

A TREE BASED KEYPHRASE EXTRACTION

TECHNIQUE FOR ACADEMIC LITERATURE

GOLLAM RABBY

Master of Science

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : GOLLAM RABBY

Date of Birth : 01/01/1996

Title : A TREE BASED KEYPHRASE EXTRACTION TECHNIQUE

 FOR ACADEMIC LITERATURE

Academic Session : SEM 2 2018/2019

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date:

 (Supervisor’s Signature)

Name of Supervisor

Date:

SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and, in our opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Master of Science.

 (Supervisor’s Signature)

Full Name : DR. MD SAIFUL AZAD

Position : SENIOR LECTURER

Date :

 (Co-supervisor’s Signature)

Full Name : DR. MOHD FAAIZIE BIN DARMAWAN

Position : SENIOR LECTURER

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : GOLLAM RABBY

ID Number : MCC17014

Date :

A TREE BASED KEYPHRASE EXTRACTION TECHNIQUE FOR ACADEMIC

LITERATURE

GOLLAM RABBY

Thesis submitted in fulfillment of the requirements

for the award of the degree of

 Master of Science

Faculty of Computer Systems and Software Engineering

UNIVERSITI MALAYSIA PAHANG

August 2019

ii

ACKNOWLEDGEMENTS

I am grateful and would like to express my sincere gratitude to my supervisor, Dr. Md

Saiful Azad, for his emerging ideas, invaluable guidance, continuous encouragement

and constant supports in making this research possible. He has always impressed me

with his outstanding professional conduct, his strong conviction for science, and his

belief that a master’s program is only a start of a life-long learning experience. I

appreciate his consistent support from the first day I applied to graduate program to

these concluding moments. I am truly grateful for his progressive vision about my

training in science, his tolerance of my naive mistakes, and his commitment to my

future career. I would like to express very special thanks to my co-supervisor, Dr. Mohd

Faaizie Bin Darmawan, for his suggestions and co-operations throughout the study. I

would also like to place on record, my sincere thanks to Assoc. Prof. Ts. Dr. Mohamad

Fadli Zolkipli, Dean of Faculty of Computer Systems & Software Engineering

(FSKKP), for guideline, continues encouragement and providing me with all the

necessary facilities for the research. I also sincerely thank him for the time spent for

correcting my many mistakes.

I would also like to thank my parents who not only supported me, also funded my study

in initial level. Without this support, it would not be easy for me to start the master’s

course. Many special thanks go to members of SysNet Lab research group for their

excellent co-operations, inspirations, and supports during this study.

Next, my appreciations are expressed towards the administrative staffs in the FSKKP,

Institute of Postgraduate Studies (IPS) and International Office (IO) for their passionate

to handle all forms of official tasks during my master study. The appreciations also go

to all members of Bangladeshi community, local and foreign friends in UMP.

Finally, this research work of master’s study is funded and supported by Masters

Research Scheme (MRS), from IPS, UMP. I would like to thank UMP for funding the

research and helping me to concentrate on the study.

iii

ABSTRAK

Teknik pengekstrakan frasa kekunci secara automatik bertujuan untuk mengekstrak

frasa kekunci yang berkualiti untuk meringkaskan dokumen pada tahap yang lebih

tinggi. Antara teknik yang sedia ada, sebahagiannya adalah domain khusus dan

memerlukan pengetahuan domain aplikasi, sebahagiannya lagi berdasarkan kaedah

susunan statistik yang lebih tinggi dan sangat mahal, dan sesetengahnya memerlukan

data latihan di mana ianya sangat jarang ada dalam kebanyakan aplikasi. Untuk

menangani isu-isu ini, penyelidikan ini mencadangkan teknik pengekstrakan frasa

kekunci automatik tanpa pengawasan yang baru yang dinamakan TeKET atau Teknik

Pengekstrakan Ungkapan Asas berasaskan pokok, yang merupakan domain bebas,

memerlukan pengetahuan statistik yang terhad, dan tidak memerlukan data latihan.

Teknik yang dicadangkan ini juga memperkenalkan varian baru berstruktur pokok

secara binari, yang dikenali sebagai pokok pengekstrakan KeyPhrase (KePhEx) untuk

mengekstrak frasa kekunci akhir daripada frasa-frasa kekunci yang terlibat. Struktur

Pokok KePhEx adalah bergantung kepada frasa-frasa kekunci yang terlibat, sama ada

ianya diperluas, atau menyusut atau dikekalkan. Di samping itu, satu ukuran yang

diperolehi, dinamakan sebagai Indeks Kepuasan atau CI, yang menandakan tahap

kohesif bagi nod-nod yang diberikan terhadap akar asal yang digunakan untuk

mengekstrak kekunci akhir dari pokok yang dihasilkan dalam keadaan yang fleksibel,

dan ianya digunakan dalam menanda aras kekunci berserta Tempoh Frekuensi.

Keberkesanan teknik yang dicadangkan dinilai menggunakan penilaian eksperimen

pada corpus penanda aras, yang dipanggil SemEval-2010 dengan jumlah 244 artikel

kereta api dan ujian, dan dibandingkan dengan teknik lain yang tidak terjejas dengan

mengambil wakil-wakil dari kedua-dua statistik (seperti Dokumen Invers Frequency-

Inverse Frekuensi dan YAKE) dan teknik berasaskan grafik (PositionRank, CollabRank

(SingleRank), TopicRank, dan MultipartiteRank). Tiga metrik penilaian, iaitu

ketepatan, ingat dan skor F1 diambil kira semasa eksperimen. Sebagai contoh, Hasil

yang diperoleh menunjukkan prestasi yang lebih baik dari teknik yang dicadangkan

berbanding teknik-teknik serupa yang lain dari segi ketepatan, ingat, dan skor F1.

iv

ABSTRACT

Automatic keyphrase extraction techniques aim to extract quality keyphrases to

summarize a document at a higher level. Among the existing techniques some of them

are domain-specific and require application domain knowledge, some of them are based

on higher-order statistical methods and are computationally expensive, and some of

them require large train data which are rare for many applications. Overcoming these

issues, this thesis proposes a new unsupervised automatic keyphrase extraction

technique, named TeKET or Tree-based Keyphrase Extraction Technique, which is

domain-independent, employs limited statistical knowledge, and requires no train data.

The proposed technique also introduces a new variant of the binary tree, called

KeyPhrase Extraction (KePhEx) tree to extract final keyphrases from candidate

keyphrases. Depending on the candidate keyphrases the KePhEx tree structure is either

expanded or shrunk or maintained. In addition, a measure, called Cohesiveness Index or

CI, is derived that denotes the degree of cohesiveness of a given node with respect to

the root which is used in extracting final keyphrases from a resultant tree in a flexible

manner and is utilized in ranking keyphrases alongside Term Frequency. The

effectiveness of the proposed technique is evaluated using an experimental evaluation

on a benchmark corpus, called SemEval-2010 with total 244 train and test articles, and

compared with other relevant unsupervised techniques by taking the representatives

from both statistical (such as Term Frequency-Inverse Document Frequency and

YAKE) and graph-based techniques (PositionRank, CollabRank (SingleRank),

TopicRank, and MultipartiteRank) into account. Three evaluation metrics, namely

precision, recall and F1 score are taken into consideration during the experiments. The

obtained results demonstrate the improved performance of the proposed technique over

other similar techniques in terms of precision, recall, and F1 scores.

