

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

NO 22 SOLOK KG JAWA 8, MOHD ZAMRI BIN IBRAHIM
11900 BAYAN LEPAS,
PULAU PINANG.

Tarikh: 12 MAY 2009 Tarikh: : 12 MAY 2009

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2007/2008

 AMY SAFRINA BINTI MOHD ALI (860314-35-5606)

REAL TIME FACE DETECTION SYSTEM

 i

REAL TIME FACE DETECTION SYSTEM

AMY SAFRINA BINTI MOHD ALI

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

MAY, 2009

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : MOHD ZAMRI BIN IBRAHIM

 Date : 12 MAY 2009

 ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : AMY SAFRINA BINTI MOHD ALI

Date : 12 MAY 2009

 iii

Dedicated to mom, dad and the whole family

Thank you for everything…

 iv

ACKNOWLEDGEMENT

This is a fulfilling moment when the report has been completed successfully after

a few months of hard work.

First of all I would like to express my gratitude and appreciation to my

supervisor, Mr. Mohd Zamri Bin Ibrahim for all his cooperation, guidance, ideas,

sharing, facilitation and advice throughout the semesters. Without his guidance, I won’t

be able to finish this report today.

Also, I would like to extend my gratitude to all staffs in the Faculty of Electrical

Engineering UMP, who have been helping out to make my work successful.

I would like to thank my parents for showing great patience, support and

understanding throughout the project time frame especially when I’m far from home.

Also, to my siblings especially my sister, Nuratikah for giving me support and

motivation. Many thanks to my friends and juniors who always gave me ideas and

advices to keep on the right track.

Last but not least, I would like to extend my gratitude to everyone who has been

helping me directly or indirectly from the beginning until the final stage of this project.

All the helps and cooperation from various parties are truly appreciated.

 v

ABSTRACT

 A face detection system is a computer application for automatically detecting a

human face from digital image or video frame from a video source. This project is used

web camera to capture the image in real time. This face detection system used Haar

Classifier method to detect face and extract human face. Haar Classifier technique can

detect human face very face and can achieve high detection accuracy. This system is

build using Visual Studio C++ 8 edition and Opencv to setup the interface between web

camera and computer. This system also used Graphical User Interface (GUI) to design

client window. Besides that this system used Graphic Device Interface (GDI) library to

select the interest region. This system can detect the face image and can automatically

save the image. This system can be applied in the banking system to reduce the number

of forgery.

 vi

ABSTRAK

 Sistem pengecam muka ialah applikasi komputer untuk mengesan muka dari

imej digital atau paparan gambar bergerak dari sumber paparan gambar bergerak. Projek

ini menggunakan kamera web untuk mengambil gambar masa nyata. Sistem pengesan

muka ini menggunakan pengelasan Haar untuk mengesan muka dan mengekstrak muka.

Teknik pengelasan Haar dapat mengesan muka dengan laju dan mampu mencapai tahap

pengesanan yang tinggi. Sistem ini menggunakan Visual Studio C++ edisi 8 dan

OpenCV untuk membentuk antara muka diantara kamera web dan komputer. Sistem ini

juga mengunakan grafik antara muka pengguna mereka tingkap pengguna. Sistem ini

menggunakan alat grafik antara muka untuk memilih permukaan yang dikehendaki.

Sistem ini dapat mengesan imej muka dan dapat menyimpan imej tersebut secara

automatik. Sistem ini dapat di applikasikan pada sistem bank untuk mengurangkan kes

penipuan.

 vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENT vii

 LIST OF FIGURE x

 LIST OF TABLE xii

 LIST OF ABBREVIATION xiii

 LIST OF APPENDIX xiv

1 INTRODUCTION

 1.1 Overview 1

 1.2 Objective 2

 1.3 Work Scope 2

 1.4 Problem Statement 3

 1.5 Thesis Outline 3

2 LITERATURE REVIEW

 2.1 Introduction 4

 2.2 OpenCV 4

 2.3 Microsoft Visual Studio 5

 2.4 Webcam 7

 2.5 Haar Like Features 8

 2.6 Edge Detection System 13

 viii

3 METHODOLOGY

 3.0 Introduction 15

 3.1 System Framework 16

 3.2 Software Design 17

 3.2.1 Microsoft Visual C++ 17

 3.2.2 Set-up the Application 18

 3.2.2.1 Creating Dialog Based Application 19

 3.2.2.2 Adding Graphic Device Interface (GDI)

 library

20

 3.2.2.3 Adding OpenCV Library 22

 3.2.3 Creating User Interface Window 23

 3.3 Software Implementation 25

 3.3.1 Establish Webcam 26

 3.3.2 Capturing Image 27

 3.3.3 Display Image 29

 3.3.4 Detecting Face 30

 3.3.5 Region of Interest 32

 3.3.6 Save Image 32

4 RESULT AND DISCUSSION

 4.0 Introduction 33

 4.1 User Interface 34

 4.2 Experimental 35

 4.2.1 No Image 35

 4.2.2 Human Image (Still Image) 36

 4.2.3 Moving Image 37

 4.2.4 Multiple Human Image 38

 4.2.5 Covered Human Face 39

 ix

 4.2.6 Human Face Image From Magazine 40

 4.2.7 Non face Image 41

 4.3 Performance of the Face Detection System 42

 4.4 System Design 43

 4.5 Costing 43

5 CONCLUSION AND RECOMMENDATION

 5.0 Conclusion 44

 5.1 Recommendation 45

 5.2 Commercialization 45

 REFERENCE 46

 APPENDICES 48

 x

LIST OF FIGURE

FIGURE NO TITLE PAGE

2.1 Logitech Quickcam Pro 5000 7

2.2 A set of basic of Haar Like Feature. 8

2.3 A set of extended Haar Like Feature (edge features) 8

2.4 A set of extended Haar Like Feature (Line features) 8

2.5 A set of extended Haar Like Feature (center-surrounded

features).

