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Abstract. Topology features such as interconnectivity, pore shape and size, porosity, struts 

thickness, and used materials play the key roles for mechanical and biological properties of 

meta-biomaterials structures. However, the influences of morphological geometries on the 

mechanical and biological properties are not certainly intuitive. This paper develops parametric 

model that use to visualize the morphological geometries of unit cell of meta-biomaterials on 

design space that governing the manufacturing limitation, mechanical and biological 

requirements. The selected samples within design spaces tested to determine manufacturing 

accuracy and effective elastic modulus by finite element analysis. The geometries 

discrepancies between designed models and manufactured samples obtained percentage of 

average errors of 13% for diamonds structures and 21% for square structures. The proposed 

technique yielded average error reduced to 74.4% for diamond structures and 44.4% for square 

structures of effective elastic modulus from theoretical calculation. The approach and the 

implications of the results discussed in the context of mechanical and biological criteria with 

highlight of advantages and limitations of meta-biomaterials manufactured by additive 

manufacturing for orthopaedic implants.  

Keywords: Meta-biomaterials; Additive Manufacturing; Finite Element Analysis; CoCrMo. 

1. Introduction 

Meta-biomaterials known as a unique class of materials that exhibited unprecedented combination of 

mechanical, mass transport and biological properties made from biomaterials for biomedical 

applications [1, 2]. Metamaterials are design with a repeating unit cell and used for other applications 

including optical [3, 4] and acoustic [5, 6] given to micro-architecture level. Bone-mimicking meta-

biomaterials are progressively being studied which are particularly relevant for bone substitution since 

the implants offer a high surface area to promote bone in-growth, facilitate transportation of nutrient 

components, expedite tissue regeneration as well as improve implant longevity [7]. In addition, the 

mechanical properties of meta-biomaterials ideally tailored to have comparable elastic modulus with 

human bone as to reduce stress-shielding phenomenon that influence bone resorptions and revision 

surgeries.   

 The reliability to manufacture meta-biomaterials with highly controlled micro geometry 

architectures is vital to the great achievement of orthopaedic implants. Conventional techniques for 

example, space holder [8, 9] and direct metal foaming [10, 11] provide restricted freedom in 

fabricating complex structures with desired porosity  and homogenous pore distribution and 
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interconnectivity that can fulfill specific requirements of mechanical properties and biological 

response [12-14]. Recently, additive manufacturing (AM) technology such as electron beam melting 

(EBM) and selective laser melting (SLM), bring versatility in three-dimensional (3D) layer-by-layer 

processes of patient-specific implant devices [15-17]. Additionally, gradient of pore size and porosity 

are introduced into the micro-architecture to improve mechanical behaviour and biological response 

with the respect of anatomical location of local bone.  

 The micro-architectures of the unit cell of meta-biomaterials customized with rationally controlled 

pore shape, pore size, and porosity to provide sufficient mechanical stability and optimum structural 

suitability for bone-implant interactions [18, 19]. From previous studies, topological design of unit cell 

meta-biomaterials, relative density and used materials influenced the compressive and fatigue 

properties of the structures [20-22]. For meta-biomaterials, there are presently no quantitative 

standards of specifying pore parameters and porosity volume constraints for cells in-growth and 

mechanical stability of the implants. Furthermore, there is lack of study that discussed the effects of 

unit cell size, porosity percentage, and strut thickness on the mechanical and biological properties of 

meta-biomaterials particularly for orthopaedic implant applications.  

 Many recent studies are focusing on selection of unit cell topologies of porous biomaterials with no 

systematic approach to obtain designed structures that are manufacturable for implants [23, 24]. 

However, this method does not provide a full perspective of the precise viable design space to define 

each unit cell topological parameters. Additionally, this technique frequently leads to design and 

produce porous implants with geometrical parameters higher than the ideal range for biological 

properties requirements. Any insight into how the topologies design, biological and manufacturing 

requirements influenced the acceptable parameter design range of a unit cell of meta-biomaterials. In 

essence, an extensive characterization of the developed design space for meta-biomaterials is crucial to 

comprehend the relationship of mechanical properties and biological requirements with the 

geometrical design boundaries.  

