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ABSTRACT
Hearing deficiency is the world’s most common sensation of impairment and
impedes human communication and learning. Early and precise hearing diagnosis
using electroencephalogram (EEG) is referred to as the optimum strategy to deal
with this issue. Among a wide range of EEG control signals, the most relevant
modality for hearing loss diagnosis is auditory evoked potential (AEP) which is
produced in the brain’s cortex area through an auditory stimulus. This study aims to
develop a robust intelligent auditory sensation system utilizing a pre-train deep
learning framework by analyzing and evaluating the functional reliability of the
hearing based on the AEP response. First, the raw AEP data is transformed into
time-frequency images through the wavelet transformation. Then, lower-level
functionality is eliminated using a pre-trained network. Here, an improved-VGG16
architecture has been designed based on removing some convolutional layers and
adding new layers in the fully connected block. Subsequently, the higher levels of the
neural network architecture are fine-tuned using the labelled time-frequency
images. Finally, the proposed method’s performance has been validated by a reputed
publicly available AEP dataset, recorded from sixteen subjects when they have
heard specific auditory stimuli in the left or right ear. The proposed method
outperforms the state-of-art studies by improving the classification accuracy to
96.87% (from 57.375%), which indicates that the proposed improved-VGG16
architecture can significantly deal with AEP response in early hearing loss diagnosis.
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INTRODUCTION
Hearing deficiency is the widespread form of human sensory disability; it is the partial or
complete inability to listen to the ear’s sound. The world health organization (WHO)
reports that 466 million people were living with hearing loss in 2018, projected to exceed
630 million by 2030 and more than 900 million by 2050 (World Health Organization
(WHO), 2021). An early and effective hearing screening test is essential for address the vast
population concern. That helps to reduce the hearing deficiency by taking necessary
steps at an appropriate time. Conventional listening tests and audiograms appear to be
subjective assessments that significantly demand medical and health services. The
audiogram reflects the hearing threshold across the speech frequency spectrum, usually
between 125 and 8,000 Hz. The traditional hearing impairment testing technique is very
time-consuming, takes sufficient clinical time and expertise to interpret and maintain
since it requires the person to respond directly. In the application of hearing aid, other
issues, such as hearing loss’s consequence (Holmes, Kitterick & Summerfield, 2017), the
circumstances of the auditory stimulus (such as the background noise of the stimulus,
locations of the stimulus (Das, Bertrand & Francart, 2018; Das et al., 2016) ), attention-
altering techniques is still an open question.

Various hearing impairment testing techniques have been conducted to address these
issues, and among them, EEG-based auditory evoked potentials (AEPs) are most widely
used (Zhang et al., 2006; Mahmud et al., 2019). Nowadays, the classification of AEP
signal is most commonly used in many brain-computer interface (BCI) applications (Gao,
Wang & Gao, 2014) and brain hearing issues (Sriraam, 2012). In fact, the AEP signal is
widely used to recognize hearing capability, assessment, and neurological hearing
impairment identification. The AEP signals are reflected by the brain’s electrical activity
changes in the body’s sensory mechanisms in response to the auditory stimulus.
The diagnosis of hearing loss typically involves four main stages: acquisition of data, data
pre-processing, feature extraction and selection, and classification. The feature extraction
is traditionally conducted by analyzing the time-domain, frequency-domain, and time-
frequency domain techniques, which help to extract the information from the original raw
data. The extracted features are then used as an input to the machine learning or deep
learning models for training. However, traditional diagnosis methods have some
drawbacks. For example, traditional hearing loss approaches are often based on manual
feature selection. As a consequence, if the manually chosen features are ineffective for this
task, the hearing loss recognition performance will decrease considerably. Furthermore,
handcrafted features for different classification tasks are task-specific, meaning that
features that render predictions correctly are not acceptable under certain conditions
for other scenarios (Acir, Erkan & Bahtiyar, 2013; Acir, Özdamar & Güzeliş, 2006).

Although the researchers have employed a wide range of machine learning and deep
learning algorithms, recognizing the most effective classifier is still an open question.
Among machine learning-based classifiers, support vector machine (SVM) (Mahmud
et al., 2019), k-nearest neighbors (k-NN) (Thorpe & Dussard, 2018; Rashid et al., 2021),
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artificial neural network (ANN) (Mccullagh et al., 1996), linear discriminant analysis
(LDA) (Grent-‘t-Jong et al., 2021) Naïve Bayesian (NB) (Shirzhiyan et al., 2019) are
widely used in neurological response classification. Nowadays, the convolutional neural
networks (CNNs) are the most preferred approach in the different classification tasks,
particularly in image classification (Lecun, Bengio & Hinton, 2015). In some recent studies,
CNNs have shown promising performances in EEG signal classification: in seizure
detection (Ansari et al., 2019), depression detection (Liu et al., 2018), and sleep stage
classification (Ansari et al., 2018). Ciccarelli et al. (2019) proposed a novel architecture of
the neural network and showed that their approach outperforms the linear methods in
decision windows of 10s. They have used eleven subjects in the experiment: with the
wet EEG, the decoding accuracy was improved from 66% to 81%, and with the dry EEG,
the decoding accuracy was improved from 59% to 87%. McKearney & MacKinnon
(2019) used a deep neural network approach to classify paired auditory brainstem
responses. They used 232 paired ABR waveforms (190 paired ABR waveforms for training
the model and 42 paired waveforms for performance evaluation) from eight normal
hearing subjects and achieved 92.9% testing accuracy. Although they achieved an excellent
performance to identify the auditory brainstem response, the testing set is too small,
and more dataset is needed to test the model performance.Mccullagh et al. (1996) reported
a 73.7% accuracy using the artificial neural network to classify 166 auditory brainstem
responses (ABRs) with 2,000 repetitions. Ibrahim, Ting & Moghavvemi (2019) used
multiple classification techniques for detecting the hearing condition; the SVM algorithm
outperforms the other algorithms by achieving a classification accuracy of 90%. They used
a nonlinear feature extraction method to extract adequate information from the AEP
signals. Dietl & Weiss (2004) evaluated an application to achieve detection of frequency-
specific hearing loss where they used the wavelet packet transform (WPT) as a feature
extraction method and support vector machines (SVM) classifier to transient evoked
otoacoustic emissions (TEOAE). They achieved a maximum of 74.7% accuracy with the
testing dataset. Nonetheless, the overall accuracy is not favourable enough to be utilized in
real-life applications. Tang & Lee (2019) proposed a novel hearing deficiency diagnosis
method using three-level wavelet entropy, followed by MLP, trained by hybrid Tabu
search-Particle Swarm Optimization (TS-PSO). Their approach achieved 86.17% testing
accuracy; it still needs improvement for real-time applications. Sanjay et al. (2020) used
machine learning approaches for human auditory threshold prediction. The absolute
threshold test (ATT) method was used for feature extraction from the auditory signals.
The extracted feature was then classified using multiple classification methods. Among all
the classification methods, a maximum of 93.94% accuracy was achieved with the SVM
classifier. Xue et al. (2018) used participants’ articulatory movements with or without
hearing impairment during nasal finals for hearing impairment diagnosis. Six different
kinematic features: standard deviation of velocity, minimum velocity, maximum velocity,
mean velocity, duration, displacement was used to extract the information from the
hearing impairment (HI) patient and normal hearing (NH) participants. The classification
was conducted with a support vector machine, radial basis function network, random
forest, and C4.5. The maximum accuracy was 87.12% using a random forest classifier
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via (displacement and duration feature). Zhang et al. (2006) proposed an auditory
brainstem response classification method. They used wavelet analysis for feature extraction
and Bayesian networks to classify the auditory responses. Discrete wavelets transform
(DWT) was used to extract the time-frequency information from the raw signals. A
maximum of 78.80% testing accuracy was achieved in their proposed approach; it needs
more improvement in testing accuracy.