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Preamble 1

1.2 Research Background & Motivation 2

1.3 Problem Statement 3

1.4 Research Questions 6

1.5 Research Objectives 7

1.6 Research Scope 7

1.7 Research process flow 8

1.8 Outline of the Thesis 11

CHAPTER 2 LITERATURE REVIEW 13

2.1 Preamble 13

2.2 Definition of Keyphrases 13

2.3 Applications of keyphrases 14

v

2.4 Keyphrase Extraction Techniques 18

2.4.1 Supervised Keyphrase Extraction Techniques 19

2.4.2 Unsupervised Keyphrase Extraction Techniques 20

2.4.3 Graph-based Unsupervised Techniques 21

2.4.4 Statistical Approaches 39

2.5 Critical Analysis 45

2.6 Summary 49

CHAPTER 3 METHODOLOGY 50

3.1 Preamble 50

3.2 Problem Formulation 50

3.3 Conceptual Framework 51

3.4 Proposed Technique: Tree-based Keyphrase Extraction Technique (TeKET) 53

3.4.1 Candidate Keyphrase Selection 53

3.4.2 Candidate Keyphrase Processing 58

3.4.3 Ranking and Selecting Final Keyphrases 71

3.5 Experimental Setup 72

3.5.1 Corpus Details 73

3.5.2 Evaluation Metrics 73

3.5.3 Implementation Details 74

3.6 Summary 75

CHAPTER 4 RESULTS AND DISCUSSIONS 76

4.1 Preamble 76

4.2 Parameter Value Selection 76

4.3 Results Analyses 79

4.4 Summary 88

CHAPTER 5 CONCLUSIONS 90

5.1 Preamble 90

5.2 Concluding Remarks 90

vi

5.3 Contributions 91

5.4 Limitations 91

5.5 Future works 92

5.6 Summary 92

REFERENCES 93

APPENDIX A 103

APPENDIX B 104

vii

viii

LIST OF TABLES

Table 3.1 POS patterns. 54

Table 3.2 Final Keyphrases from the resultant tree in Fig 3.12. 71

Table 3.3 Number of documents per topic in the four ACM document

classifications. 73

Table 3.4 Keyphrase distribution of gold standard in different datasets. 73

Table 4.1 Performance of proposed technique for various lsaf values for two

arbitrarily selected µ values on test dataset. 77

Table 4.2 Performance of proposed technique for various µ values on test

dataset. 77

Table 4.3 Performance of proposed technique for various µ values on train

dataset. 77

Table 4.4 Performance of different unsupervised machine learning based

keyphrase extraction techniques for reader-assigned keyphrases on

test dataset. 80

Table 4.5 Performance of different unsupervised machine learning based

keyphrase extraction techniques for author-assigned keyphrases on

test dataset. 80

Table 4.6 Performance of different unsupervised machine learning based

keyphrase extraction techniques for combined keyphrases on test

dataset. 80

Table 4.7 Performance of different unsupervised machine learning based

keyphrase extraction techniques for reader-assigned keyphrases on

train dataset. 85

Table 4.8 Performance of different unsupervised machine learning based

keyphrase extraction techniques for author-assigned keyphrases on

train dataset. 86

Table 4.9 Performance of different unsupervised machine learning based

keyphrase extraction techniques for combined keyphrases on train

dataset. 86

ix

 LIST OF FIGURES

Figure 1.1 Research process followed in this thesis. 9

Figure 2.1 Prominent applications of keyphrase extraction. 14

Figure 2.2 Functional details of various machine learning based technique for

keyphrase extraction. 19

Figure 2.3 Single connected and multiple connected graph G. 23

Figure 2.4 Mathematical PageRanks for a simple network. 25

Figure 2.5 Sample graph build for keyphrase extraction in TextRank. 30

Figure 2.6 Sample graph build by TopicRank. 36

Figure 2.7 Sample graph build for keyphrase extraction in Multipartite graph. 38

Figure 2.8 Analysis for automatic unsupervised keyphrase extraction. 45

Figure 3.1 Functional details of the proposed technique. 52

Figure 3.2 An example of the candidate keyphrases for POS patterns 1. 55

Figure 3.3 An example of the candidate keyphrases for POS patterns 2. 55

Figure 3.4 An example of the candidate keyphrases for POS patterns 3. 56

Figure 3.5 An example of the candidate keyphrases for POS patterns 4. 56

Figure 3.6 An example of the candidate keyphrases for POS patterns 5. 56

Figure 3.7 An example of the candidate keyphrases for POS patterns 6. 57

Figure 3.8 An example of the candidate keyphrases for POS patterns 7. 57

Figure 3.9 An example of similar candidate keyphrases consider servic as a

root. 59

Figure 3.10 A newly created tree using a candidate keyphrase, where γ = servic. 61

Figure 3.11 Several tree processing steps, where γ = servic. 63

Figure 3.12 The resultant tree for mamu = 2 for the KePhEx tree in Fig. 3.11. 68

Figure 4.1 Performance of the proposed technique for various µ values on test

dataset. 78

Figure 4.2 Performance of the proposed technique for various µ values on train

dataset. 79

Figure 4.3 F1-Scores of various unsupervised keyphrase extraction techniques

for Top-5 keyphrases employed on test dataset. 84

Figure 4.4 F1-Scores of various unsupervised keyphrase extraction techniques

for Top-10 keyphrases employed on test dataset. 84

x

Figure 4.5 F1-Scores of various unsupervised keyphrase extraction techniques

for Top-15 keyphrases employed on test dataset. 85

Figure 4.6 F1-Scores of various unsupervised keyphrase extraction techniques

for Top-5 keyphrases employed on train dataset. 87

Figure 4.7 F1-Scores of various unsupervised keyphrase extraction techniques

for Top-10 keyphrases employed on train dataset. 87

Figure 4.8 F1-Scores of various unsupervised keyphrase extraction techniques

for Top-15 keyphrases employed on train dataset. 88

xi

LIST OF SYMBOLS

χ

Z+

Φ

ρ

ς

φ

δ

λ

N

η

γ

σ

w

d

l

µ

∈

Mamu

Ω

P

Extract Candidate Keyphrases

All Positive Integer Number

Final Keyphrase

Precision

Recall

F1−score

Document

Constant Value

Any Positive Integer Number

List

Root

Similar candidate keyphrases

Word

Depth

Level

Maturity Index

Is an Element Of

Minimum Allowable

Weight

Keyphrase

xii

LIST OF ABBREVIATIONS

ML Machine Learning

TF

IDF

TF-IDF

HAC

XML

POS

POST

SR

PR

TR

MR

PKE

API

JJ

NN

PRP

DT

PP

IN

NNS

NNP

NNPS

JJR

JJS

Term Frequency

Inverse Document Frequency

Term Frequency - Inverse Document Frequency

Hierarchical Agglomerative Clustering

Extensible Markup Language

Part-Of-Speech

Part-Of-Speech Tagging

SingleRank

PositionRank

TopicRank

MultipartiteRank

Python Keyphrase Extraction

Application Programming Interface

Adjectives

Nouns

Personal Pronouns

Determiners

Prepositional Phrases

Proposition/Subordinating Conjunctions

Noun Plural

Proper Noun, Singular

Proper Noun, Plural

Adjective, Comparative

Adjective, Superlative

CHAPTER 1

INTRODUCTION

1.1 Preamble

Automatic keyphrase extraction techniques endeavor to extract quality keyphrases

automatically from documents. Generally, these keyphrases provide a high-level summa-

rization of that document. Therefore, they are utilized in many digital information process-

ing applications, such as information retrieval (Zhai & Lafferty, 2017), digital content man-

agement (Brown & Duguid, 1998; Vallez, Pedraza-Jimenez, Codina, Blanco, & Rovira,

2015), natural language processing (Huang, Zhang, & Vogel, 2005; Reilly & Sharkey,

2016), contextual advertisement (Sterckx, Demeester, Deleu, & Develder, 2018; Yoo &

Eastin, 2017), recommender system (Pudota, Dattolo, Baruzzo, Ferrara, & Tasso, 2010;

Ricci, Rokach, & Shapira, 2011). Herein, the concept of information retrieval has been

developed to extract desired information from a large collection of textual data. It has

been implemented in many practical applications, such as search engines (Tümer, Shah, &

Bitirim, 2009), media search, digital libraries (Lawrence, Giles, & Bollacker, 1999), geo-

graphic information retrieval (Hariharan, Hore, Li, & Mehrotra, 2007), legal information

retrieval (Chor, Gilboa, & Naor, 1997), and others. It is inane explaining the necessity of

these systems; since what data can we retrieve without these systems.