 This paper presents systematic procedure for understanding the interaction relationship between 

geometrical parameters with the mechanical and biological properties. The chart model allows 

graphically examining the acceptable porosity percentage, unit cell size, strut thickness and pore size 

that are possible for fabricating process. This work also goals to investigate the purpose of design 

space in manufacturing meta-biomaterials by SLM, as well as to comprehend the relationship of with 

geometrical constraints inflicted by biological necessities, mechanical requirements and additive 

manufacturing drawback.  

2. Methodology 

2.1. Development of cell topologies design domains 

The parametric geometrical of diamond and square unit cell types were applied to develop the design 

domains. Both unit cells have modulus matrix with cubic symmetry. The designed unit cells exhibited 

almost isotropic mechanical properties. From the given geometric topology, computer-aided design 

(CAD) models generated via SolidWorks software. The overall unit cell type controlled by two 

parameters, which were strut thickness (t) and unit cell size (l). These parameters combination 

regulated each unit cell to obtain resultant of desired porosity and pore size. In this study, the pore size 

defined by the largest circle correspond that can permit through adjacent cells in the samples.  The 

porosity derived as in equation 1.  

 

                                               𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) = (1 −
𝑉𝑝

𝑉𝑠
) × 100                                                                    (1) 

 

where vp refers to void volume of unit cell and vs refers to the volume of solid unit cell. The pore sizes 

and porosities plotted in contour design spaces where on the x-axis represented pore size and the y-axis 

represented strut thickness. Meanwhile, isometric lines illustrated the value of cell size and porosity of 

the structures. From contour area, the accompanying biomechanical requirements and fabrication 
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limits overlaid to feature the allowable design maps as in figure 1 and figure 2. The according vital 

criteria for generating design space as follows:  

 

 Biological requirement: Pore size range of 50 µm and 800 µm with porosity more than 50% 

are favourable for optimum biological response. The red lines showed the boundaries of these 

values in the design space maps.  

 Manufacturing constraint: Additive manufacturing (AM) technologies restricted to 

manufacture a minimal strut thickness of 300 µm of meta-biomaterials depending to selected 

process parameters. The constraint illustrated in the x-axis design space maps as in red line.  

 

The design domain maps develops with borders as in the blue region represents the geometric 

parameters with respect to appropriate for bone in-growth and manufacture capability of AM 

technology. All the designs of meta-biomaterials falling within the domains area were satisfactory 

solutions that emerge the bone in-growth requirements and AM limitations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Admissible design space for diamond type.  

 

Figure 2.   Admissible design space for square type.  
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2.2. Design parameters of selected samples 

The representative samples (in black) at the boundary of the design spaces as in figure 1 and figure 2 

selected for further investigation. Seven points of diamond type designated with the porosity in the 

range of 50% to 80% (Diamond #1-7).  Meanwhile, for square unit cell, six points were selected in the 

range of porosity of 50% to 70% (Square #1-6). These points considered direct correlation of the 

consequence of geometrical parameters with morphology corresponding to ideal requirement of 

orthopaedic implants. Table 1 summarises the morphological details for the selected points.  

 

Table 1. Geometrical details of the representative samples. 

Unit cell type # Unit cell size (mm) Strut thickness (mm) Pore size (mm) Porosity (%) 

Diamond  1 1.5 0.3 0.76 82 

 2 1.5 0.4 0.66 70 

 3 1.5 0.5 0.56 58 

 4 2.0 0.4 1.1 80 

 5 2.0 0.5 0.91 74 

 6 2.0 0.6 0.81 66 

 7 2.0 0.7 0.71 54 

Square 1 1.0 0.3 0.70 70 

 2 1.0 0.4 0.60 60 

 3 1.0 0.5 0.50 50 

 4 1.5 0.5 1.0 70 

 5 1.5 0.6 0.9 60 

 6 1.5 0.7 0.80 50 

 