The emphasis in our study is on a concise decision window. However, a concise window
contains less information and more difficult to achieve high performance but provide an
effective solution for early detection of hearing disorder. The short decision window is
considered one of the prerequisites to develop the real-life application, but limited
studies have been carried out to investigate this issue (Deckers et al., 2018). Moreover,
selecting a short decision window makes the system faster by reducing the computational
complexity of the system. On the other hand, Deep learning (DL) approaches can
provide an effective solution because of their effective feature learning capability to
overcome the above limitations (Krizhevsky, Sutskever & Hinton, 2017; Nossier et al., 2019;
Shao et al., 2019; Bari et al., 2021; Mahendra Kumar et al., 2021). Deep learning models
have several hidden layers that can explicitly learn hierarchical representations. From
model training, deep architectures can select discriminatory representations, which are
helpful for precise predictions according to the training data in subsequent classification
stages. Although the DL models have successful application in hearing loss diagnosis tasks,
there are still some issues with DL approaches. A few investigations (Ciccarelli et al.,
2019;McKearney &MacKinnon, 2019) have been conducted using deep models with more
than 10 hidden layers for hearing loss diagnosis. A large number of labelled data and
computations resources are typically required during the training model from scratch. In
the proposed study, we used the transfer learning (TL) method to address the challenges
of training a deep model from scratch. The TL method is used to expedite the deep
learning model training phase and effectively learns the hierarchical representations.
The process is accomplished by using the pre-trained TL method that has been pre-trained
on vast datasets of natural images. The proposed pre-trained model provides the lower-
level weights for the target neural network, while the higher-level weights are fine-tuned
for the hearing deficiency diagnosis task. Consequently, the proposed TL method offers a
rational initialization for the target model and decreases the number of model’s
parameters. In this manner, TL significantly enhances the performance of the training
process. Here, we summarized the main contribution of this paper.

� We have presented a hearing deficiency identification system based on deep CNN,
where a transfer learning strategy has been used to improve the training process. To fit
the AEP dataset in our model, we fine-tune the high-level parameters, consisting of
unfreezing some part of the pre-training model and re-training it. The lower-level
parameters are transferred from the previous trained deep architecture.

� In the proposed approach, we also changed some high-level parameters, reduced the
number of parameters and complexity of the TL architecture, which helps in improving
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the performance of the VGG16 model for our dataset and reduces the computational
time of the training process.

� The experiment is conducted in a short decision window (1s and 2s), minimizing the
impact of additional features and reducing time consumption, which shows the
proposed system robustness and applicability in real-life application.

The rest of the manuscript is arranged as follows: a detailed data description, data pre-
processing, and the transformation process of CWT are implemented in the Materials and
Methodology section. A detailed description of the development of the proposed pre-
trained model and fine-tuning procedure for hearing deficiency diagnosis is also
described in this section. Experimental performance to determine the models’ validation is
described in the Result of the Experiment and Analysis section. The Discussion section
exhibits a discussion on the comparison of the proposed model with related studies,
along with the key advantages of our proposed method over the previous studies.
The Conclusion section represents the outcome of the present study.

MATERIALS AND METHODOLOGY
The aim of this study is to build an intelligent auditory sensation system for hearing loss
diagnosis with high performance. The overall procedure of the proposed hearing loss
diagnosis method is demonstrated in Fig. 1. The proposed framework consists of few steps,
including data collection, pre-processing, time-frequency analysis, and building a pre-
trained model with fine-tuning. We have used a publicly available online dataset in the
data collection phase instead of data collection ourselves. We converted the raw signal into
a time-frequency image using continuous wavelet transform (CWT). Then, the proposed
deep CNN (improved-VGG16) method is applied in the time-frequency images for
diagnosis the hearing loss. In the TL model, the pre-trained ImageNet dataset has been
used, and the size of the images is 224 � 224 pixels in RGB. The entire dataset has been
converted into a time-frequency image after data collection and resized in height-224 �

width-224 � depth-3. The VGG16 uses natural images which are different from the time-
frequency images of AEP. So, to fit the AEP dataset in the TL model, we replaced some
VGG16 layers with the new layers and then fine-tuned the improved VGG16 model.