Keyphrases play an important role in digital content management or digital library

(academic research papers) (Seuring & Gold, 2012). They are utilized for document index-

ing (Rowley & Hartley, 2017a) to describe or classify the semantic similarity among vari-

ous documents (a.k.a., document clustering (Steinbach, Karypis, & Kumar, 2000; W. Xu,

1

Liu, & Gong, 2003) or document classification (Manevitz & Yousef, 2001; Wu et al.,

2017)); and thereby, can be utilized as recommender systems to improve the browsing

experience of digital libraries. Furthermore, document classification and similar concepts

are widely used in machine learning (ML), data mining, database discovery, and so on.

Some notable applications using these techniques are: news group filtering, target market-

ing, document organization, health status tracking, and so on (Adeniyi, Wei, & Yongquan,

2016; Das, Datar, Garg, & Rajaram, 2007; Franceschini, Maisano, & Mastrogiacomo,

2016; Kononenko, 2001; Kotler & Roberto, 1989; McCallum, Nigam, et al., 1998). In

addition, for any contextual advertising to display advertisements based on user identity

and browsing history, keyphrase extraction is a core technique.

1.2 Research Background & Motivation

To support these aforementioned applications, several keyphrase extraction tech-

niques have been proposed (Dashtipour et al., 2016; El-Beltagy & Rafea, 2009a; Freitag,

2000; Herrera & Pury, 2008; Holzinger, 2017; Hulth, 2003a; Litvak & Last, 2008a; Sid-

diqi & Sharan, 2015; Thomas, Bharti, & Babu, 2016; Vencovsky, Lucas, Mahr, & Lem-

mink, 2017; Wolf, Zhu, Semret, & Baskin, 2013; Zhang, Xu, Tang, & Li, 2006). Among

them, domain specific approaches (Frank, Paynter, Witten, Gutwin, & Nevill-Manning,

1999a) require knowledge of the application domain, and linguistic approaches (Tomokiyo

& Hurst, 2003) require expertise of the language, thus are inapplicable in problems from

other domains and languages.

Among the Machine Learning based techniques, supervised Machine Learning tech-

niques (Hasan & Ng, 2014; Kosala & Blockeel, 2000) perform better in several domains

than other existing techniques. However, they demand a considerable amount of train data

to extract quality keyphrases, which is rare at present in many domains including academic

literature (Holzinger, 2017). Therefore, these techniques are not considered in this thesis.

Among the unsupervised techniques, statistical techniques (Campos et al., 2018b;

El-Beltagy & Rafea, 2009a) are computationally expensive due to their large amount of

2

complex operations, and graph-based unsupervised techniques (Boudin, 2018; Bougouin,

Boudin, & Daille, 2013; Florescu & Caragea, 2017b; Sterckx, Demeester, Deleu, & De-

velder, 2015; Wan & Xiao, 2008) perform poorly due to their incapability in identifying

cohesiveness among various words that form a keyphrase (Hasan & Ng, 2014). In light

of the aforementioned discussion, the automatic keyphrase extraction remains an impor-

tant research area to explore (Girardi & Marinho, 2007); and hence, it has been taken into

account in this thesis. The limitation of the existing unsupervised techniques are briefly

stated in the subsequent section (Section 1.3) to exhibit the research gaps.

1.3 Problem Statement

Web growth and evolution have changed the characteristics of both researcher and

academic document/research papers collections. In fact, the participative Web or digital

libraries allows a growing number of the researcher to access and populate document col-

lections in a simple way, producing larger and larger collections. As a result, document

collections can be explored by a very large set of the researcher, who access the reposito-

ries in order to satisfy various personal information needs. Unfortunately, this growing size

of the digital information space prevents an effective access to knowledge due to the well-

known phenomenon of information overload. Therefore, the evolution of users and docu-

ment collections require innovative ways to access Web contents. A viable solution to these

problems is used keywords or keyphrases, i.e. to first identify (by keywords or keyphrases)

and model the specific information needs of the researcher and to subsequently filter Web

resources or digital libraries according to the individual researchers. So keyphrases is an

important way for information extraction from digital libraries.

Among the existing machine learning based keyphrase extraction techniques, un-

supervised techniques are taken into account in this thesis due to their several notable

advantages like simplicity in terms of implementation, lower computational complexity,

and non-requirement of train dataset, which is rare at present as noted in the preceding sec-

tion (Section 1.2). However, most of the existing unsupervised techniques also experience

several limitations — which inspire this researcher to propose a novel similar technique —

3

are highlighted below.

KeyGraph (Ohsawa, Benson, & Yachida, 1998) is one of the prominent and ad-

vanced unsupervised keyphrase extraction techniques which is content sensitive and do-

main independent technique and utilizes co-occurrence of different terms for indexing

vertices of the graph. However, it fails to recognize the connections between the low-

frequency items inside clusters and also ignores fundamental relationships between the

clusters; and hence, unable to extract the most representative keyphrases (also known as

quality keyphrases) from a document.

PageRank (Page, Brin, Motwani, & Winograd, 1999) is another advanced and im-

portant unsupervised keyphrase extraction techniques, which is based on the idea of ran-

dom walks. Each node of the graph corresponds to a candidate keyphrase and an edge

connects two related nodes. However, it is suitable for raking pages on the web and social

networks, but not suitable for extracting keyphrases from traditional documents due to lack

of consideration of cohesiveness.

PositionRank (Florescu & Caragea, 2017b) is an extension of the PageRank that

includes a position of a word along with its frequency to score that word. For that rea-

son, this technique works comparatively well for scientific research articles. However, this

technique exhibits considerably limited performance due to ignoring topical coverage and

diversity.

For the TextRank (Mihalcea & Tarau, 2004), the scientific documents are repre-

sented as a directed or undirected weighted co-occurrence network using co-occurrence

windows works depends on variable sizes. It experiences several limitations, such as in-

capability in capturing cohesiveness, provides the sub-optimal solutions due to selecting

only the main cores from clusters whereas it is noticed that a numerous number of valuable

keyphases places in the lower levels.

4

SingleRank (Wan & Xiao, 2008) is the extension of TextRank where weights of an

edge are equal to the number of two corresponding words co-occur one another. Depends

on its predecessor, it does not extract keyphrases properly by collecting ranked words, in-

stead, only noun phrases are extracted from a document. However, sometimes it assigns

higher scores to the long keyphrases but non-significant keyphrases are entices in the rank-

ing procedure.

In TopicRank (Bougouin et al., 2013), which is an enhancement to TextRank, uti-

lizes topics as vertices of a graph, not words. It extracts the noun phrases of a document

and clustered them into topics. Although, it considers topical coverage and diversity, but

fails to weigh various candidates belonging to a single topic. Moreover, it suffers from the

error propagation problem.

MultipartiteRank technique (Boudin, 2018) resolves the error propagation problem

of TopicRank by building a complete directed multipartite graph where topics are con-

nected only when they belong to different topics. However, it experiences the clustering

error due to which it struggles in selecting the most representative candidates.

The most prominent and the state-of-the-art statistical technique is the Term Fre-

quency - Inverse Document Frequency (TF-IDF) technique (Salton & Buckley, 1988a).

Although, it is simple in terms of implementation; however, the computation of Inverse

Document Frequency (IDF) is expensive in terms of duration and computational power

when a large dataset is considered. On the other hand, keyphrases generated using TF is

not representative as the frequency of non-representative keyphrases are observed higher

than representative keyphrases.

One of the limitation of TF-IDF is that it favors single term as the frequency of

single terms are usually higher. KP-Miner (El-Beltagy & Rafea, 2010) solves this problem

of TF-IDF through using two parameters, namely α and β . However, since it utilizes IDF

for ranking keyphrases, it inherits the limitations of IDF that are mentioned beforehand.