2.3. Material and fabrication process 

The selected geometries fabricated by SLM process (SLM® 125HL) out of cobalt chrome 

molybdenum (CoCrMo) alloys with powder particles had average size of approximately 22 µm. The 

manufacturing process used 300 W laser and laser spot diameter of 80 µm with energy density 119 

J/mm3. The samples manufactured at intervals of 30 µm layer thicknesses and hatch spacing of 120 

µm with layer-by-layer exposure on a stainless steel base plate. The build chamber was flushed with 

argon gas to prevent contamination and oxidation. The samples experienced thermal stress-relieved at 

temperature of 1050 °C for two (2) hours in an argon atmosphere. Electrical discharge machining 

(EDM) used to detach the build samples from the base plate. 

2.4. Morphology evaluations 

Each design points were randomly selected and morphological evaluated in order to measure as 

manufactured strut thickness and pore size. The strut size of produced samples investigated and 

analyzed in addressing the manufacturability and accuracy of SLM performance of the produced meta-

biomaterials using optical microscope (Dino-lite Digital Microscope). These average values measured 

as ten dimensional values at random points for every measurement. The results were compared to the 

as CAD designed strut thickness and pore size. 

2.5. Prediction of effective elastic modulus 

A model proposed by Gibson and Ashby [25] was employed in order to predict the effective elastic 

modulus of designed samples as in equation 2.  Elastic modulus of solid Co-Cr-Mo was consumed as 

220 GPa  [26].  
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where  E* = Elastic modulus of meta-biomaterials; 

   Es = Elastic modulus of solid; 

  C = Constant; 

  ρ* = Density of meta-biomaterials; and 

  ρs =Density of solid  

 

From above equation, elastic modulus demonstrated that was dependent on the relevant density. 

Equation 3 used to determine the relevant density that associated to porosity volume [25]. 

 

  1)( s  
(3) 

 

where φ was the porosity. Then, equation 3 rewritten as equation 4 in order to determine the effective 

elastic modulus [25].  

 

 2)1  seff EE
 

(4) 

  

where Eeff = effective elastic modulus  

   

Gibson and Ashby model was employed in this study for prediction effective elastic modulus (Eeff) 

of three-dimensional porous structure when the structure loaded vertically upon unit cell geometry. 

ANSYS 18.0 also used to predict the effective elastic modulus of the samples. In order to explore what 

impact this has on the effective stiffness, the study considered the effect of variable within unit cell 

parameters. Finite element model was designed with a structure that having six layers with one unit 

cell in each layer.  SOLID 185 used to mesh each model by four node tetrahedral elements with size of 

element of 0.1 mm. Under the materials elastic limit, a uniform 0.1% compressive strain applied to the 

top surface of the model, while fixed at the bottom. No boundary constraints added to the sides of the 

model. Due to its impact on simulation accuracy and computational time, the influence of mesh 

configuration was a vital consideration in structural analysis [27, 28]. Results of effective elastic 

modulus obtained from mesh sensitivity compared with theoretical CoCrMo materials properties as 

200 GPa. The mesh element size from 0.05 mm to 0.5 mm and quadrilateral element used to study the 

mesh independent.  

3. Results and discussion  

3.1. Physical manufacturability 

Table 2 summaries the measurement and averages of errors of struts thickness and pore size of 

produced meta-biomaterials. From the table, the averages strut thickness error for diamonds structures 

is 13% and 21% for square structures. Meanwhile, average error of the pore sizes for diamond 

structures is 1.8% and 1.4% for square structures. The struts thickness and pore sizes measured for the 

diamond structures are in good agreement with the as-designed strut sizes for sample D#3, D#5 - D#7. 

Interestingly, the good manufacturing agreement with the self-supporting feature demonstrated in 

diamond structures due to angle of inclination between the two neighbouring strut layers. The 

inclination angle of strut has the potential to support the output of next layer after the previous scanned 

layer during the manufacturing activity [29, 30]. However, smaller strut sizes resulted in inaccuracy 

and shrinkage owed to loss connectivity among neighboring layers of unit cell. Hence, the strut size of 

diamond types with 0.3 and 0.4 mm are too thin for fabrication process. Furthermore, the strut angle 
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for diamond is lower than 45° from the horizontal plane or overhanging angle. Thus, deformation 

occurred during manufacturing process where the struts build on loose powder led to the defect on 

products [31, 32].  