9

2.6 Haar Like Feature 10

2.7 Automated Teller Machine (ATM). 11

2.8 The real time face detection 12

2.9 The implement of Canny Edge Detection 13

2.10 Angle of gradient. 14

3.1 Block Diagram of Face Detection System 16

3.2 Microsoft Visual Studio main page 17

3.3 Flowchart Set-up the application 18

3.4 Create MFC application. 19

3.5 Solution window 20

3.6 Solution Window after GdiPlus.lib was added. 21

3.7 Project Properties window. 22

3.8 User Interface Dialog Box. 23

3.9 The dialog window. 24

3.10 The flow diagram for the face detection 25

 xi

3.11 Header Files 26

3.12 Source code for capturing image 27

3.13 Source code for displaying the image 29

3.14 Source code for detecting image 30

3.15 Source code for draw the rectangle 31

3.16 Source code for image selection. 32

3.17 Source code for save the image. 32

4.1 User Interface Window 34

4.2 Camera ON but without image. 35

4.3 Camera ON with still human face image 36

4.4 Camera ON with moving image 37

4.5 Multiple Image 38

4.6 Camera ON with incomplete face image 39

4.7 Camera ON with the human image in magazine 40

4.8 Camera ON with non face image. 41

4.9(a) Camera ON with no detection 42

4.9(b) Camera ON with detection 42

4.10 The information of the author window 43

 xii

LIST OF TABLE

TABLE NO TITLE PAGE

3.1 Description of the dialog editor. 23

3.2 Description of capturing image. 28

3.3 Description of the image display coding. 29

3.4 Description of cvHaarDetectObjects. 30

3.5 Description of selected region coding. 31

 xiii

LIST OF ABBREVIATION

MFC - Microsoft Foundation Classes

GUI - Graphic User Interface

AdaBoost - Adaptive Boost

PC - Personal Computer

IDE - Integrated Development Environment

COM - Computer

GDI - Graphic Device Interface

ROI - Region of Interest

OpenCV - Open Source Computer Vision

USB - Universal Serial Bus

 xiv

LIST OF APPENDICES

APPENDIX NO TITLE PAGE

A PROGRAMMING FOR FACE DETECTION SYSTEM

48

1

CHAPTER 1

INTRODUCTION

A face detection system is a computer application for automatically detecting

human face from a digital image or a video frame from a video source. Face detection is

a pre-processing of face recognition. It is also used for the security system.

1.1 Overview

Face detection is an important first step for applications in several areas,

including biometrics, human-computer interfaces, and surveillance. Nowadays, the

importance of the automatic face detection and tracking system has increased as it is

needed for video surveillance and new user interfaces. The goal of this research effort is

to construct a face detection system using a webcam in real-time. This system used

Visual Studio C++ to develop algorithms that are accurate and computationally efficient.

This project is used Haar Classifier Technique to detect face location.

2

1.2 Objective

There are few objectives to design face detection system. The objective of face

detection are :

 To design real time face detection system.

 To utilize the face detection system based on Haar Classifier.

 To develop face detection system using Visual C++ 8 edition.

1.3 Work scope

The scopes and guidelines are listed to ensure the research is conducted within its

intended boundary. This is to ensure the research is heading to the right direction to

achieve its intended objectives.

The first scope of this project is to develop a face detection based on Haar Classifier.

Haar Classifier is used because it achieved high detection accuracy. Haar Classifier can

efficiently reduce or increase the class variability and making the classification easier.

The second scope is to extract the human face. It will extract the desire image, for

this system it will extract human face using Haar Classifier.

 Another scope of this project is used software Visual C++ 8 edition to verify the

algorithm and show the result. It is used to create face detection system that can detect

face in real time.

3

1.4 Problem Statement

This project is to improve the face detection system by using Haar Classifier to get

higher accuracy result. Haar Classifier is used for face detection because it can detect the

desire image very fast. The algorithm has been used for the detection which achieved

high detection accuracy.

1.5 Thesis Outline

Chapter 1will describes the introduction of this system, the objective of this

project, the problem statement, the work scope and overview of this project.

Chapter 2 will review about the information find on all the material or data used

in the development of the system.

 Chapter 3 will explain all the method use to develop this system. This chapter

will explain briefly about Visual C++ and OpenCV in designing the face detection

system.

Chapter 4 will include all the results and the explanation about the results after

all the development process has done.

Chapter 5 will show the summary after all and come up with some

recommendations for some improvements.

 4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Face detection is a computer technology that determines the locations and sizes

of human faces in arbitrary (digital) images. It detects facial features and ignores

anything else, such as buildings, trees and bodies. This system is using Haar Classifier

Technique because it is most popular face detection algorithms. This chapter will discuss

briefly about Opencv, Visual C++, Haar Like Features and the Canny Edge Detection.

