59.
- Sengodan, S., Lan, R., Humpreys, J., Du, D., Xu, W., Wang, H. and Tao, S. (2018). Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renewable and Sustainable Energy Reviews, 82, 761–780.
- Seo, J., Moon, J., Kim, J.H., Lee, K., Hwang, J., Yoon, H., Yi, D.K. and Paik, U. (2016). Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption. Applied Surface Science, 389, 311–315.
- Shahirah, M.N.N., Abdullah, S., Gimbun, J., Ng, Y.H. and Cheng, C. K. (2016). A study on the kinetics of syngas production from glycerol over alumina-supported samarium-nickel catalyst. International Journal of Hydrogen Energy, 41, 10568– 10577.
- Shee, D. and Sayari, A. (2010). Light alkane dehydrogenation over mesoporous Cr_2O_3/Al_2O_3 catalysts. Applied Catalysis A: General, 389, 155–164.

- Siang, T.J., Pham, T.L.M., Cuong, N.V., Phuong, P.T.T., Phuc, N.H.H., Truong, Q.D. and Vo, D.V.N. (2018a). Combined steam and CO₂ reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts. Microporous and Mesoporous Materials, 262, 122–132.
- Siang, T.J., Singh, S., Omoregbe, O., Bach, L.G., Phuc, N.H.H. and Vo, D.V.N. (2018b). Hydrogen production from CH₄ dry reforming over bimetallic Ni-Co/Al₂O₃ catalyst. Journal of Energy Institute, 91, 683-694.
- Siew, K.W., Lee, H.C., Gimbun, J. and Cheng, C.K. (2015). Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al₂O₃ catalyst. International Journal of Hydrogen Energy, 39, 6927–6936.
- Siew, K.W., Lee, H.C., Gimbun, J., Chin, S.Y., Khan, M.R., Taufiq-Yap, Y.H. and Cheng, C.K. (2015). Syngas production from glycerol-dry (CO₂) reforming over Lapromoted Ni/Al₂O₃ catalyst. Renewable Energy, 74, 441–447.
- Singh, P.S. (2008). High surface area nanoporous amorphous silica prepared by dodecanol assisted silica formate sol-gel approach. Journal of Colloid and Interface Science, 325, 207–214.
- Singh, S., Kumar, R., Setiabudi, H.D., Nanda, S. and Vo, D.V.N. (2018). Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications : A state-of-the-art review. Applied Catalysis A, General, 559, 57–74.
- Spivey, J.J. (2005). Catalysis in the development of clean energy technologies. Catalysis Today, 100, 171–180.
- Tan, L., Qin, C., Zhang, Z., Ran, J. and Manovic, V. (2018). Compatibility of NiO/CuO in Ca–Cu chemical looping for high-purity H₂ Production with CO₂ capture. Energy Technology, 6, 1777–1787.
- Taufiq-Yap, Y.H., Sudarno, Rashid, U. and Zainal, Z. (2013). CeO₂-SiO₂ supported nickel catalysts for dry reforming of methane toward syngas production. Applied Catalysis A: General, 468, 359–369.
- Toledo, M., González, F. and Ellzey, J. (2014). Hydrogen production from methanol and ethanol partial oxidation. Energy and Fuels, 28, 3453–3459.
- Torres-Jimenez, E., Kegl, B., Lisec, I., Torres-Jimenez, E., Dorado, M.P., Gregorc, A., and Jerman, M.S. (2010). Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 90, 795–802.
- Tosti, S., Zerbo, M., Basile, A., Calabrò, V., Borgognoni, F. and Santucci, A. (2013). Pdbased membrane reactors for producing ultra pure hydrogen: Oxidative reforming of bio-ethanol. International Journal of Hydrogen Energy, 38, 701–707.

- Umar, M.S., Jennings, P. and Urmee, T. (2014). Generating renewable energy from oil palm biomass in Malaysia: The Feed-in Tariff policy framework. Biomass and Bioenergy, 62, 37–46.
- Usman, M., Wan Daud, W.M.A. and Abbas, H.F. (2015). Dry reforming of methane: Influence of process parameters-A review. Renewable and Sustainable Energy Reviews, 45, 710–744.
- Valle, B., Aramburu, B., Benito, P.L., Bilbao, J. and Gayubo, A.G. (2018). Biomass to hydrogen-rich gas via steam reforming of raw bio-oil over Ni/La₂O₃-αAl₂O₃ catalyst: Effect of space-time and steam-to-carbon ratio. Fuel, 216, 445–455.
- Virginie, M., Araque, M., Roger, A.C., Vargas, J.C. and Kiennemann, A. (2008). Comparative study of H₂ production by ethanol steam reforming on Ce₂Zr_{1.5}Co_{0.5}O_{8- δ} and Ce₂Zr_{1.5}Co_{0.47}Rh_{0.07}O_{8- δ}: Evidence of the Rh role on the deactivation process. Catalysis Today, 138, 21–27.
- Vo, D.V.N., Nguyen, T.H., Kennedy, E.M., Dlugogorski, B.Z. and Adesina, A.A. (2011). Fischer-Tropsch synthesis: Effect of promoter type on alumina-supported Mo carbide catalysts. Catalysis Today, 175, 450–459.
- Vo, D.V. N., Arcotumapathy, V., Abdullah, B. and Adesina, A.A. (2013). Non-linear ASF product distribution over alkaline-earth promoted molybdenum carbide catalysts for hydrocarbon synthesis. Catalysis Today, 214, 42–49.
- Wan, Y., Zhou, Z. and Cheng, Z. (2016). Hydrogen production from steam reforming of methanol over CuO/ZnO/Al₂O₃ catalysts: catalytic performance and kinetic modeling. Chinese Journal of Chemical Engineering, 24, 1186-1194.
- Wang, K., Li, X., Ji, S., Shi, X. and Tang, J. (2009). Effect of Ce_xZr_{1-x}O₂ promoter on Nibased SBA-15 catalyst for steam reforming of methane. Energy and Fuels, 23, 25– 31.
- Wang, N.N., Wang, Y., Cheng, H.F., Tao, Z., Wang, J. and Wu, W.Z. (2013). Impact of cationic lanthanum species on zeolite Y: An infrared, excess infrared and Raman spectroscopic study. RSC Advances, 3, 20237–20245.
- Wang, N., Shen, K., Huang, L., Yu, X., Qian, W. and Chu, W. (2013). Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catalysis, 3, 1638–1651.
- Wang, W. (2011). Hydrogen production via dry reforming of butanol: Thermodynamic analysis. Fuel, 90, 1681–1688.
- Wang, W., Wang, S., Ma, X. and Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40, 3703–3727.