Meanwhile, the strut thickness of square type was higher than designed strut related to the initial 

measurement for the models. It caused the pore sizes results smaller than compared to as designed 

models for square structures. The increased of the strut thickness was  the outcome of the partially 

melted powder particles added the strut core and melt pool size on the strut boundary. The average 

actual strut sizes were higher and pore sizes were smaller than CAD models. The overhang 

phenomenon occurred in the unsupported region on square unit cells as stresses led to dross formation 

and the partially melted powder particles added the average values of product’s strut sizes.  The short 

interaction of powder bed and heat source triggered by the scanning speed of laser beam led to rapid 

heating during the manufacturing process [34, 35]. Then, the melting phase followed significantly.  

The shrinkage in the components triggered this phenomenon. The results indicate that manufacturing 

errors were more susceptible to the strut thickness close to the manufacturing limits at high porosity 

volume.  

 

 Table 2. Manufacturability of meta-biomaterials. 

Sample Strut thickness 

(mm) 

As-manufactured  

strut thickness 

(mm) 

Error 

(%) 

Pore size (mm) As-manufactured 

pore size (mm) 

Error  

(%) 

D#1 0.3 0.29 ± 0.006 3.3 0.76 0.75 ± 0.006 1.32 

D#2 0.4 0.39 ± 0.003 2.5 0.66 0.65 ± 0.003 1.52 

D#3 0.5 0.50 ± 0 0 0.56 0.56 ± 0 0 

D#4 0.4 0.29 ± 0.006 3.3 1.1 0.99 ± 0.005 10 

D#5 0.5 0.50 ± 0 0 0.91 0.91 ± 0 0 

D#6 0.6 0.60 ± 0 0 0.81 0.81 ± 0 0 

D#7 0.7 0.70 ± 0 0 0.71 0.71 ± 0 0 

S#1 0.3 0.31 ± 0.006 3.3 0.70 0.69 ± 0.006 1.42 

S#2 0.4 0.41 ± 0.003 2.5 0.60 0.59 ± 0.006 1.67 

S#3 0.5 0.51 ± 0.006 2 0.50 0.49 ± 0.003 2 

S#4 0.5 0.51 ± 0.006 2 1.0 0.99 ± 0.006 1 

S#5 0.6 0.61 ± 0.001 1.6 0.9 0.89 ± 0.006 1.11 

S#6 0.7 0.71 ± 0.006 1.4 0.80 0.79 ± 0.01 1.25 

 

3.2. FEA of effective elastic modulus 

Originally, the developed Gibson and Ashby model used to predict the rigidity of the three-

dimensional (3D) open cell structure when applied a load to unit cell structures that related approach 

used in this study [25]. Previous studies demonstrating the used of the Gibson and Ashby models were 

in harmony with the values obtained from mechanical testing [35, 36]. The effective elastic modulus 

derived from the mathematical calculation for each designed meta-biomaterials.  

As the results, the effective elastic modulus of diamond type was ranging from 6.5 GPa to 42 GPa, 

and range of 18 GPa to 50 GPa for square type.  Interestingly, the elastic modulus for higher volume 

porosity were met a good agreement as the values closer to the human bone properties (1-30 GPa). 

While further study mechanical properties through experimental was required, meta-biomaterials 

possessed load-bearing potential that allowed the structures to withstand severe cyclic loading 
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condition. In addition, geometrical design of meta-biomaterials inside the design domain had capacity 

for tailored porosity to imitate the mechanical properties of the host bone properties. 