2.2 OpenCV

OpenCV is a computer vision library and it focuses mainly on real-time image

processing. OpenCV is a collection of algorithms and sample code for various computer

vision problems. This library allows high level functions for computer vision and image

processing. Image processing and computer vision algorithms are proposed to

programmers in order to create powerful applications in the domain of digital vision.

OpenCV offers many high-level data types [8]. OpenCV is opensource to run on many

computer platforms. OpenCV uses the IplImage structure to create and handle images.

OpenCV are complementary tools to build efficient and effective image processing and

computer vision applications. OpenCV are written in C and C++ language and it contain

over 500 functions. OpenCV also available on Windows, Linux and MacOSX. Example

 5

applications of the OpenCV library are Human-Computer Interaction (HCI), Object

Identification, Segmentation and Recognition, Face Recognition, Gesture Recognition,

Motion Tracking, Ego Motion, Motion Understanding, Structure From Motion (SFM),

Stereo and Multi-Camera Calibration and Depth Computation, Mobile Robotics.

2.3 Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It can be used to develop console and graphical user interface applications

along with Windows Forms applications, web sites, web applications, and web services

in both native code together with managed code for all platforms supported by Microsoft

Windows, Windows Mobile, Windows CE, .NET Framework, .NET Compact

Framework and Microsoft Silverlight [9].

Other built-in tools include a forms designer for building Graphic User Interface

(GUI) applications, web designer, class designer, and database schema designer. It

allows plug-ins to be added that enhance the functionality at almost every level

including adding support for source control systems (like Subversion and Visual

SourceSafe) to adding new toolsets like editors and visual designers for domain-specific

languages.

Visual Studio supports languages by means of language services, which allow

any programming language to be supported by the code editor and debugger, provided a

language specific service has been authored. Built-in languages include C/C++ (via

Visual C++), VB.NET (via Visual Basic .NET), and C# (via Visual C#). Language-

specific versions of Visual Studio also exist which provide more limited language

services to the user.

 6

Visual C++ supports COM as well as the Microsoft Foundation Classes (MFC)

library. For MFC development, it provides a set of wizards for creating and customizing

MFC boilerplate code, and creating GUI applications using MFC.

This project has utilized Visual Studio C++ edition 2005 language and its

component in creating the Graphic user Interface (GUI) to interfacing the hardware and

the computer. Microsoft Visual C++ is the fastest and easiest way to create applications

for the Microsoft Windows. Visual C++ provides a complete set of tool to simplify rapid

application development. A few component of Microsoft Visual C++ is Microsoft

DirectX SDK that implemented in this project has greatly improved the function of

software.

The Visual C++ language was chosen as a programming language to setup the

interface between hardware and PC. There are the ActiveX technology allows author to

use the functionality provided by other applications that make easy to implement.

 7

2.4 Webcam

 Figure 2.1 : Logitech Quickcam Pro 5000

Webcams are video capturing devices connected to computers or computer

networks often using USB or if they connect to networks, ethernet or Wi-Fi. Webcam

connected to PC can act as web-accessible cameras with certain software which the

software uploads picture to a server, which can produce an input to system. Usually, this

kind of software is programmed to work with almost every webcam. This software can

be configured in many ways, and will often include options for image size and quality

and time stamping images.

The QuickCam Pro 5000 have capability of acquiring 30 frames per second and

capture still image for about 1.3 mega pixels. With the bundled, it is known it have

software enhanced to help lighting condition. Logitech helps to achieve optimal

performance under different light conditions.

In this project, the webcam function as the eye of this system to capture a real

time image. The webcam will capture the image in the system.

 8

2.5 Haar Like Features

Haar-like features are digital image features used in object detection. A simple

rectangular Haar-like feature can be defined as the difference of the sum of pixels of

areas inside the rectangle, which can be at any position and scale within the original

image.

 Figure 2.2 : A set of basic of Haar Like Feature.(center)

 Figure 2.3 : A set of extended Haar Like Feature (edge features)

 Figure 2.4: A set of extended Haar Like Feature (Line features)

 9

Figure 2.5 : A set of extended Haar Like Feature (center-surrounded features).

Each Haar-like feature consists of two or three jointed “black” and “white”

rectangles.The feature used in a particular classifier is specified by its shape (shown in

Figure 2.2, 2.3, 2.4, 2.5), position within the region of interest and the scale (this scale is

not the same as the scale used at the detection stage, though these two scales are

multiplied). For example, in case of Figure 2.4 line feature the response is calculated as

the difference between the sum of image pixels under the rectangle covering the whole

feature including the two white stripes and the black stripe in the middle and the sum of

the image pixels under the black stripe multiplied by three in order to compensate for the

differences in the size of areas. The sums of pixel values over a rectangular regions are

calculated rapidly using integral images [7].