Data description
Experimental AEP datasets are provided by ExpORL, Dept. Neurosciences, KULeuven,
and Dept. Electrical Engineering (ESAT), KULeuven (Das, Francart & Bertrand, 2020).
A 64-channel BioSemi Active Two system was used for recording the AEP data, which was
8,196 Hz sampling rate. The entire data was collected from 16 normal-hearing subjects,
and the trial was repeated 20 times from each subject. The recordings were conducted in a
soundproof, electromagnetically shielded space. The auditory stimuli were presented at
60 dBA by Etymotic ER3 insert earphones and were low-pass filtered with a cut-off
frequency of 4 kHz. As simulation software, APEX 3 was used (Francart, van Wieringen &
Wouters, 2008). Three male Flemish speakers narrated four Dutch stories as auditory
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stimulation (Radioboeken, 2021). Every story lasted 12 min and was divided into two
segments of 6 min each. Silent segments that lasted more than 500 ms were shortened to
500 ms. The stimuli were equal in root-mean-square intensity and perceived as equally
loud. The experiment was divided into eight sections, each lasting six minutes. Subjects
were presented with two parts of two storylines in each trial. The left received one part,
while the right ear received the other part. To prevent the lateralization bias described by
Das et al. (2016), the attended ear was alternated over successive trials to ensure that
each ear received an equal volume of data. Each subject received stimuli in the same order,
either dichotically or after head-related transfer function (HRTF) filtering (simulating
sound coming from ±90°). As with the attended ear, the HRTF/dichotic condition was
randomized and balanced within and over subjects.

Data preprocessing
The pre-processing of the AEP data is the first phase after data collection. In this study,
the trials were filtered with a high pass (0.5 Hz cut off) and downsampled from the
sampling rate of 8,192 Hz to 128 Hz. Here, we have investigated sixteen subjects, and
each trial has been segmented into the same length. The entire dataset has been segmented
into short decision windows (1s and 2s) and considered each decision window an
observation. The straightforward reason to select the concise decision windows is to reduce
the computational complexity and make the system faster, which will help detect the
early hearing disorder. From each subject, 200 observations have been picked, and finally,
we achieved a total of 3,200 observations. After data filtering and window selection, the

Figure 1 The overall procedure of hearing deficiency diagnosis method.
Full-size DOI: 10.7717/peerj-cs.638/fig-1
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AEP data of subject-1, channel-1 in the time domain, is shown in Fig. 2 when the subject
hears auditory stimulus through headphones defined as left and right labels.

CWT for time-frequency analysis
CWT is a time-frequency feature extraction approach that offers multi-scale signal
refinement by scaling and translating operations. After the data pre-processing step, the
segmented dataset transforms from the time domain to the time-frequency domain using
the CWT.

The CWT can automatically adapt the time-frequency signal analysis criteria and
clearly explain the signal frequency change with time (Yan, Gao & Chen, 2014). The CWT
is widely used for feature extraction and can be considered a mathematical tool for
transforming time-series into a different feature space. This study uses CWT as a feature
extraction method that converts the raw signal into 2-D time-frequency images from 1-D
time-domain signals. An internal signal operation and a series of wavelets are performed
by the wavelet transforms. The mother wavelet is scaled and translated to create the
wavelet set, which is a family of wavelets w tð Þ, shown as

wS;s tð Þ ¼ 1ffiffiffi
S

p w
t � s
S

� �
(1)

Here, S represents the scale parameter inversely related to frequency, and t represents
the translation parameter.

The signal x tð Þ can be achieved by a complex conjugate convolution operation,
mathematically defined as follows (Huang & Wang, 2018):

W s; sð Þ ¼ x tð Þ;wS;s ¼
1ffiffi
s

p
Z

x tð Þw� t � s
S

� �
dt (2)

Figure 2 AEP raw data plotting in 2s decision window: (A) hear auditory stimulus with the left ear
(B) hear auditory stimulus with the right ear. Full-size DOI: 10.7717/peerj-cs.638/fig-2
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where w� �ð Þ denotes the complex conjugate of the above function w �ð Þ and This
operation decomposes the signal x tð Þ in a series of wavelet coefficients, in which the base
function is the wavelet family. In the equation, the s and τ are two types of parameters in
the family wavelets. The signal x(t) is transformed and projected to the time and scale
dimensions of the family wavelets.

In this study, we use wavelet basis functions (Mother Wavelets). The time-frequency
images are then used as the input of the proposed TLmodel. The transformation process of
CWT is shown in Fig. 3.

Finally, we concatenate the 64 channels data in (M�M) for preparing an observation,
where the value of M is set to eight. So, each observation provides the time-frequency
information of 64 channels. Figure 4 shows the time-frequency image of 64 channels.

Hearing deficiency diagnosis using deep TL
The proposed system presented a deep TL method based on improved-VGG16
architecture for hearing loss diagnosis. The VGG16 uses natural images which are different
from the time-frequency images of AEP. The improvement consists of replacing some
VGG16 layers with the new layers and then fine-tuning the layers to fit the time-frequency
AEP dataset in the model.

Convolutional neural network architecture
LeCun et al. (1998) proposed the convolutional neural networks (CNN), one of the best
pattern recognition methods. The locally trained filters are used in this system to
extract the visual features through the input image. CNN’s internal layer structure consists
of a convolution layer, pooling layer, and fully connected layer. The complete procedure of
CNN is shown in Fig. 5.