5

Conversely, YAKE (Campos et al., 2018a) can resolve the IDF problem by consider-

ing five features in selecting keyphrases, namely casing, position and frequency of a word,

word relatedness to context, and word in the different sentence to calculate the weight of

a keyphrase. However, since it generates candidate keyphrases employing N-grams tech-

nique, its computational complexity increases linearly with respect to N-grams (C. Xu,

Wu, & Liu, 2017). As N-grams produces a considerably large number of keyprhases, its

ranking procedure is enticed.

From the above discussions, it could be concluded that existing unsupervised keyphr-

ase extraction techniques experience several limitations. Moreover, none of the existing

technique provides flexibility during keyphrase extraction (Tomokiyo & Hurst, 2003).

Flexibility can provide various important keyphrases from a tree depends on researcher

interest or needed. Therefore, proposing a novel flexible unsupervised keyphrse extraction

technique remains an open research issue; and hence, it is taken into account in this thesis.

1.4 Research Questions

From the above discussions (in Section 1.2 and Section 1.3), three major research

questions could be identified, which are mentioned below:

• How to design a unsupervised keyphrase extraction technique — which could ex-

tract quality keyphrases flexibly from an article?

• How to design a novel keyphrase ranking technique that could select the most rep-

resentative Top−N (where N ∈ Z+) keyphrases from an article?

• How could the performance of the proposed unsupervised keyphrase extraction

technique be measured?

6

1.5 Research Objectives

The primary objective of this research is to design an efficient unsupervised keyp-

hrase extraction for the academic literature. To attain this primary objective, following

sub-objectives are needed to accomplish:

• To design an unsupervised keyphrase extraction technique for extracting quality

representative keyphrases flexibly from an article.

• To develop a novel ranking technique for selecting the most representative Top−N

(where N ∈ Z+) keyphrases.

• To evaluate the performance of the proposed keyphrase extraction technique through

implementing on a benchmark dataset.

1.6 Research Scope

The aspects of the research problem or relevant subject-matter that are tackled (also

known as research scope) in this thesis are mentioned below:

• The proposed keyphrase extraction technique is a domain independent approach;

and hence, could be applied in most research domain, such as computer science,

chemical engineering, mathematics, and so forth.

• During the evaluation of the proposed keyphrase extraction technique, only the most

relevant existing keyphrase extraction techniques are taken into account.

• During the evaluation, a benchmark research paper dataset is employed, called ”Se-

mEval 2010”. This dataset is the most widely used dataset around the world for

analyze automatic keyphrase extraction techniques.

7

1.7 Research process flow

The research process flow that is employed in this thesis is comprised of several

steps (see Figure 1.1), i analyzing the existing keyphrase extraction technique and the ex-

isting academic recommender system, ii) finding specific problems and generating research

objectives, iii) proposing a novel Keyphrase extraction technique and a novel recommenda-

tion algorithm, iv) implementing the proposed technique and the algorithm, v) performing

initial testing on a dataset, and vi) concluding by stating the limitations of the proposed

scheme and by noting possible future work opportunities. All these steps are briefly de-

tailed below:

Literature review on the existing techniques and algorithms: This thesis work starts

with a deep critical investigation on the existing keyphrase extraction techniques. In this

process, some nearly relevant techniques are implemented and scrutinized to identify their

benefits and limitations. Afterwards, their performances are analyzed and compared with

each other to identify their drawbacks and shortcomings. For more details, this reader is

requested to read Chapter 2.

Problem statements and research objectives: After investigating the existing sys-

tems and algorithms, some major problems are identified, which are mentioned in detail

in Section 1.3. In a nutshell, most of the existing keyphrase extraction techniques are

not domain independent, fail to extract quality keyphrases, do not offer flexibility during

keyphrase extraction, and so on.

Proposing a novel kephrase extraction technique: In this thesis, a novel keyphrase

extraction technique is proposed for extracting quality keyphrases from academic literature.

The proposed technique employs two prime features, namely popularity and completeness,

to find quality keyphrases. In this process, a modified tree data structure and a limited sta-

tistical knowledge are utilized. Details of the proposed keyphrase extraction is mentioned

in Chapter 3.

8

Literature review on existing
algorithms

Find specific problems and
generating research objectives

Find it?

Propose a novel keyword and
kephrase extraction
recommendation algorithm

Implement proposed algorithm

Evaluate result of experiments

Find

Bug?

Compare with existing
techniques

Identify Contributions,
limitations
and possible future works

Start

End

No
Yes

No

Yes

Figure 1.1. Research process followed in this thesis

9

Afterwards, these keyphrases are utilized as the features of an article. Later, they are

used to find most relevant references to the recent paper. If the same procedure is applied

on 1st level references, such 2nd level reference can be gathered.

Implementing proposed techniques: The implementation is done using using Python

programming language tool. The implemented algorithms are applicable for all versions

of Python framework. The IDE (also known as integrated development environment) used

in this implementation is Jupyter Notebook.

Experimental Evaluation: For evaluating the effectiveness of the proposed tech-

niques, namely a novel keyphrase extraction technique, they are applied on an actual aca-

demic dataset. For this process, a set of testing (pytest) is performed to confirm that it is

going to the right direction. Changes and modifications are made if the performance do not

reach to the satisfactory level. This process continues until the performance reaches to an

acceptable level.

Comparing with existing techniques: The proposed techniques are compared with

the existing techniques to discover their advantages and disadvantages. In this process, all

the compared techniques are either collected or implemented using pyhon; and they are

tested on the same dataset with identical parameters, which is utilized to test the proposed

scheme. Afterwards, the acquired results are compared with that of the proposed tech-

nique. The detail results are demonstrated in Chapter 4.

Identify Contributions, limitations and possible future works: At the end, contribu-

tions of the thesis and limitations of it are identified. The notable contributions of the thesis

are: i) design and implementation of a novel keyword and keyphrase extraction technique.

The notable limitation of the proposed techniques are discovered and noted in Chapter

5. The future works of this thesis also have been identified and stated at the end of the

Conclusion chapter.

10

1.8 Outline of the Thesis

This thesis contains five chapters namely Introduction, Literature Review, Method-

ology, Results and Discussions, and Conclusion.

Chapter I introduces the work along with the research background, research state-

ments, problem statement, objectives, and research scopes. This chapter portraits a clear

motivation/goal behind the current work and the step by step objectives to achieve that

goal. It also clarifies where and where not the proposed techniques can be applied and the

limitations of them.

Chapter II presents the related works, where most of the description of keywords

and keyphrase extraction and describe detailed with the advantages and limitations. In

this process these algorithms are keenly analyzed and scrutinized, and then the results of

the investigation are summarized in the relevant tables. At the end, a critical analysis is

performed to demonstrate the possible research direction which leads us to the current re-

search that is conducted in this thesis.

In chapter III, research design and methodology are mentioned, where the proposed

technique is detailed along with necessary algorithms. Besides this, the detail of the ex-

perimental setup and survey setup are also elaborated in this chapter. All the performance

evaluation parameters are also discussed with adequate detail.

Computational results and discussions on evaluating the concept by choosing the

different criteria are given in chapter IV. Results of an experimental data are discussed

and indicated a distinct decision based on the results. The data set is extracted from the

”SemEval-2010”. These data are being analyzed according to the scholarly dataset. The

validity threats are also discussed, which debates the suitability of utilizing various algo-

rithms.

11

Finally, in chapter V, the contributions, limitations and conclusion are provided,

including the main finding of the work and the outline of the future direction.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Preamble

Although, a considerable number of keyphrase extraction techniques are proposed

in the literature, only relevant ones are discussed in this chapter for providing an extensive

overview of the analogous techniques. Alongside this, the relevant techniques are critically

analyzed in this chapter to identify their limitations; and thus, identify their research gaps.

This process starts with the definition of keyphrase in the subsequent section.