Haar features are based on Haar wavelets, which are functions that consist of a

brief positive impulse followed of a brief negative impulse. In image processing, a Haar

feature is the difference between the sum of all pixels in two or more regions. The value

of a Haar-like feature is the difference between the sum of the pixel gray level values

within the black and white rectangular regions. Compared with raw pixel values, Haar-

like features can reduce or increase the in-class or out-of-class variability, and thus

making classification easier. AdaBoost (Adaptive Boost) is an iterative learning

algorithm to construct a “strong” classifier using only a training set and a “weak”

learning algorithm. A “weak” classifier with the minimum classification error is selected

by the learning algorithm at each iteration. The Adaboost boosting algorithm is used for

feature selection by constructing a weak classifier out of each Haar feature [11].

Specifically, a threshold-based binary classifier is created from each Haar feature so that

 10

the weighted training error is minimized. During each round of boosting, the single best

weak classifier for that round is chosen corresponding to a particular Haar feature. The

final result of boosting is a strong classifier whose output is computed as a thresholded

linear combination of the weak classifiers. AdaBoost provides an effective learning

algorithm and strong bounds on generalization performance. This classification method

is fast and effective for face detection.

 Figure 2.6 : Haar Like Feature

The first and second features selected by AdaBoost. The two features are shown

in the top row and then overlayed on a typical training face in the bottom row. The first

feature measures the difference in intensity between the region of the eyes and a region

across the upper cheeks. The feature capitalizes on the observation that the eye region is

often darker than the cheeks. The second feature compares the intensities in the eye

regions to the intensity across the bridge of the nose.

 11

Figure 2.7 and figure 2.8 below shows the application of the real time face

detection using Haar Classifier technique. This face detection system can be applied at

the Automated Teller Machine (ATM) to detect the face of the ATM user. This system

can reduce the forgery.

 Figure 2.7 : Automated Teller Machine (ATM).

 12

 Figure 2.8 : The real time face detection.

 13

2.5 Edge Detection System

 Edges are the boundaries separating regions with different brightness or color.

J.Canny suggested an efficient method for detecting edges. It takes grayscale image on

input and returns bi-level image where non-zero pixels mark detected edges.

 Figure 2.9 : The implement of Canny Edge Detection.

Edge detecting an image significantly reduces the amount of data and filters out

useless information, while preserving the important structural properties in an image.

The Canny edge detection algorithm is known to many as the optimal edge detector.

Canny's intentions were to enhance the many edge detectors already out at the time he

started his work[12].

 The edge detection system is to mark the points in a digital image at which the

luminous intensity changes sharply. Sharp changes in image properties usually reflect

important events and changes in properties of the world. Edges are significant local

changes of intensity in an image. Edges typically occur on the boundary between two

different regions in an image [10].

The effect of the Canny operator is determined by three parameters, the width of

the Gaussian kernel used in the smoothing phase, and the upper and lower thresholds

used by the tracker. Increasing the width of the Gaussian kernel reduces the detector's

sensitivity to noise, at the expense of losing some of the finer detail in the image. The

 14

localization error in the detected edges also increases slightly as the Gaussian width is

increased.

In this system, the Canny edge detection is used to reducing the angle of gradient

to one of the four sectors as shown in figure 2.10 below. The algorithm passes the 3x3

neighborhood across the magnitude array. At each point the center element of the

neighborhood is compared with its two neighbors along line of the gradient given by the

sector value. If the central value is non-maximum, that is, not greater than the neighbors,

it is suppressed [4].

 Figure 2.10 : Angle of gradient.

 15

CHAPTER 3

METHODOLOGY

3.0 Introduction

This chapter will explain about Haar Classifier method to detect the face using

OpenCV library and Visual C++. This chapter also will explain about how to create the

openCV library and the step to create the dialog based application to design the face

detection system. This chapter will discuss about software implementation. It will

discuss briefly how to capture the image, detect image, extract and store the image.

 16

3.1 System Framework

 Figure 3.1: Block Diagram of Face Detection System.

In this system, firstly the webcam will capture the image using OpenCV. Then

the system will detect face location in real time. Haar Classifier is used to detect the face

location. After the system detects the face location, the face image will be extract. Lastly

the image will display in picture control and the image will be saved automatically.

 17

3.2 Software Design

3.2.1 Microsoft Visual C++

Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It used to develop Graphical User Interface (GUI) application. The Visual

C++ language was chosen as a programming language to setup the interface between

hardware and PC.

 Figure 3.2 : Microsoft Visual Studio main page

 18

3.2.2 Set-up the Application

 Figure 3.3 : Flowchart Set-up the application

 19

3.2.2.1 Creating Dialog-based Application

This project used Microsoft Foundation Classes (MFC) to design the user

interface. Firstly, MFC application was chosen to design face detection system. To

create the dialog based application select “new project” at file button. Then the figure

3.4 will appear. Next click “MFC” and choose MFC Application and name the project.

 Figure 3.4 : Create MFC application.

 20

3.2.2.2 Adding Graphic Device Interface Library

The header files, resource files and source files will generate. The Graphic

Device Interface (GDI) which can be downloading from Codersource.net has to add in

this system. To add gdi.lib right click at the name of the project (iFace for this project)

then choose “Add” and “Existing Item” shown in figure 3.5. Then add GdiPlus.lib to

this system.

 Figure 3.5 : Solution window.

 21

 Figure 3.6 : Solution Window after GdiPlus.lib was added.