� Convolution layer

The convolutional operations provide the more advanced feature representation.
Several fixed-size filters allow the complex functions to be used in the input image (Ravi
et al., 2017). The same weights and bias values are used in the whole image in each filter.
This technique is called the weight-sharing mechanism, and it makes it possible to

Figure 3 The transformation process from time-domain signal to time-frequency domain image.
Full-size DOI: 10.7717/peerj-cs.638/fig-3
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represent the entire image with the same characteristic. A neuron’s local receptive field
reflects the neuron’s region in the previous layer. This study uses the ‘ReLU activation
function (Alpaydin, 2021). Let c × c is the size of the kernel or filter, and i represent the

Figure 4 The time-frequency image of 64 channels data. Full-size DOI: 10.7717/peerj-cs.638/fig-4
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time-frequency image. The weight and bias of the filter are denoted by w and b,
respectively. The output O0;0 can be computed using Eq. (3), where f denotes the activation
function. This study used the ReLU activation function. In most of the classification tasks,
the ReLU activation function has demonstrated superior performance in terms of
accelerating convergence and mitigating the issue of vanishing gradients (Krizhevsky,
Sutskever & Hinton, 2017). The mathematical representation of the ReLU activation
function can also be seen in Eq. (4),

O0;0 ¼ f bþ
Xc
t¼0

Xc
r¼0

wt;ri0þt;0þr

 !
(3)

f xð Þ ¼ x x. 0
0 else

:

�
(4)

� Pooling Layer

The pooling method is used in the feature maps, which have gone through convolution
and activation function. The pooling layer computes the local average or maximum value,
reducing the complexity and retaining the essential features, thus enhancing feature
extraction performance.

� Fully connected layer

The convolutional and pooling layers alternately transfer the image features; after
that, the fully connected layer received the image feature as an input. One or more hidden
layers may have in the fully connected layer. By the data from the previous layer, each
neuron multiplies the connection weights and adds a bias value. Before transmission to the
next layer, the measured value is passed via the activation function. Eq. (5). displays
neuronal calculations in this layer.

fc1 ¼ f ðbþ
XM
q¼1

w1;q � OqÞ (5)

where f is the activation function, w is the weight vector, O is the input vector of the qth

neuron, and b is the bias value.

Figure 5 Typical convolutional neural network architecture.
Full-size DOI: 10.7717/peerj-cs.638/fig-5
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� SoftMax

The SoftMax activation function variates the logistic regression adapted to multiple
classes and used in the output layer for classification purposes. It can be determined by
Eq. (6) (Sermanet et al., 2013),

classj ¼
exp sfj
� �

P
q exp sfq

� � (6)

Proposed pretrained model building and fine-tuning
In the convolutional neural network, the convolutional layers are used to extract the
features from the dataset in a different manner, whereas the fully connected layers are
used to classify the extracted features. The most forthright approach for enhancing the
feature learning capability is to increase the depth or width of the deep neural network.
However, this can lead to two issues: the first concern is that a deeper or wider model
typically has more parameters, rendering the expanded network more vulnerable to
overfitting. The second concern is that it raises the use of computing resources
substantially.

To overcome these flowing issues and extract the AEP feature efficiently, the VGG16
network utilizes several parallel layers with different convolutional kernel sizes.
It concatenates the outputs at the end of the pre-trained network. In the proposed TL
model, we replace some layers of VGG16 with the new layers to fit the AEP dataset in
the pre-trained network, which enhances hearing loss identification performance.
The replacement process consists of adding some dense layers in the fully connected block
of VGG16 architecture and adding the dropout layers after every dense layer. A densely
connect layer learns features from all the previous layer’s features. The dense layer
performs a matrix-vector multiplication, and with the help of backpropagation, the
parameters can be trained and updated. The dense layer is used to change the vector’s
dimensions and applies in other operations like rotation, scaling, and translation. Mele &
Altarelli (1993) reported that on the CIFAT-10 dataset, the error rate 16.6% when
testing the dataset in a convolutional neural network. They improved the model’s
performance with an error rate of 15.6% when the dropout layer was utilized in the last
hidden layer. We add the dropout layer after every dense layer in the fully connected block
to reduce the model complexity and prevent overfitting. The neuron is temporarily
dropped with the probability p at each iteration. Then, at every training step, the
dropped-out neuron is resampled with the probability p, and a dropped-out neuron will be
active at the next step. Here, the hyperparameter p is the dropout rate. Since the VGG16
uses the ‘ImageNet’ weight, which is trained with the natural image, and the proposed
time-frequency images are not similar, more layers need to be fine-tuned where the
weight is updated with the ‘ImageNet’ weight. This process helps to fit the time-frequency
images with the TL architecture. The proposed fine-tuning consists of unfreezing some
pre-trained network layers and re-train with the AEP dataset.
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In the proposed approach, at first, we remove all the layers of VGG16 after the first 3 × 3
convolution layer of convolutional block five, as shown in Fig. 6, and replace the fully
connected block there. Then, we add multiple dense layers at the end of the VGG16 model,
and after every dense layer, we add the dropout layer. In the case of CNN, the
convolutional layers extract the feature from the dataset, whereas the fully connected
layers try to classify the extracted features. Consequently, adding more layers to the dense
section can empower the network’s robustness and improve classification accuracy. So,
despite using the two dense layers of the VGG16, here, we add three new dense layers
units of 1,024, 512, and 288 in the fully connected block. Then, we add a dropout layer
after each dense layer, and the dropout value is set to 0.2, 0.4, and 0.6, respectively.
The reason behind adding the dropout layers is that the deep learning model reduces
the performance due to overfitting, and the dropout layers reduce the model complexity
and prevent overfitting. These techniques help in enhancing the performance in the
hearing loss diagnosis. We also remove the top layer and adding a SoftMax layer (output
layer) based on the targeted class. Based on the hyperparameters tuning technique, the
proposed approach uses the ‘Adam’ optimizer to adjust the network weight with the batch
size 64, and the learning rate is set to 0.0001. The parameters selection is made with the
help of the ‘Keras-Tuner’ library. This library helps to select the most optimal set of
hyperparameters for our architecture. Hyperparameters are the variable that governs
the training process of the DL model and structure. There are two types of
hyperparameters: first, model hyperparameters that help in selecting the number and
width of the multiple hidden layers. Second, algorithm hyperparameters help to influence
the speed and quality of the learning algorithm. All the hyperparameters selected to
build the proposed architecture are based on ten different runs of the model. The following
steps are used to train the model for hearing loss identification, shown in Box 1.