2.2 Definition of Keyphrases

The term ”keyphrase” seems to be a well-understood concept at present due to their

utilization in search engines since they are necessary as input to carry out a search. Lit-

erally, a keyword means a single word and a keyphrase means a set of separate words

that build a phrase. In many applications including academic literature, both terms are

considered as synonyms of each other and prefer the term ”keywords” since it is shorter.

However, most of the researchers in this area prefer the term ”keyphrase” or ”keyphrases”

instead. They can be defined as follows:

”Keyphrases give a high-level description of a documents contents that is intended

to make it easy for prospective readers to decide whether or not it is relevant for them.”

— Frank, Paynter, Witten, Gutwin, and Nevill-Manning (1999b)

It also can be defined as:

13

”Keyphrases provide semantic metadata that summarize and characterize documents.”

— Witten, Paynter, Frank, Gutwin, and Nevill-Manning (2005)

From the aforementioned definitions, it could be synopsized that keyphrases are

necessary in summarizing and characterizing documents. Therefore, it is employed in

several applications, which are briefly mentioned in Section 2.3. However, the primary

challenge in selecting keyphrases from a document lies in the judgment of a term as a

keyphrase. To facilitate this process, several keyphrase extraction techniques are proposed,

which are discussed elaborately in Section 2.4.

2.3 Applications of keyphrases

As stated earlier in the Section 2.1, keyphrases can support a range of linguistic

intelligence tasks, such as information retrieval, contextual advertisement, recommender

system, summarization, and so on; which are discussed below:

Keyphrase Extraction
Applications

Information
Retrieval

Recommender
System

Contextual
Advertisement

Natural
Language
Processing

Digital
Content

Management

Figure 2.1. Prominent applications of keyphrase extraction

14

Recommendation System:

A recommendation system attempts to predict the ”rating” or ”preference” to a user

depends on his/her interest. These systems are utilized in various applications, such as

movies, musics, news, books, research articles, and so forth. In addition, there are also

recommender systems for specialists (Girardi & Marinho, 2007), collaborators (Yager,

2003), jokes (Massa & Avesani, 2007), restaurants (Adomavicius & Tuzhilin, 2005), gar-

ments (L. Wang, Zeng, Koehl, & Chen, 2015), financial services (Felfernig & Kiener,

2005), life insurances, and so on.

Generally, a recommender system provides a list of recommendations employing

one of the two filtering techniques, namely (i) collaborative filtering (Sarwar, Karypis,

Konstan, & Riedl, 2001) and (ii) content-based filtering (Pazzani, 1999); where, collab-

orative filtering techniques build models based on users’ previous behavioral pattern and

content-based filtering methods use a set of discrete characteristics of an item in order to

recommend new items with similar properties. In the latter technique, keyphrases are em-

ployed to describe the items and linked them with the the user’s profiles. A widely used

algorithm for content-based filtering is called TF-IDF and the representation of TF-IDF is

also called vector space representation. In the former technique, various candidate items

are matched with items previously rated or reviewing by the user and the best-matching

items are recommended.

Information Retrieval:

Keyphrase extraction plays an important role in the domain of information retrieval.

It serves as a minimalistic summary for single documents or document collections, en-

abling the reader to quickly perceive the main contents of a text.

A collection of documents always indexed by a set of features. In a text based infor-

mation retrieval system, words, phrase or manually assigned vocabulary items are also use

as a feature. When one has chosen a feature set, two approaches to retrieval are exact match

15

methods and ranked methods. In the ranked retrieval methods retrieve a ranked list of doc-

uments rather than an unordered set. This allows these methods to take advantage of the

fact that some features are batter discriminators than other due to their occurrence statis-

tics. Term Frequency (TF) (Salton & Buckley, 1988b) and Inverse Document Frequency

(IDF) (S. Robertson, 2004) are the two useful measures for determining the importance

of a feature. The Term Frequency of a word is a function of the number of occurrences of

that word in a given document and Inverse Document Frequency of a word that proportion

of documents that a word occurs in. TF-IDF is an appropriate fashion, that provide a very

useful ranking of words or phrases from documents.

Depends on the TF-IDF, there are two widely used classes for Information retrieval

models, probabilistic models (Lafferty, McCallum, & Pereira, 2001) and vector space

model (Salton, Wong, & Yang, 1975). Most probabilistic models follow the probability

ranking principal (S. Robertson, 2004). This means that documents are ranked according

to the probability of being relevant to the information need of the user.

Contextual Advertising:

Contextual advertising is an idea of targeted advertising for advertisements appear-

ing on websites or different media. The advertisements are chosen and followed by au-

tomated systems based on the identification of the user and the content displayed. A

contextual advertisement method scans the texts from a website for keyphrases and de-

livers advertisements to the webpage based on those keyphrases. (Dean, Harik, & Bucheit,

2010). They may be displayed on the website or appeared as pop-up ads. Consider as, if

the user is visiting a website related to tourism and that website utilizes contextual advertis-

ing (Giguere, 2005), the user may see other related advertisements of relevant companies,

such as Booking.com, Traveloka, and/or so on. Contextual advertising (Giguere, 2005) is

also used by search engines to display ads on their search results pages, which are based

on the keyphrase in the user’s inquiry. Therefore, it is called as ”In-Text” promotion or

”In-Context” automation.

16

Contextual advertisements and its dot effect are less critical than conventional adver-

tising. It also influences the users more efficiently. It displays the ads on the area of interest

of a user thus increasing the chance of getting a response. The first major contextual adver-

tising network was Google AdSense (Giguere, 2005). It using webmasters with JavaScript

code, if entered into web pages, displays related ads from the Google list of promoters.

The importance is calculated by a different Google bot called Mediabot. Recently, service

providers have developed also complex systems that use a language-independent concur-

rence pattern finding algorithms to improve matching accuracy (Turtle, 1995). Media.net is

also using for contextual advertisement network competing with Google Adsense (Laursen,

Olkin, & Porter, 1994).

Digital Content Management:

A digital content management system determines associations between the base

content and the relevant content and for publishing the base content and the relevant content

on a client browser. Herein, the relevant content is relevant to the user or more specifically,

formed of one or more keyphrases in a user profile.

The base content might be served to a user browser along with the relevant content.

Embodiments of the invention serve base content to a user via her client system and with

the base content, additional content is served that is relevant to the user. Base content gen-

erally includes content requested by a user and may be served on a web page visited by

the user via the user’s client system. The base content might further include the web page

on which requested content is published. Additional content might include advertisements

and links to content that are placed on the visited web page. Additional content may be

deemed relevant to the user if the additional content is substantially similar to attributes

of a user profile associated with the user. The attributes might include keyphrases, units,

categories and the like that are identified in queries the user uses to query a document cor-

pus and the search results returned to the user. The additional content may be substantially

similar to the user profile if the additional content includes or is associated with the same

or similar keyphrases, units, categories or the like included in the user profile. An appa-

17

ratus configured to associate base content and additional content that is relevant to a user

is described first below, and a method for associating base content with additional content

that is relevant to the user is described thereafterr (Han, 2004; Judd, Brewster, Melia, &

Lilly, 2006).

2.4 Keyphrase Extraction Techniques

The existing keyphrase extraction techniques could be broadly classified into sev-

eral classes, such as domain specific, language specific, statistical, machine learning etc.

(Broder, Fontoura, Josifovski, & Riedel, 2007; Chien, 1997; Han, 2004; Hulth, 2003b;

Huynh & Hoang, 2012; Mihalcea & Tarau, 2004). Again, most of the machine learning

based prominent techniques could be classified into supervised and unsupervised tech-

niques. Furthermore, unsupervised approaches could be divided into graph-based and sta-

tistical techniques (see Figure 2.2).