Mesh element size from 0.1 mm to 0.5 mm resulted effective elastic modulus of 169.23 GPa with 

accuracy 15.39% error. Mesh independent treatment was introduced to eliminate the geometric 

discretization error in complex morphologies of structures [37]. From finite element analysis, the 

effective modulus of diamond type ranging from 3.01 GPa to 4.79 GPa. Meanwhile, the effective 

modulus of square type ranging from 6.34 GPa to 28.75 GPa. Both diamond and square samples in the 

range of cancellous bone properties (1-15 GPa). Samples of square type of S#3, S#5 and S#6 exhibited 

elastic modulus similar to cortical bone properties (15-30 GPa) except for sample S#1 and S#4 which 

were in the range of cancellous bone. The results showed the pore structure could tailor the elastic 

modulus from the porosity value and different pore shape to produce accurate prediction of 

mechanical compressive behavior. Figure 3 illustrates the comparison of effective elastic modulus 

from Gibson and Ashby model and finite element analysis. The proposed technique yields accurate 

predictions for effective elastic modulus with decreasing of average error to 74.4% for diamond 

structures and 44.4% for square structures from theoretical calculation of Gibson and Ashby equation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FEA model showed substantially homogeneous deformation, beginning with buckling for both 

types and followed by complete compaction due to interaction between adjacent struts core. Figure 4 

shows the deformation behaviours of the selected design structures predicted by FEA. It worth to note 

that FEA model was built for a fundamental analysis of deformation in porous structures. Particularly, 

this analysis emphasized the default options available for structural module in ANSYS software. In 

addition, the designed model based on controlled topologies where the strut surfaces can be irregular. 

This initiated flaws in manufacturing the structures as stress concentrators or added material to the 

struts by disputing compressive load. In addition, the mechanical properties of the meta-biomaterials 

might influenced by porosity and surface roughness, but those factors were not taken into account in 

the finite element analysis. 

Both type of structures with different volume fractions deformed with same failure mechanism. 

Deformation mechanism represented plasticity for square and diamond type structures with 10%. 

From observation, the deformation commenced from the top and then, the structure collapsed by each 

layer of the cell continuously. The homogeneity of failure mechanism indicated the potential of high 

impact resistance from the struts of the samples [38]. Buckling micro-struts predicted to result in high-

 

Figure 3.   Effective elastic modulus of meta-biomaterials.  
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energy releasing at respectively failure stage since the struts able to endure axial distortion due to their 

equivalent direction of load [39].  

Failure of diamond type structures followed by shearing of the microscale struts led the structure to 

collapse as bending dominated deformation. Crushing struts to the center of plates contributed to a 

continuing shear fracture in 45°. Thus, in contrast with the buckling deformation of square structures, 

less energy released during collapse of diamond structure owing to its strut inclination angle. The 

findings indicated that orientation of strut play a key role in the mechanism of deformation and stress-

strain comportments of the meta-biomaterials [39].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 4.   Deformation mechanism of (a) square and (b) diamond structures. 

 

4. Conclusion 
This paper presents two distinct meta-biomaterials topologies that are dependable for orthopaedic 

implants. This paper also successfully presented a technique for visually understanding the function of 

porosity and pore size as design variables of meta-biomaterials. In addition, the design space model 

showed how biological and mechanical requirements and manufacturing limitation can clearly 

incorporated in design topologies constraints that allow a holistic knowledge of the relationship of unit 

cell geometries on mechanical and biological requirements and manufacturing drawback. This method 

can help to clarify the factors that can influence the effectiveness of meta-biomaterials as orthopedic 

implants. 

Morphological investigation had shown geometries deviations between CAD models and 

manufactured meta-biomaterials. The averages error of the strut thickness is 13% for diamonds 

structures and 21% for square structures. Meanwhile, average error of the pore sizes is 1.8% for 

diamond structures and 1.4% for square structures. The discrepancies predominantly attributed to the 

overhang phenomenon and partially melted powder particles. Manufacturing intolerance leads to 

reduction of pore size and shrinkage of the components. The prediction of elastic modulus confirmed 

that samples at higher porosity exhibit stiffness comparable to human bone with mean error decreased 

to 74.4% for diamond structures and 44.4% for square structures from theoretical calculation. 
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