The detailed information of the parameter of the proposed TL architecture is shown in
Table 1. Here, C means the targeted class.

During the training process, all the layers before convolutional block four are frozen.
The weights are updated in the trainable layers, which helps in minimizing the errors
between the predicted labels and the actual labels. The complete architecture of the
proposed TL has demonstrated in Fig. 6.

RESULT OF THE EXPERIMENT AND ANALYSIS
This section represents the proposed hearing loss diagnosis method’s performance
based on CWT and deep CNN architecture (improved-VGG16). First, we converted the
time domain signal to time-frequency domain images. Then, the images are resized into
height-224 � width-224 � depth-3, which is the suitable size of the proposed model.
In this study, two different decision windows were tested: 1s and 2s. This term refers to
the quantity of data required to make a single left/right decision. The practical reason
behind selecting the shorter decision window is to detect the hearing condition quickly.
The entire dataset was randomly split into the training set and testing set. Here, we
used 70% dataset to train the architecture, and the rest of the dataset was used to test the
model’s validation. This experiment has conducted with sixteen subjects where the subjects
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Figure 6 Transfer learning procedure of the proposed method.
Full-size DOI: 10.7717/peerj-cs.638/fig-6
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hear the auditory track. Based on listening to the auditory track with the ear, the dataset
has been divided into two classes. The ‘Class1’ means the subject hears the auditory
track with the left ear and the ‘Class2’ means the subject hears the auditory track with
the right ear. With the (1s and 2s) decision windows, we randomly selected 200
observations from each subject. A total of 2,240 observations has been used for training the
model and 960 observations for testing the performance.

Box 1 Training procedure of proposed TL architecture.

The training steps of the proposed TL architecture:

Step 1: Load the VGG16 base model with the pre-trained weights.

Step 2: Freeze some layers in the base model by setting trainable = False. In the nontrainable layers, the
weights will not train.

Step 3: Create a new model by replacing some layers of VGG16 with new layers and retrain the layers
with the layers where the trainable = True.

Step 4: Train the new model with the dataset.

Table 1 Parameter of proposed TL architecture.

Layer (type) Output Number of parameters

Input 224 * 224 * 3 0

Block1-Conv2D 224 * 224 * 64 1,792

Block1-Conv2D 224 * 224 * 64 36,928

Block1-MaxPooling2D 112 * 112 * 64 0

Block2-Conv2D 112 * 112 * 128 73,856

Block2-Conv2D 112 * 112 * 128 147,584

Block2-MaxPooling2D 56 * 56 * 128 0

Block3-Conv2D 56 * 56 * 256 295,168

Block3-Conv2D 56 * 56 * 256 590,080

Block3-Conv2D 56 * 56 * 256 590,080

Block3-MaxPooling2D 28 * 28 * 256 0

Block4-Conv2D 28 * 28 * 512 1,180,160

Block4-Conv2D 28 * 28 * 512 2,359,808

Block4-Conv2D 28 * 28 * 512 2,359,808

Block4-MaxPooling2D 14 * 14 * 512 0

Block5-Conv2D 14 * 14 * 512 2,359,808

Flatten-Flatten 1 * 1 * 100352 0

fc1-Dense 1*1*1024 102,761,472

dropout-Dropout 1*1*1024 0

fc2-Dense 1*1*512 524,800

dropout_1-Dropout 1*1*512 0

Fc3-Dense 1*1*288 147,744

dropout_2-Dropout 1*1*288 0

Output-Dense C 288*C+C
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For 1s window length, the performance of the proposed approach for each subject in
terms of accuracy, precision, recall, f1-score and cohen’s kappa of all subjects is
demonstrated in Table 2.

Table 2 illustrates that in the case of subject-5, subject-7, and subject-16, our network
achieves an unprecedented performance of 100%. Except for six subjects (Subjects-3, 6, 9,
11, 13 and 14), all subjects have achieved more than 90% accuracy. However,
comparatively lower classification accuracy has been noticed by Subjects-3 (86.67%),
Subject-6 (83.33%), Subject-9 (76.67%), Subject-11 (81.67%), Subject-13 (78.33%), and
Subject-14 (76.67%). In the case of 1s decision window length, the average classification
accuracy is 91.56%, whereas the standard deviation is 8.91%. Besides classification
accuracy, other performance evaluation techniques (such as precision, recall, f1-score, and
cohen kappa score) are also calculated to check the proposed model’s acuity. The average
value of precision, recall, f1-score, and cohen kappa for sixteen subjects are 90.74%,
93.63%, 91.92%, 82.71%, respectively, whereas standard deviations are 10.47%, 8.25%,
8.79%, 18.34%, respectively. Figure 7 shows the overall accuracy and loss curve of the
proposed TL method for the 1s decision window.

For 2s window length, the performance of the proposed architecture is illustrated in
Table 3. In this case, a maximum of 100% accuracy has achieved for subject-6, subject-7,
subject-10, subject-16. Here, in the case of subject-16, we achieved 1.67% more
accuracy compared to the 1s time window analysis. However, the proposed architecture
achieves an unprecedented improvement (more than or equal to 90% for decision

Table 2 Performance of proposed model for 1s decision window.