 22

3.2.2.3 Adding OpenCV Library

 This project used OpenCV to run the face detection system. In order to

build project using OpenCV the required library and directives must be include in

project properties. To include additional directives, right click at the project name

(iFace) then “C/C++” will be chosen. Then click at “General” under “C/C++” to include

the Opencv library.

 Figure 3.7 : Project Properties window.

The utilized directive that have to include in Visual C++ are :

 C:\Program Files\OpenCV\cvaux\include\

 C:\Program Files\OpenCV\cxcore\include\

 C:\Program Files\OpenCV\cv\include\

 C:\Program Files\OpenCV\otherlibs\highgui\

 C:\Program Files\OpenCV\otherlibs\cvcam\include\

 23

3.2.3 Creating User Interface Window

To create user interface, firstly double click at “IDD_IFACE_DIALOG”. To

create button, drag the button from dialog editor at the toolbox to the form. Same step to

create picture control. Then double click at the button or picture control to write the

program shown in figure 3.8.

 Figure 3.8 : User Interface Dialog Box.

 Table 3.1 : Description of the dialog editor.

No Dialog Editor Description

1 Picture Control Display image

2 Picture Control Display image

3 Button To initiate an action

1

2

3

 24

 Figure 3.9 : The dialog window.

Write the program

 25

3.3 Software Implementation

 Figure 3.10 : The flow diagram for the face detection

No

Yes

 26

3.3.1 Establish Webcam

In this system, webcam connection is used USB connector. In Visual C++, must

declare the “CvCapture*capture” function which give a signal to webcam to function

with the system as shown in figure. The “CvCapture*capture” function is important to

make sure the webcam can function smoothly with the system. Besides

“IplImage*frame, *frame_copy” also need to be declare.

 Figure 3.11 : Header Files

 27

3.3.2 Capturing Image

This coding is used to capture image in real time and save the image in the

frame_copy. The system always looping for capturing frame (image).

 for(;;)
 {

 if (!cvGrabFrame(capture))
 break;

 frame = cvRetrieveFrame(capture);

 if (!frame)
 break;

 frame_copy = cvCreateImage(cvSize(frame->width,frame-
 >height),IPL_DEPTH_8U, frame-
 >nChannels);

 if(frame->origin == IPL_ORIGIN_TL)
 cvCopy(frame, frame_copy, 0);

 else

 cvFlip(frame, frame_copy, 0);

}

 cvReleaseImage(&frame_copy);
 cvReleaseCapture(&capture);

 Figure 3.12 : Source code for capturing image

 28

 Table 3.2:Description of capturing image.

No Code Description

1 cvGrabFrame(capture) Capture the frame and load it in

IplImage.

2 cvRetrieveFrame(capture)

Get the image

3 cvCreateImage Create a new image in frame_copy.

4 cvCopy(frame, frame_copy, 0)

Copy the image from frame to

frame_copy.

 5

cvFlip(frame, frame_copy, 0) Reflects an array around horizontal

or vertical axis, or both.

6

cvReleaseImage(&frame_copy)

Release the image.

7 cvReleaseCapture(&capture)

Release the capture memory.

 29

3.3.3 Display Image

The image from the camera will display in picture control Visual C++.

 m_photo.GetWindowRect(&rect);
 ScreenToClient(&rect);

 HDC hDC = ::GetDC(this->m_hWnd);

 CvvImage viewImg;
 viewImg.CopyOf(frame_copy,3);
 viewImg.DrawToHDC(hDC,&rect);

 Figure 3.13 : Source code for displaying the image.

 Table 3.3 : Description of the image display coding

No Code Description

1 m_photo.GetWindowRect(&rect);

The picture control display

2 HDC hDC = ::GetDC(this-

>m_hWnd);

Control the image display in picture control

3 viewImg

To view the image in picture control

1

2

3

 30

3.3.4 Detecting Face

The face will detect using Haar and the face image will be store in sequence.

CvSeq* faces = cvHaarDetectObjects(frame_copy, cascade, storage,

1.1,2,0,CV_HAAR_DO_CANNY_PRUNING,cvSize(30, 30));

 Figure 3.14 : Source code for detecting image.

 Table 3.4 : Description of cvHaarDetectObjects

No. Code Description

1 Frame_copy Contain image from the camera

2 cascade Contain more than one image

3 storage Store the image

4 cvSize(30,30) The size of the image

2 3

4

1

 31

Graphic device interface was used to create rectangle for drawing the face.

Before draw rectangle, the face dimension and scale have to find.

Pen blackpen(Color(255,255,0),3);

Graphics graphics(this->m_hWnd);

graphics.DrawRectangle(&blackpen,m_facepoint.x+11,m_facepoint.y+11,100,100);

 Figure 3.15 : Source code for draw the rectangle

 Table 3.5 : Description of selected region coding.

No Code Description

1 Graphics graphics(this->m_hWnd)

To control the rectangle image display at

the picture control

2 &blackpen

Used pen to draw the rectangle

3 m_facepoint.x+11

The face point at the x-axis

4 m_facepoint.x+11

The face point at the y-axis

5 100

The width and the height of the rectangle

6 graphics.DrawRectangle

GDI function to draw rectangle

5

1

2 3 4 6

 32

3.3.5 Region of Interest

It is possible to select some rectangular part of the image. The selected rectangle

is called Region of Interest (ROI). The structure IplImage contains the field roi for this

purpose. If the pointer not null, it points to the structure ROI that contains parameters of

selected ROI, otherwise a whole image is considered selected.

cvSetImageROI(image,rectimg);

Figure 3.16 : Source code for image selection.