- Wang, W. and Wang, Y. (2009). Dry reforming of ethanol for hydrogen production: Thermodynamic investigation. International Journal of Hydrogen Energy, 34, 5382– 5389.
- Wang, X., Li, M., Wang, M., Wang, H., Li, S., Wang, S. and Ma, X. (2009). Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel, 88, 2148–2153.
- Wang, Z. and Spivey, J.J. (2015). Effect of ZrO₂, Al₂O₃ and La₂O₃ on cobalt-copper catalysts for higher alcohols synthesis. Applied Catalysis A: General, 507, 75-81.
- Wood, D.A., Nwaoha, C. and Towler, B.F. (2012). Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. Journal of Natural Gas Science and Engineering, 9, 196–208.
- Wu, Z., Jin, R., Liu, Y. and Wang, H. (2008). Ceria modified MnO_x/TiO₂ as a superior catalyst for NO reduction with NH₃ at low-temperature. Catalysis Communications, 9, 2217–2220.
- Xin, J., Cui, H., Cheng, Z. and Zhou, Z. (2018). Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Applied Catalysis A: General, 554, 95–104.
- Xu, S., Zhu, H., Cao, W., Wen, Z., Wang, J., François-Xavier, C.P. and Wintgens, T. (2018). Cu-Al₂O₃-g-C₃N₄ and Cu-Al₂O₃-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H₂O₂ conversion to hydroxyl radicals. Applied Catalysis B: Environmental, 234, 223–233.
- Yahiro, H., Nakaya, K., Yamamoto, T., Saiki, K. and Yamaura, H. (2006). Effect of calcination temperature on the catalytic activity of copper supported on γ -alumina for the water-gas-shift reaction. Catalysis Communuications, 7, 228-231.
- Yamamoto, T., Hatsui, T., Matsuyama, T., Tanaka, T. and Funabiki, T. (2003). Structures and acid-base properties of La/Al₂O₃ Role of La addition to enhance thermal stability of γ -Al₂O₃. Chemistry of Materials, 15, 4830–4840.
- Yang, R., Xing, C., Lv, C., Shi, L. and Tsubaki, N. (2010). Promotional effect of La₂O₃ and CeO₂ on Ni/γ-Al₂O₃ catalysts for CO₂ reforming of CH₄. Applied Catalysis A: General, 385, 92–100.
- Yeste, M.P., Vidal, H., García-Cabeza, A.L., Hernández-Garrido, J.C., Guerra, F.M., Cifredo, G.A., González-Leal, J.M. and Gatica, J.M. (2018). Low temperature prepared copper-iron mixed oxides for the selective CO oxidation in the presence of hydrogen. Applied Catalysis A: General, 552, 58–69.
- Zawadzki, A., Bellido, J.D.A., Lucrédio, A.F. and Assaf, E.M. (2014). Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Processing Technology, 128, 432–440.

- Zeng, Y.X., Wang, L., Wu, C.F., Wang, J.Q., Shen, B.X. and Tu, X. (2018). Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al₂O₃ catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy. Applied Catalysis B: Environmental, 224, 469–478.
- Zhang, J., Wang, H. and Dalai, A.K. (2009). Kinetic studies of carbon dioxide reforming of methane over Ni-Co/Al-Mg-O bimetallic catalyst. Industrial and Engineering Chemistry Research, 48, 677–684.
- Zhao, S., Cai, W., Li, Y., Yu, H., Zhang, S. and Cui, L. (2018). Syngas production from ethanol dry reforming over Rh/CeO₂ catalyst. Journal of Saudi Chemical Society, 22, 58–65.
- Zhi, G., Guo, X., Wang, Y., Jin, G. and Guo, X. (2011). Effect of La₂O₃ modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catalysis Communuications, 16, 56-59.
- Zhong, Z., Ang, H., Choong, C., Chen, L., Huang, L. and Lin, J. (2009). The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO₂ catalysts for ethanol steam reforming. Physical Chemistry Chemical Physics, 11, 872–880.
- Zhu, J., Peng, X., Yao, L., Shen, J., Tong, D. and Hu, C. (2011). The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO₂ catalyst for CO₂ reforming of methane. International Journal of Hydrogen Energy, 36, 7094–7104.
- Zou, C., Zhao, Q., Zhang, G. and Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry, 36, 1–10.