Subject Accuracy Precision Recall F1 Score Cohens
Kappa

Subject-1 0.9833 0.9688 1.0 0.9841 0.9666

Subject-2 0.9667 1.0 0.9355 0.96667 0.9334

Subject-3 0.8667 0.8108 0.9677 0.8824 0.7312

Subject-4 0.9667 0.9393 1.0 0.9688 0.9331

Subject-5 1.0 1.0 1.0 1.0 1.0

Subject-6 0.8333 0.8387 0.8387 0.8387 0.6663

Subject-7 1.0 1.0 1.0 1.0 1.0

Subject-8 0.95 0.9667 0.9355 0.9508 0.9

Subject-9 0.7667 0.7167 0.7933 0.7367 0.4833

Subject-10 0.9833 1.0 0.9677 0.9836 0.9667

Subject-11 0.8167 0.7409 1.0 0.8578 0.6241

Subject-12 0.9833 1.0 0.9632 0.9853 0.9567

Subject-13 0.7833 0.8214 0.7419 0.7797 0.5676

Subject-14 0.76667 0.7453 0.8365 0.7892 0.5378

Subject-15 0.9833 0.9688 1.0 0.9841 0.9666

Subject-16 1.0 1.0 1.0 1.0 1.0

Average ± SD 91.56% ± 8.91% 90.74% ± 10.47% 93.63% ± 8.25% 91.92% ± 8.79% 82.71% ± 18.34%
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windows of 2s) in each subject. The lowest accuracy of 90% has been obtained in
subject-13.

With the 2s decision window, the average value of accuracy precision, recall, f1-score,
and cohen kappa for sixteen subjects are 96.87%, 96.49%, 97.57%, 97% and 93.73%,
respectively. On the other hand, the standard deviation of precision, recall, f1-score, and
cohen kappa are 2.78%, 3.50%, 2.76%, 2.64% and 5.57%, respectively. Figure 8 shows the
overall accuracy and loss curve of the proposed TL method.

Figure 7 The overall accuracy and loss curve of the proposed TL method for 1s decision window.
Full-size DOI: 10.7717/peerj-cs.638/fig-7

Table 3 Performance of proposed model for 2s decision window.

Subject Accuracy Precision Recall F1 Score Cohens Kappa

Subject-1 0.9833 1.0 0.9677 0.9836 0.9666

Subject-2 0.9666 0.9393 1.0 0.9687 0.9331

Subject-3 0.95 0.9666 0.9354 0.9508 0.9

Subject-4 0.9666 0.9393 1.0 0.96875 0.9331

Subject-5 0.9833 1.0 0.9677 0.9836 0.9666

Subject-6 1.0 1.0 1.0 1.0 1.0

Subject-7 1.0 1.0 1.0 1.0 1.0

Subject-8 0.95 0.9375 0.9677 0.9523 0.8997

Subject-9 0.9666 0.9677 0.9677 0.9677 0.9332

Subject-10 1.0 1.0 1.0 1.0 1.0

Subject-11 0.9333 0.9354 0.9354 0.9354 0.8665

Subject-12 0.95 0.9666 0.9354 0.9508 0.9

Subject-13 0.9 0.8787 0.9354 0.9062 0.7993

Subject-14 0.9666 0.9393 1.0 0.9687 0.9331

Subject-15 0.9833 0.9687 1.0 0.9841 0.9665

Subject-16 1.0 1.0 1.0 1.0 1.0

Average ± SD 96.87% ± 2.78% 96.49% ± 3.5% 97.57% ± 2.76% 97% ± 2.64% 93.73% ± 5.57%
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To illustrate the performance of the proposed TL model in depth, the confusion
matrix of all subjects has been given separately. A confusion matrix can be used to estimate
the classification accuracy of a model visually. Figure 9 represent the confusion matrix with
1s decision windows analysis, whereas Fig. 10 represent the confusion matrix with 2s
decision window analysis. In both figures, the letter A to P denotes the confusion matrix of
subject-1 to subject-16, respectively.

The correct predictions are on the diagonal in the confusion matrix, while the incorrect
predictions are off the diagonal. For example, in the case of Fig. 10A that denotes subject-1,
a total of 59 observations (29 observations for class1, 30 observations for class2) have
been recognized accurately among 60 observations. In both decision windows, the total
testing set for sixteen subjects consists of 960 observations, in which 464 observations are
in 'Class1', and 496 observations are in 'Class2'. For 1s decision windows, our network
correctly detects 876 observations whilst 84 observations have been misclassified (shown in
Fig. 9). On the other hand, for 2s decision windows, 930 observations have been accurately
detected, whereas only 30 observations have been misclassified (shown in Fig. 10).
Therefore, 2s decision windows provide a significant performance compared to the 1s
decision windows.

Furthermore, to study the relationship between window length and detection
performance, this study includes a comparison. Figure 11 visualizes the average
performance of two decision windows over our network.

Figure 11 shows that the proposed TL network with a 2s decision window
significantly improves recognition accuracy compared to the 1s decision window analysis.
The main goal of this study is to enhance the performance for detecting the hearing
condition with a concise decision window, so that we can efficiently use this system in real-
life application. For this purpose, first, we analyze the 1s decision window and achieve
91.56% recognition accuracy; still not so high to apply this system in real-life application.
Furthermore, to enhance the performance of our proposed diagnosis system, we move on
to the 2s decision windows length, and this time we achieve a 5.31% improvement in

Figure 8 The overall accuracy and loss curve of the proposed TL method for 2s decision window.
Full-size DOI: 10.7717/peerj-cs.638/fig-8
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accuracy compared to the 1s decision window length. In the case of other performance
evaluation techniques such as precision, recall, F1 score and Cohen’s kappa, we achieve
5.74%, 3.94%, 5.08%, and 11.02%, improvement, respectively. The improvement indicates
the robustness and applicability of our proposed system.