3.3.6 Save Image

The face image that has been extract will be saved.

 cvSaveImage("c:\test.jpg\", img1);

Figure 3.17 : Source code for save the image.

Save image in
“C”

The face image

Selected Image

The rectangle to select the image

 33

CHAPTER 4

RESULT AND DISCUSSION

4.0 Introduction

 This chapter will discuss about the result that obtain from this project. This

chapter also will explain about the user interface window and the result that obtain when

capture no image, capture still face, capture moving face, capture face from magazine,

capture multiple face and capture the other object. This chapter also will explain about

the error occur during the system running.

 34

4.1 User Interface

This face detection system was used Visual C++ to setup the interface between

the camera and PC. In this system, Visual C++ language and openCV was chosen to

make sure the system running smoothly. The Graphical User Interface (GUI) was used

to create the user interface window. The main page of the user interface is shown in

figure 4.1 below. Button “Open” is for capturing image and detecting human face image.

While button “Exit” is used to closed or end this system. Lastly button “Info” will

describe the author.

 Figure 4.1 : User Interface Window

Picture Control 1

Picture Control 2

 35

4.2 Experimental

4.2.1 No Image

 When the “Open” button was clicked, the camera automatically will function.

OpenCV library was used to make sure the camera functioning. There will no detection

if there no image. The figure 4.2 below show that the system was not detects anything

where there no rectangle was draw in the picture control. If there no detection, there no

image will be displayed in the picture control 2.

 Figure 4.2 : Camera ON but without image.

 36

4.2.2 Human Image (still image)

 When there was human image, the system will detect the human face image.

Then the rectangle will be draw at the face as shown in figure 4.3. The rectangle was

draw using graphical device interface (GDI). After the face was detected, the face

image will display in the picture control 2. To display the face image in the picture

control 2, selected rectangle is called region of interest (ROI) was used to selected the

interest region.

 Figure 4.3 : Camera ON with still human face image.

 37

4.2.3 Moving image

 This is a real time face detection system therefore the rectangle will followed the

face image as shown in figure 4.4 below . The face region will displayed in picture

control 2. The region which displayed in the picture control 2 also follow the face

moving.

 Figure 4.4 : Camera ON with moving image

 38

4.2.4 Multiple human image

 This system can detect more than one face. This system had a problem to display

more than one human face image in the picture control. This system cannot display

multiple human face images in the same time.

 Figure 4.5 : Multiple Image

Cannot Display Image

 39

4.2.5 Covered human face

This face detection system cannot detect the face, if the face is not

complete shown as shown in figure 4.6. This is one of the weaknesses of this system.

The system cannot find face dimension point. Therefore the system cannot detect the

image. Face dimension point is the important point for detecting face region.

 Figure 4.6 : Camera ON with incomplete face image

 40

4.2.6 Human face image from the magazine

 This system also can detect human face from the magazine as shown in

figure 4.7 below. This system can detect human face whether it is real human face or

picture of human face. It is because the system still can find the face dimension point at

the picture image.

 Figure 4.7 : Camera ON with the human image in magazine.

 41

4.2.7 Non face image

This system only detects human face. This system cannot detect other object as

shown in figure 4.8 below. It is because this system only train face image using Haar

training process. This process will calculate the threshold and convert in to xml file.

Then the xml file will put into the coding. Therefore to detect other object just exchange

the xml file.

 Figure 4.8: Camera ON with non face image.

 42

4.3 Performance of Face Detection System

This system had a weakness where suddenly it can detect object as shown in

figure 4.9 below. These occur because the system was not stable or there had an error in

the face detection programming. This is also because this system does not have skin

filter which the system can only detect the human skin color.

(a) (b)

 Figure 4.9 : Camera ON with (a)no detection (b) detection.

 43

4.4 System Design

 When “Info” button was clicked, the information of the author window will

appear as shown in figure 4.10 below. Button “OK” at the author window for closed the

author window.

 Figure 4.10 : The information of the author window.

4.5 Costing

 The overall cost of this project is RM 5 250. The software for face detection

system is RM 5000 and the webcam that used to capture the image is RM 250.

 44

CHAPTER 5

CONCLUSION AND RECOMMENDATION

OpenCV is a computer vision library and it focuses mainly on real-time image

processing. This system is used Opencv to capture real time image. Opencv allows high

level function for image processing. It also offers many high level data type for real time

image. Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It used to develop Graphical User Interface (GUI) application. The Visual

C++ language is used as a programming language to setup the interface between the

camera and PC. Haar Like Feature is used for detecting faces. It can calculate very fast.

The algorithm has been used for the detection which achieved high detection accuracy.

5.0 Conclusion

 This face detection system is used to detect human face. This system is real time

face detection. It can detect still image of human face, moving human face and human

face from magazine, news paper or books.

 When there is a face, rectangle will draw at the face region. The point of face

dimension is important for detecting human face. Without this point, the rectangle

cannot draw at the face. The rectangle is draw using graphical device interface (GDI).

This system cannot detect if the face is not full shown. This happen because the system

cannot find the face dimension.