As can be seen in Figure 2.2 is that the initial steps of all the machine learning based

keyphrase extraction techniques, i.e., the candidate keyphrase generation process is similar;

but the extraction processes are different. In case of supervised techniques, relevant fea-

tures are extracted from the candidate keyphrases; whereas, this is absent in unsupervised

techniques. Again, for unsupervised techniques, train data are not necessary; whereas, for

supervised techniques, they are compulsory. Note that train data are manually annotated

keyphrases from an application domain. The last phase of any keyphrase extraction tech-

nique is ranking or classifying. This is the most important phase since it decides which

candidate keyphrases will be finally selected. On many occasions, it has been observed

that existing techniques differ from each other based on their ranking and/or classification

approaches. Therefore, keyphrase extraction is also accounted as a ranking problem.

Although, there exist several supervised keyphrase extraction techniques; however,

they are overlooked in this thesis since the proposed technique is an unsupervised machine

learning based technique; and only similar approaches are investigated in this chapter.

Again, a brief overview of the existing supervised keyphrase extraction techniques and the

18

justifications of overlooking these techniques are mentioned in the subsequent section.

document
Candidate
Keyphrase
Generator

Candidate
Keyphrase

Feature
Extraction

Backgroud
Collection

1. Keyphrase 1
2. Keyphrase 2
3. Keyphrase 3

…

ClassifierFeatures

Train Data

1. Keyphrase 1
2. Keyphrase 2
3. Keyphrase 3

…

Ranking
Mechanism

Backgroud
Collection

1. Keyphrase 1
2. Keyphrase 2
3. Keyphrase 3

…

Ranking
Mechanism

Supervised Techniques

Unsupervised Techniques (Graph)

Unsupervised Techniques (Statistical)

Figure 2.2. Functional details of various machine learning based technique for
keyphrase extraction

2.4.1 Supervised Keyphrase Extraction Techniques

As mentioned in the previous section is that there are two classes of machine learn-

ing based techniques utilized in keyphrase extraction, namely supervised and unsupervised

(Joachims, 1998; Ohsawa et al., 1998). The principal difference between these two tech-

niques is that in supervised (Joachims, 1998) techniques, the output values for sample

inputs are determined based on prior knowledge. Conversely, in unsupervised techniques,

no labeled outputs are present; and hence, its goal is to understand the physical structure

present within a set of data points. In details, supervised machine learning techniques uti-

lize training data as input variables, called features (Pang, Lee, & Vaithyanathan, 2002)

and predict the output values based on their features only.

The keyphrase extraction problem using supervised techniques from a document

is calculated as a binary classification problem (Joachims, 1998; Narasimhamurthy, 2005;

Ohsawa et al., 1998), where some fraction of candidate phrases are classified as keyphrases

and the others as non-keyphrases. Support vector machines (Joachims, 1998), naive Bayes

19

(McCallum et al., 1998) and decision trees (Quinlan, 1986) are prominent methods to solve

the classification problem.

It has been observed in several studies (Kotsiantis, Zaharakis, & Pintelas, 2007) that

supervised techniques perform better than unsupervised techniques when the systems are

trained with a large dataset. However, a large training data is difficult to find for keyphrase

extraction due to the presence of enormous number of classes and levels of documenta-

tion. Again, the risk of training a model that does not induce to unseen examples need

constant guarding; otherwise, would perform unsatisfactorily. Moreover, training dataset

could be jeopardized due to the limitations of the human being since humans do not judge

keyphrases independently. They just judge certain candidate phrases in an intrinsically

relevant knowledge. Furthermore, some supervised approaches employ a wide variety of

features to distinguish between keyphrases and non-keyphrases; and in reality, the list of

possible features is exponential. With increasing number of features, time complexity of a

technique also increase; and therefore, it takes a considerably long time to train the system.

Due to the aforementioned constraints of the supervised machine learning based

techniques, in this thesis, the unsupervised machine learning based techniques are taken

into account, which are discussed elaborately in the following section.

2.4.2 Unsupervised Keyphrase Extraction Techniques

Unlike supervised machine leaning techniques, unsupervised machine learning tech-

niques do not require any test data. Generally, these techniques recognize commonalities

or patterns in the dataset and act based on the appearance or absence of such commonali-

ties in the various new part of the dataset. This class of techniques could be further divided

into two groups, namely graph-based techniques and statistical techniques. The prominent

techniques of both groups are discussed with adequate details in Section 2.4.3 and 2.4.4.

20

2.4.3 Graph-based Unsupervised Techniques

The graph-based techniques generate weighted or unweighted graphs from raw re-

search data like text or XML and analyze afterwards to extract keyphrases. In other words,

these methods generate a graph based on the words within a document, and then, provide

scores based on several criteria, and at the end, rank the words or keyphrases according to

their scores. The top ranked keyphrases are returned as the desired keyphrases.

In literature, a considerable number of graph-based techniques are proposed. Among

them, KeyGraph (Ohsawa et al., 1998), PageRank (Florescu & Caragea, 2017a), Tex-

tRank (Mihalcea & Tarau, 2004), and PositionRank (Florescu & Caragea, 2017b) are the

most prominent techniques, which are discussed below.

2.4.3.1 KeyGraph

In KeyGraph, only representing keyphrases are extracted without considering any

other external methods, such as natural language processing tools (Reilly & Sharkey,

2016), document corpus etc. Afterwards, a graph is generated depends on the extracted

keyphrases. Segmentation of the graph into different clusters is the main theme of this al-

gorithm with characterizing the co-occurrence between words in a document. Each cluster

represents an idea of an author(s), and the top-ranked terms in these clusters — which are

based on the relationship of each term — are selected as keyphrases.

The main phases of this technique are: document preparation, phase extraction foun-

dations and preparatory concepts that are obtained as clusters, relationships between terms

in the document, and keyphrase extraction. In document preparation phrase, at first, non-

significant words like stop words (i.e., ”a”, ”and”, ”the”, and so forth) — which contribute

a little in a document summarization — are removed (Hulth, 2003b). Afterwards, all the

remaining words are stemmed to bring related words to the identical root. For instance, the

terms — ”work”, ”working”, ”works” are all reduced to ”work” by using steaming pro-

cess (Willett, 2006). Then, the chains of words that are connected by non-significant terms

21

and stems convert candidate phrases.

In the second phase, candidate keyphrases are generated from a keyphrase and added

in a list. For this, the combination of multiple words and their sequence of appearances are

taken into account during the process. For instance, if a keyphrase is ABCD with the terms

A, B, C, and D, following candidate keyphrases will be generated: ABC, AB, BCD, BC, and

CD. Depending on the frequency of these candidate keyphrases, they are sorted and each

of them is treated in turn.

If any phrase with the current phrase has a frequency equal to the current one, the

current one is removed. In another way, all the phrases including the current one are cast

out. This system pulls out larger phrases with higher frequency.

A graph for a document is constructed by nodes of representing terms, and links

describing the co-occurrence. Nodes in the graph describe high-frequency words in a doc-

ument and create the candidates like foundation because words may appear repeatedly for

proving basic ideas in the domain. Then, subgraphs corresponding to the fundamental

concepts. This construction is depends on the idea that connections among terms within

a document and create the semantic coherence or the underlying idea in a portion of the

document. This concept that underlying ideas are implemented by the relationship among

terms in a document (Lau, Song, Li, Cheung, & Hao, 2009; Ohsawa et al., 1998) has been

applied for segmenting a document into semantically coherent portions (Liu, Pennell, Liu,

& Liu, 2009), depends on the location of words in the document. However, choosing the

most significant portion is only work for scientific documents. Also, several works used the

co-occurrence data for indexing (Matsuo & Ishizuka, 2004), but the search engine perfor-

mance was not completely superior to traditional methods as TF-IDF. It means that using

co-occurrences to compare queries with local information in a document is not very mean-

ingful.