Despite the impressive performance of the proposed system, in some cases, the
performance of our network is unsatisfactory. The possible reason for this poorer
performance compared to the other successful cases is that in EEG-based BCI application
studies, a small SNR and different noise sources are among the greatest challenges.
Furthermore, Unwanted signals contained in the main signal can be termed noise, artifact,

Figure 9 Confusion matrix for 1s decision windows: (A) subject-1, (B) subject-2, (C) subject-3, (D) subject-4, (E) subject-5, (F) subject-6,
(G) subject-7, (H) subject-8, (I) subject-9, (J) subject-10, (K) subject-11, (L) subject-12, (M) subject-13, (N) subject-14, (O) subject-15,
(P) subject-16. Full-size DOI: 10.7717/peerj-cs.638/fig-9
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or interference. Sometimes, the brain may produce some unwanted noise due to the lack of
the subject’s proper attention or muscle movement, affecting the detection results. In the
experiment, we select concise decision windows (1s and 2s), and working with a short
window have many advantages but still very challenging (Geirnaert, Francart &
Bertrand, 2020). For these possible reasons, some subjects may provide a lower accuracy
compared to the other’s subject (shown in Table 2 and Table 3). Suppose in the 2s decision

Figure 10 Confusion matrix for 2s decision windows: (A) subject-1, (B) subject-2, (C) subject-3, (D) subject-4, (E) subject-5, (F) subject-6,
(G) subject-7, (H) subject-8, (I) subject-9, (J) subject-10, (K) subject-11, (L) subject-12, (M) subject-13, (N) subject-14, (O) subject-15,
(P) subject-16. Full-size DOI: 10.7717/peerj-cs.638/fig-10
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windows length; if we avoid the two subjects that perform poorer than the other subjects
(shown in Table 3), we will achieve 97.62% recognition accuracy. However, the average
training and testing accuracy of sixteen subjects with 2s windows length is 100% and
96.87%, respectively, after 100 epochs, whereas the standard deviation is 2.78%.

Furthermore, to study the robustness of the proposed method with a 2s decision
window (1s decision windows is not considered in the subsequent analysis), the
performance of the proposed model has been compared with other widely used TL
architectures. Six popular transfer learning algorithms namely, InceptionResNetV2
(Längkvist, Karlsson & Loutfi, 2014), MobileNet (Pan et al., 2020), ResNet50
(He et al., 2016), VGG16 (Simonyan & Zisserman, 2015), VGG19 (Simonyan & Zisserman,
2015), and Xception (Chollet, 2017) have employed to the time-frequency image of AEP
dataset for hearing loss diagnosis. The input size is the same (height- 224� width-224�

depth-3) for all the TL architectures. Figure 12 illustrates the performance comparison of

Figure 11 Hearing deficiency detection performance of the proposed TL architecture for two
different window lengths. Full-size DOI: 10.7717/peerj-cs.638/fig-11

Figure 12 The performance comparison with other pre-trained architectures.
Full-size DOI: 10.7717/peerj-cs.638/fig-12
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six popular TL models with the proposed model. According to Fig. 12, the proposed model
achieved higher accuracy compared to the other TL models.

We also reduced the model parameters of VGG16 which help in reducing the model
complexity and minimize the computational resources. The total number of all model
parameters and performance is represented in Table 4. Table 4 reported that the overall
accuracy is less than 61% in all the pre-trained networks, where the models used pre-
trained ‘ImageNet’ weights for hearing impairment identification.

In the proposed TL methods (Improved-VGG16), we reduced the total number of
parameters of VGG16 (134,268,738 to 113,429,666). Although we reduced the number of
parameters, the testing accuracy was still improved to 96.87% from 57.37%. The reason
behind the higher accuracy of the proposed model compared to the other TL models
is the replacement of some VGG16’s layers with the new layers and fine-tune the higher
higher-level parameters, which helps to fit the AEP dataset in the pre-trained network.
This replacement consists of adding some dense layers in the fully connected block of
VGG16 architecture and adding the dropout layers after every dense layer (shown in
Fig. 6). In the fine-tuning block, the time-frequency images are updated with the
‘ImageNet’ weight. This technique helps to fit the dataset in the proposed TL architecture
and enhance the overall performance for the hearing loss diagnosis. This experiment
is carried out in python, where we used Google colab, Windows 10, Intel(R) Xeon(R)
CPU @ 2.30GHz, Tesla K80, and CUDA Version: 10.1.

DISCUSSION
A hearing deficiency detection method based on CWT and improved-VGG16 is proposed
in this paper and achieved significantly outperform performance with the shorter decision
windows (2s) than the previous state-of-art studies. The proposed improved-VGG16
architecture achieved an average accuracy, precision, recall, f1-score, and Cohen kappa of
96.87%, 96.50%, 97.58%, 97.01%, and 93.74%, respectively.

From Fig. 12, it is clear that our network achieved more than 35% significant
improvement compared to the others TL algorithms. In this experiment, we also found a
significant effect of the decision window length on the overall performance. We achieved
the improvement in the 2s decision window: 5.31% accuracy, 5.74% precision, 3.94%
recall, 5.08% in F1 score, and 11.02% Cohen’s kappa than the 1s decision window.

Table 4 Performance comparison with six popular TL models.

Pre-network model Input size Trainable
parameters

Non-trainable
parameters

Total parameters Recognition accuracy (%)

VGG16 224 8,194 134,260,544 134,268,738 57.375

InceptionResNetV2 224 3,074 54,336,736 54,339,810 54.000

ResNet50 224 4,098 23,587,712 23,591,810 54.875

MobileNet 224 2,002 4,253,864 4,255,866 60.250

Xception 224 4,098 20,861,480 20,865,578 57.625

VGG19 224 8,194 139,570,240 139,578,434 56.625

Proposed model 224 103,434,594 9,995,072 113,429,666 96.87 ± 2.78
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The improvement is because the concise decision windows (1s) contain less information
and sometimes provide unsatisfactory performance. However, this study aims to build
an efficient network that can detect the hearing condition with a concise decision window
so that we can able to achieve the decision quickly and can provide more effectiveness in
real-life application.

Furthermore, a comparison of the proposed model with existing related studies is
represented in Table 5. As seen in Table 5, Hallac et al. (2019) and Dass, Holi &
Soundararajan (2016) utilized the convolutional neural network-based classification
approach and achieved higher accuracy compared to the other related studies. Hallac et al.
(2019) reported that with the raw AEP data and CNN, they achieved 94.1% accuracy.
Dass, Holi & Soundararajan (2016) used both the time and frequency domain feature to
extract the information from the raw AEP data. They used a feed-forward multilayer
network to classify the AEP signal and achieved 90.74% testing accuracy. Both studies
achieved a very encouraging performance but need more testing observations to validate
the model’s robustness.