 45

 This system will not detect other object. This system is set to detect human face

by using Haar Classifier. This is because the system had train face image using haar

training process.

5.1 Recommendation

 For a future recommendation, proceed face detection to face recognition using

Principle Component Analysis to build more security system. Principle Component

Analysis is one of the most successful techniques that have been used in image

recognition.

 The second recommendation is to use human senses such as eye or nose for the

detection system. Face detection used the whole face to detect, if the face is not fully

shown the system cannot detect.

 The system is unstable as at some times, it can detect other object than face. It is

recommended to reprogram the system to improve and make it more stable. It also

recommended adding the skin filter into this program to detect the human skin colour.

 The last recommendation is to make the system can display more than one face

image in the picture control. To make the system more efficient, design the system that

can display the face image sequentially.

5.2 Commercialization

 The face detection system can be commercialized in the market. This system can

be used in the banking system to reduce the number of forgery. This system also can be

used as a security system at home and supermarket to make sure the safety to the people.

 46

REFERENCES

[1] Biometric Authentication, A Machine Learning Approach, by Kung Mak

Lin,2005.

[2] Fuzzy Models And Algorithms For Pattern Recognition And Image

Processing, by James C. Bezdek, James Keller, Raghu & Nikhil, Series

Editor.

[3] Invariant Object Recognition Based On Elastic Graph Matching, Theory

And Application, by Raymond Lee & James Liu.

[4] Open Source Computer Vision Library, Reference Manual, by Intel

Corporation, 2001.

[5] Detecting Faces In Images : A Survey, by Ming-Hsuan Yang, Member,

IEEE, David J. Kriegman, Senior Member, IEEE, and Narendra Ahuja,

Fellow, IEEE, January 2002.

[6] Face Detection And Tracking In Video Using Dynamic Programming, by

Ziu Liu and Yao Wang, Department of Electrical Engineering

Polytechnic University Brooklyn, 2000.

[7] Hand Detection with a Cascade of Boosted Classifier Using Haar-Like

Features, by Qing Chen, University of Ottawa, May 2006.

[8] Robert Laganiere, 15 Jan 2009, URL

http://www.site.uottawa.ca/~laganier/tutorial/opencv+directshow/cvision.

htm.

 47

[9] Microsoft Visual Studio, Wikipedia, 20 Feb 2009, URL

http://en.wikipedia.org/wiki/Microsoft_Visual_Studio

[10] Edge Detection, 4 March 2009, URL

http://users.utcluj.ro/~tmarita/IPL/EdgeDetection.pdf

[11] Adaboost by Jiri Matas and Jan Sˇ ochman, 13 March 2009, URL

http://www.robots.ox.ac.uk/~az/lectures/cv/adaboost_matas.pdf

[12] Canny Edge Detection, A Computational Approach to Edge Detection,

Nov 2000.

APPENDIX

 48

PROGRAMMING FOR REAL TIME FACE DETECTION SYSTEM

// iFaceDlg.cpp : implementation file

#include "stdafx.h"

#include "iFace.h"

#include "iFaceDlg.h"

#include <cv.h>

#include <highgui.h>

#include <cvaux.h>

#include <stdio.h>

#include <cmath>

#include <string.h>

#include <ctime>

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

 public:

 CAboutDlg();

// Dialog Data

 enum { IDD = IDD_ABOUTBOX };

 protected:

 49

virtual void DoDataExchange(CDataExchange* pDX);

 // DDX/DDV support

// Implementation

protected:

 DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

END_MESSAGE_MAP()

// CiFaceDlg dialog

CiFaceDlg::CiFaceDlg(CWnd* pParent /*=NULL*/)

 : CDialog(CiFaceDlg::IDD, pParent)

{

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CiFaceDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

 DDX_Control(pDX, IDC_PHOTO, m_photo);

 50

 DDX_Control(pDX, IDC_PHOTO_CUT, m_photo_cut);

}

// CiFaceDlg message handlers

BOOL CiFaceDlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 // IDM_ABOUTBOX must be in the system command

 range.

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);

 if (pSysMenu != NULL)

 {

 CString strAboutMenu;

 strAboutMenu.LoadString(IDS_ABOUTBOX);

 if (!strAboutMenu.IsEmpty())

 {

 pSysMenu->AppendMenu(MF_SEPARATOR);

 pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,

strAboutMenu);

 }

 }

 // Set the icon for this dialog. The framework does this automatically

 // when the application's main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 51

 // TODO: Add extra initialization here

 return TRUE; // return TRUE unless you set the focus to a control

}

void CiFaceDlg::OnSysCommand(UINT nID, LPARAM lParam)

{

 if ((nID & 0xFFF0) == IDM_ABOUTBOX)

 {

 CAboutDlg dlgAbout;

 dlgAbout.DoModal();

 }

 else

 {

 CDialog::OnSysCommand(nID, lParam);

 }

}

// If you add a minimize button to your dialog, you will need the code below

// to draw the icon. For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void CiFaceDlg::OnPaint()

{

 if (IsIconic())

 {

 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND,

 reinterpret_cast<WPARAM>(dc.GetSafeHdc()),

 0);

 // Center icon in client rectangle

 52

 int cxIcon = GetSystemMetrics(SM_CXICON);

 int cyIcon = GetSystemMetrics(SM_CYICON);

 CRect rect;

 GetClientRect(&rect);

 int x = (rect.Width() - cxIcon + 1) / 2;

 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon

 dc.DrawIcon(x, y, m_hIcon);

 }

 else

 {

 CDialog::OnPaint();

 }

 }

 // The system calls this function to obtain the cursor to

 display while the user drags

 // the minimized window.