Terms in a document Dt are sorted depends on the frequencies in D. High-frequency

22

Cluster 1

Cluster 2

Term 3

Term 2

Term 1

Term 4

Term 5

Term 6

edge

W Term
Term 1

Term 2

Term 3

Term 4

Term 5
Term 6

Link

Node
G a

G b

F

Figure 2.3. Single connected and multiple connected graph G

terms, such as, the group of terms above the 40th highest frequency when Dt , consider into

G. Terms or words in height frequency F become the nodes in G in Figure 2.3. G is only

connected if Ga and Gb must be a connected graph with the number of nodes in G.

In KeyGraph, the relation between terms are defined by the co-occurrence between

them (Figure 2.3). A maximal connected subgraph is thinking as a idea based on the au-

thor’s concept.

Selected terms for the keyphrases represented by the node of term w (Figure 2.3).

Defining the tightness of word w holding clusters, they use the following value key(w) to

every term w, in a document. key(w) must be a real number between 0 and 1, defined as the

probability of term or word w to appear if all the foundations in the graph being considered.

key(w) denotes the conditional probability that w is used, for based and neighbors depend

on the auxiliary functions. That is,

based(ω,θ) = ∑
s∈D
|ω|δ |θ −ω|δ 2.1

neighbors(θ) = ∑
s∈D

∑
s∈δ

|ω|δ |θ −ω|δ 2.2

23

Next, combine all the high probably candidate phrases as new nodes on the graph.

They do not sort terms or words only by the keys, because terms or words which serve

foundations completely related to roots are also necessary for summarizing the document.

Those especially important foundations for the keys but highly ranked by the total strength

of reaching base terms score. Nodes in the graph are sorted by the sum of above from the

base terms score. Terms or words described by nodes of the higher score of these sums

than a specific threshold are selected as the keyphrases from the document. They select top

12 words or terms. If more then one term are equally ranked, all the same ranked terms or

words are extra.

2.4.3.2 PageRank

PageRank (Langville & Meyer, 2011) works as a link analysis algorithm (Ohsawa

et al., 1998) and it selects a statistical weight to each element of a hyperlinked set, such as

the World Wide Web (Chien, 1997), including its relevant importance within that set. This

algorithm has been utilized for any number of individual elements with mutual references

and quotations. The statistical weight can be assigned to any element within X and con-

structed the PageRank of X or PR(X). The web graph algorithm is the main mathematical

base for the PageRank and web graph considers all World Wide Web (Chien, 1997) pages

as nodes and hyperlinks as edges. Importance of a particular page is indicated by the rank

value. Page counts are used as a score for a hyperlink. The PageRank of a page is described

recursively and PageRank metric (Langville & Meyer, 2011) is created with all pages that

connect to it. A page that is connected with many pages considers as high rank in PageR-

ank (Langville & Meyer, 2011). The PageRank concept is vulnerable for manipulation

and a various investigation has been conducted to identify incorrectly modified PageRank

rankings.

In Figure 2.4, Page C has a higher PageRank value than Page E, even though there

are several links to E; the only one link to C that comes from an important page and hence

C is carrying a large value. Web surfers who start on a random page have 85% probability

of choosing a random link from the page they are currently visiting, and 15% probability

24

B
28.4

A
2.3

D
3.1

1.2

1.2

1.2

12
1.2

E
7.1

F
3.0

C
24.3

Figure 2.4. Mathematical PageRanks for a simple network

of jumping to a page chosen at random from the whole web, they will reach Page E 8.1%

of the time. All web surfers would finally end up on Pages A, B, or C, and all other pages

would have PageRank zero. Page A efficiently links to all pages in the web, even though it

has no outgoing links of its own.

The PageRank algorithmic rule used the probability distribution to represent the

possibility of a web surfer randomly clicking on links will arrive at any particular page.

PageRank can be calculated by any size of compendium document. The distribution is

evenly divided among all the documents. The PageRank computing iterate through the in

gathering to adjust approximate 6 senses of value to more closely predict the theoretical

true value. This probability is expressed as a numeric value between 0 and 1. Hence, the

PageRank score of 0.5 quintet means there is a 50% chance that a person clicking on a

random link will be conducted to the document.

Assume a small phrase of four web page: A1, A2, A3, and A4. Links from a web

page to itself are ignored and multiple outbound connections from one web page to another

page are treated as a single link. The values are initialized for all web pages. The sum of

PageRank over all pages was the cumulative number of pages on the web at that time

25

and each page in this discussion would consider an initial value of 1 with the chance of

distribution between 0 and 1. If the only links in the system were pages A2, A3, and A4

connected to A1 and each link would carry- over 0.25 PageRank value to A1 upon the next

loop, for a total of 0.75.

PR(A1) = PR(A2)+PR(A3)+PR(A4) 2.3

Again, if A2 had a connection to pages A3 and A1, page A3 had a connection to

page A1, and page A4 had connections to A1, A2, A3. In the first iteration, page A2 would

transfer half of its current value, or 0.125, to page A1 and the other half, or 0.125, to page

A3. Page A3 would share all of its current value, 0.25, to the single page it links to, A1.

Since A4 had three outbound connections, it would share one-third of its current value, or

approximately 0.083, to A1. At the end of this iteration, page A1 will have a PageRank

value will be approximately 0.458.

PR(A1) =
PR(A2)

2
+

PR(A3)
1

+
PR(A4)

3
2.4

We can also say PageRank connects by an outbound connection is similar to the

documents. Consider the number of outbound connections L.

PR(A1) =
PR(A2)
L(A2)

+
PR(A3)
L(A3)

+
PR(A4)
L(A4)

2.5

In the general case, the value for any page P can be expressed as:

PR(p) = ∑
v∈Bp

PR(v)
L(v)

2.6

The score for a page p is dependent on the score for every page v included the set

Bp where the set including all pages connecting to page p and divided by the number L(v).

L(v) is the number of connections from page v. Depends on the PageRank method when a

user clicking randomly on links. From the probability in PageRank, a damping factor d will

continue at any stage of the calculation. Various experiments have experimented various

damping factors for calculation but it is assumed that the damping factor will be 0.85 (Brin

26

& Page, 1998). For the biological dataset, a Bayesian study discovers the optimal value of

d to be 0.31 0.31 (Page, 2001).

PR(A1) =
1−d

N
+d
(

PR(A2)
L(A2)

+
PR(A3)
L(A3)

+
PR(A4)
L(A4)

+ · · ·
)

2.7

PR(A1) = 1−d +d
(

PR(A2)
L(A2)

+
PR(A3)
L(A3)

+
PR(A4)
L(A4)

+ · · ·
)

2.8

The difference between 2.5 and 2.6 is that, the PageRank values in 2.5 sum to one,

while in 2.6 every PageRank (Litvak & Last, 2008b) value is increased by N and the total

also converts by N. From the Page and Brin’s paper (Brin & Page, 1998) that ”the sum

of all PageRanks is one” (Page et al., 1999) and claims by different Google representa-

tives (Page et al., 1999) recommend the first modification of the method above. They are

confused in 2.5 and 2.6 in their most famous paper ”The Anatomy of a Large-Scale Hy-

pertextual Web Search Engine”, where they mistakenly declared that the recent formula

created a probability distribution across web pages (Brin & Page, 1998). For calculating

PageRank score, no outbound connections are allowed to link out to all different pages in

the collection and the scores are distributed equally among all different web pages.

PR(pi) =
1−d

N
+d ∑

p j∈M(pi)

PR(p j)

L(p j)
2.9

p1, p2, ..., pn are the web pages under consideration where M(pi) is the collection of

web pages that have a connection to pi and N is the total number of pages. The PageRank

score is the entry of the principal right eigenvector of the transformed adjacency matrix

rescaled with every column adds up to one. This makes an especially simple metric. The

eigenvector is,

R =



PR(p1)

PR(p2)

...

PR(pN)


2.10

27

R = dMR+
1−d

N
1 2.11

Then,

R = (I−dM)−1 1−d
N

1 2.12

I is the identity matrix. The solution exists and is individual for 0 < d < 10 < d < 1.

M is constructed by a stochastic matrix and hence has an eigenvalue corresponding to one

as an outcome of the Perron Frobenius theorem.