In Dietl & Weiss (2004),Mahmud et al. (2019), Tan et al. (2013) and Li et al. (2019), the
SVM classifier was used to classify the AEP dataset. Their approach achieved 78.80%,
85.71, 87%, and 78.7% accuracy, respectively. The obtained overall performance is not
enough to apply the models in real-life application. Tang & Lee (2019) proposed a TS-PSO
hybrid model to classify the two-class AEP dataset. They used Wavelet entropy as a
feature extraction method and achieved 86.17% testing accuracy. Zhang et al. (2006)
proposed a combination of wavelet analysis and Bayesian networks to classify auditory
brainstem response (ABR) signals. For the wavelet analysis, they used the DWT method.
Although they conducted an excellent analysis, the overall accuracy is reported 78.80%,
which needs improvement.

Table 5 Performance comparison of related AEP studies.

Reference Year Data Feature extraction Classification
method

Classification
accuracy (%)

Subject Class

(Tang & Lee, 2019) 2019 180 2 WE TS-PSO 86.17

(Mahmud et al., 2019) 2019 32 2 Global and
nodal graph

SVM 85.71

(Dietl & Weiss, 2004) 2004 200 3 WPT SVM 74.7

(Zhang et al., 2006) 2006 8 2 DWT Bayesian
network
classification

78.80

(Tan et al., 2013) 2013 39 2 SIFT SVM 87

(Li et al., 2019) 2019 Observation: 671 2 FFT SVM 78.7

(Hallac et al., 2019) 2019 Observation: 671 2 Raw AEP CNN 94.1

(Dass, Holi & Soundararajan, 2016) 2016 Observation: 280
Subjects: 151

2 latency, FFT and DWT A feed-forward
multilayer perceptron

90.74

Proposed work – Observations: 3,200 2 CWT Improved-VGG16 96.87
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The experimental outcomes demonstrated that the proposed architecture gain an
impressive performance than the other related study for hearing deficiency diagnosis
reported in the literature. Although the proposed approach outperforms state-of-art
hearing deficiency detection methods, some difficulties are also faced during the
experimental analysis. For example, to check the cross-validation and prove the feasibility
of our proposed network, a wide range of similar datasets is needed. However, we did not
find such dataset for further validation of the proposed method. Another issue is the
absence of clear speech envelopes in the dataset. In the previous research, several types of
EEG headsets were used to detect the hearing conditions, and these contain a different
number of electrodes (1–256). So, the number of electrodes and which electrodes are
required to achieve acceptable performance should be determined (Mirkovic et al.,
2015; Montoya-Martínez, Bertrand & Francart, 2019; Narayanan & Bertrand, 2018). In
most of the studies, the analysis is carried out with ordinary machine learning algorithms,
and a few studies are investigated with the deep learning approaches (Krizhevsky,
Sutskever & Hinton, 2017; Nossier et al., 2019; Shao et al., 2019). However, most of the
studies' testing accuracy is not enough to use the model in real-time as well as real-life
applications. A fast and more accurate approach can be an efficient tool for future hearing
devices and provide a great application in real-life uses. Our study proposed the time-
frequency distribution with a deep learning method and achieved superior performance to
other related approaches for hearing loss diagnosis reported in the literature. The key
advantages of our proposed method compared to previous studies are written below:

� Instead of training the AEP dataset with the deep learning architecture from scratch, the
proposed study is conducted with a transfer learning strategy, which helps in faster
training and better accuracy.

� To fit our time-frequency AEP dataset with the pre-trained model weight, we fine-tuned
some higher-level parameters where the pre-trained weights are updated with the
provided dataset. This strategy helps in enhancing the overall performance for detecting
hearing deficiency.

� We compare the model’s performance with the six popular TL methods, including
VGG16 (Simonyan & Zisserman, 2015), VGG19 (Simonyan & Zisserman, 2015),
MobileNet (Pan et al., 2020), ResNet50 (He et al., 2016), InceptionResNetV2 (Längkvist,
Karlsson & Loutfi, 2014), and Xception (Chollet, 2017) algorithms where the proposed
architecture is superior for hearing deficiency diagnosis.

� We also changed some higher-level parameters (after the first layer of the convolutional
block five, we remove all the layers and add the new fully connected layer shown in
Fig. 5). This approach also helps in reducing the VGG16 parameters and increasing the
performance of the proposed improved-VGG16 model.

� The proposed approach achieved the height classification accuracy of 96.87%, compared
to the previous studies (Ciccarelli et al., 2019; McKearney & MacKinnon, 2019;
Ibrahim, Ting &Moghavvemi, 2019;Dietl &Weiss, 2004; Tang & Lee, 2019; Sanjay et al.,
2020; Xue et al., 2018; Zhang et al., 2006; Tang & Lee, 2019; Mahmud et al., 2019;
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Dietl &Weiss, 2004; Zhang et al., 2006; Tan et al., 2013; Li et al., 2019;Hallac et al., 2019;
Dass, Holi & Soundararajan, 2016).

� The impact of different decision windows is also exhibited in the proposed study,
whereas our network provides a significant outcome with a concise decision window.

CONCLUSIONS
The proposed hearing loss diagnosis framework consists of two major steps: signal to
image transformation and building a hearing deficiency diagnosis system using deep CNN.
In the proposed study, the CWT is used to convert the raw signals to time-frequency
images. Then, CNN-based improved-VGG16 is used to classify the time-frequency
images. This approach achieved better outcomes with fewer trainable parameters, which
help to reduce the training time of the model. The applicability and effectiveness of the
proposed method are verified by the publicly available AEP dataset, and it achieved
96.87% testing accuracy with a concise decision window. Moreover, this study will help to
identify early hearing disorders efficiently. Because of the unstable and subject-specific
characteristics of the AEP signal, identification of the AEP signal is challenging. Thus, to
enhance the detection system’s accuracy, other AEPs features need to be investigated, and
the use of more data variance and conditions can also be improved the outcome.
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