 HCURSOR CiFaceDlg::OnQueryDragIcon()

{

return static_cast<HCURSOR>(m_hIcon);

}

void CiFaceDlg::OnBnClickedButOpen()

{

 // TODO: Add your control notification handler code here

 rect.bottom = 40;

 rect.top = 40;

 rect.left= 0;

 rect.right = 0;

 m_photo.GetWindowRect (&rect);

 53

 ScreenToClient(&rect);

 m_photo_cut.GetWindowRect(&rect1);

 ScreenToClient(&rect1);

 width= rect.right-rect.left,

 height=rect.bottom-rect.top;

 storage = 0;

 cascade = 0;

 capture = 0;

 cascade =

 (CvHaarClassifierCascade*)cvLoad("C://Program

Files/OpenCV/data/haarcascades/haarcascade_frontalface_alt2.x

ml", 0, 0, 0);

 storage = cvCreateMemstorage(0);

 capture = cvCaptureFromcam(0);

 if(capture)

 {

 SetTimer(1,50,NULL);

 }

 }

void CiFaceDlg::OnBnClickedOk()

{

 // TODO: Add your control notification handler code here

 OnOK();

}

 54

void CiFaceDlg::OnTimer(UINT_PTR nIDEvent)

{

 // TODO: Add your message handler code here and/or call default

 if(nIDEvent == 1)

 {

 if (!cvGrabFrame(capture))

 Break;

 frame = cvRetrieveFrame(capture);

 if (!frame)

 break;

 frame_copy = cvCreateImage(cvSize(frame-

 >width,frame->height),IPL_DEPTH_8U, frame-

 >nChannels);

 if(frame->origin == IPL_ORIGIN_TL)

 cvCopy(frame, frame_copy, 0);

 else

 cvFlip(frame, frame_copy, 0);

 m_scalex=float(rect.right-rect.left)/(float)frame_copy->width;

 m_scaley=float(rect.bottom-rect.top)/(float)frame_copy->height; // x y

scale;

 HDC hDC = ::GetDC(this->m_hWnd);

 CvvImage viewImg;

 viewImg.CopyOf(frame_copy,3);

 viewImg.DrawToHDC(hDC,&rect);

 55

 double scale = 1.3;

IplImage*gray = cvCreateImage(cvSize(frame_copy->width, frame_copy->height),8,1);

IplImage*small_img = cvCreateImage(cvSize(cvRound(frame_copy->width),cvRound(

frame_copy->height)),8,1);

 int i;

 cvCvtColor(frame_copy, gray, CV_BGR2GRAY);

cvResize(gray, small_img, CV_INTER_LINEAR);

cvEqualizeHist(small_img, small_img);

cvClearMemStorage(storage);

 if(cascade)

{

CvSeq*faces = cvHaarDetectObjects(frame_copy, cascade, storage, 1.1, 2, 0,

cvSize(30, 30));

for(i = 0; i < (faces->total : 0); i++)

{

 CvRect* r = (CvRect*)cvGetSeqElem(faces, i);

 CvPoint center;

 RECT rect;

center.x = cvRound((r->x + r->width*0.5));

 56

center.y = cvRound((r->y + r->height*0.5));

radius = cvRound((r->width + r->height)*0.25*scale);

m_facepoint.x = center.x*m_scalex;

m_facepoint.y = center.y*m_scaley;

m_facerect.X = m_facepoint.x-radius*m_scalex*0.7+11;

m_facerect.Y = m_facepoint.y-radius*m_scaley*0.7+11;

m_facerect.Width=radius*2*m_scalex*0.9;

m_facerect.Height=radius*2*m_scaley*0.7;

float yy=(m_facerect.X + m_facerect.Width*0.5);

Pen blackpen(Color(255,255,0),3);

Graphics graphics(this->m_hWnd);

DrawRectangle(&blackpen,m_facepoint.x+11-75,m_facepoint.y+11-75,150,150);

rectimg.height = 100;

rectimg.width = 100;

rectimg.x = m_facepoint.x+10-100;

rectimg.y = m_facepoint.y+10-100;

IplImage *img1=cvCreateImage(cvSize(100,100),8,3);

cvSetImageROI(frame_copy, rectimg);

viewImg.CopyOf(frame_copy,3);

viewImg.DrawToHDC(hDC,&rect1);

 cvResize(frame_copy,img1);

 cvSaveImage("c:\\test.jpg", img1);

 57

frame_copy = cvCreateImage(cvSize(frame_copy->width,frame-

>height),IPL_DEPTH_8U, frame_copy->nChannels);

 }

 }

 cvReleaseImage(&gray);

 cvReleaseImage(&small_img)

}

CDialog::OnTimer(nIDEvent);

}

void CiFaceDlg::OnBnClickedButton1()

{

 // TODO: Add your control notification handler code here

 CAboutDlg *Pdlg = new CAboutDlg;

 Pdlg->DoModal ();

 delete Pdlg;

}