2.4.3.3 TextRank

TextRank is a graph-based keyphrase extraction technique for text processing and

being successfully used in various applications. For the TextRank, two innovative unsu-

pervised techniques are used for keyphrases extraction and found that the results obtained

are better than previously published results on established benchmarks.

Graph-based ranking algorithms are the correct way of finding the importance of a

vertex within a graph, depends on the global information recursively extracted from the

entire graph. The core idea was implemented by a graph-based ranking model for scoring

or recommendation. When one vertex connects to another, it basically calculates a score

for another vertex. Higher scores demonstrate the importance of the vertex. Furthermore,

the importance of the vertex forming the score and consider that, how important the score

itself is, and this information is also exerted into account by the ranking method. Hence,

the score compared with a vertex and determined based on the scores that are cast for it,

and the final score of the vertices casting these scores. The TextRank algorithms described,

depends on an algorithm called Googles PageRank (Brin & Page, 1998) and other graph-

based ranking algorithms such as HITS (J. C. Miller et al., 2001). Positional Function

(Mihalcea, 2004) can be efficiently integrated into the TextRank model (Mihalcea & Ta-

rau, 2004).

Although most of the keyphrase extraction techniques have used directed graphs and

28

also a recursive graph-based ranking algorithm can be applied to the undirected graphs.

For this case, the outdegree of a vertex is related to the indegree of the vertex. Sometimes

in connected graphs, the number of edges is equivalent to the number of vertices and in

the undirected graphs to have more regular convergence curves. In the TextRank model,

graphs built are depended on the natural language texts and also can include multiple or

partial links between the vertices that are extracted from the text. It is also valuable to

indicate and incorporate into the model the ”strength” and the connection between the two

vertices as a weight added to the similar edge for connecting the two vertices.

To enable the application of graph-based ranking algorithms to natural language

processing, need to build a graph that represents the text and interconnects words or other

text items with meaningful connections. Depending on the various applications with text

units of different sizes and properties, it can be added as vertices in the graph such as words,

entire sentences, collocations or others. Similarly, it handles the type of links that are used

to draw the connections between any two vertices, such as contextual overlap, lexical or

semantic relations, etc.

The application also manages the relations between any two such vertices, such as

contextual overlap, lexical or semantic relations, etc. Also, the types and characteristics

of the elements added to the graph and the graph-based ranking algorithms to natural lan-

guage processing consist of the following main steps: (1) Recognize the text units those

are best and add those text units as vertices in the graph. (2) Recognize the relations in

the connect (text units), and use those relations to draw edges between the vertices within

the graph. Edges can be directed or undirected, weighted or unweighted. (3) Repeat the

graph-based ranking algorithm till convergence. (4) Sorting the vertices depends on the

final score. The values are assigned to every vertex for selection.

To investigate and judge the method of TextRank with two natural language pro-

cessing tasks including the ranking of text units: (1) keyphrase extraction is consisting of

the selection of keyphrases from a text; (2) A sentence extraction task is selecting the most

29

meaningful sentences from a text. Those sentences are also used to develop summaries the

text.

types

systems

linear

diophantine

system

constraints

equations

strict

solutions sets

algorithms

compatibility

criteria

numbersnatural

Figure 2.5. Sample graph build for keyphrase extraction in TextRank

In Figure 2.5, presents a graph constituted from an abstract. Most of the time, the

length of the abstracts ranges from 50 to 300 words and the average length is 100 words.

For example, the lexical units create a higher ”importance” by the TextRank algorithm:

linear (2.29), numbers (2.46), equations (2.45), diophantine (2.28), strict (0.77). Notice

that ranking is different from the simple word frequency techniques. For the same text,

we assume that a word frequency method provides the following top- ranked lexical units:

systems (4), types (3), solutions (3), linear (2), equations (2), algorithms (2). Other lexical

units contain frequency 1 and it cannot be ranked, but listed.

The responsibility of a keyphrase extraction algorithm is to automatically identify a

group of keyphrase. These keyphrases may develop a useful entry for creating automatic

indexing for a dataset, also possible to classify a document or provide services as a concise

summary for a document. Moreover, a method for automatic identification of relevant

terms in a document can be applied for solving the problem of language extraction, and

develop of domain-specific dictionaries. The simplest possible approach probably uses

30

a frequency criterion to find the ”important” keyphrase from a document. However, this

method was usually found to lead to poor results, thus other methods were explored.

2.4.3.4 PositionRank

PositionRank is an unsupervised graph-based keyphrase extraction technique es-

pecially using for scholarly documents such as research papers, documentation, etc and

it covers information from all positions and frequency of a word. For the unsupervised

keyphrase extraction research, keyphrase extraction is considered as a ranking problem

with graph-based ranking methods. All the graph-based keyphrase extraction techniques

create a word graph from the document and all the words are considered as nodes and edges

corresponding to word association patterns for the graph. Nodes are ranked by using the

graph similarity measures such as HITS (Litvak & Last, 2008b) or PageRank (Mihalcea

& Tarau, 2004; Mihalcea, Tarau, & Figa, 2004), and the top-ranked candidate phrases are

counted as keyphrases.

There are three main steps for the PositionRank algorithm: (1) Graph Building (2)

Position-Biased PageRank (3) Create Candidate Phrases.

For building the graph, first apply the parts-of-speech filter applying the NLP Stan-

ford toolkit (Manning et al., 2014) and only select nouns and adjectives as candidate phrase

or words (Mihalcea & Tarau, 2004). For building the word graph with each different word

those passes the parts-of- speech filter considered as a node. Each node is connected by

an edge if the words similar to these nodes co-occur within a window. The weight of ev-

ery edge is calculated depending on the co-occurrence count of the two words. The graph

will be directed or undirected but PositionRank is built by undirected graphs. The main

approach of PositionRank is to select larger weights to words that are found beginning in

a document and also frequent. Specifically, it provides a higher score to a word found on

the 5th position as compared to a word located on the 60th position in the corresponding

document.

31

They also provide a score for each candidate word with its inverse position in the

document. If a similar word arrives multiple times in the document, then they calculate

all of its position’s weights. For example, if a word is located in the following locations

5th, 10th and 20th, its weight is 1
5 +

1
10 +

1
20 = 35

100 = 0.35. Calculate all the positions

weights for a word aims to grant more confidence to frequently occurring words by taking

the position’s weight of each occurrence. Those candidate words have nearby positions in

a document are concatenated into phrases. They consider only the noun phrases that match

using the regular expression (ad jective)(noun)+ and consider the length up to three using

unigrams, bigrams, and trigrams. Finally, those phrases are scored by using the total of

scores of individual words that contain in the final keyphrase (Turney, 2000). The top-

scoring keyphrases are output as predictions.

2.4.3.5 CollabRank (SingleRank)

Nowadays, the keyphrase extraction task for single document works independently

without any intercommunications between each document, under the hypothesis that the

documents are considered independent of each other. In this method, keyphrase extraction

for a single document by collaborative filtering using the mutual impacts of multiple docu-

ments within a cluster. This algorithm is implemented in the clustering method for finding

the relevant document clusters and then applying the graph-based ranking for collaborative

single document keyphrase extraction within every cluster. Various clustering algorithms

have been reviewed and found that this method relies positively on the quality of document

clusters. For every single document, they use a document set for keyphrase extraction.

CollabRank first applies the clustering algorithm to a set of documents. The documents

within the individual cluster are needed to be topic-related and each cluster can be counted

as a context for any document in that cluster. For the document clustering, this algorithm

depends on the global word relationships in the cluster to judge and rank candidate phrases

for every single document in the cluster based on the graph-based ranking algorithm.

The CollabRank algorithm includes two principal steps: (1) Document Clustering

(2) Collaborative Keyphrase Extraction.

32

For document clustering, several clustering algorithms will create different clusters.

The documents in a high-quality cluster are normally deemed to be highly topic-related,

where documents from a low-quality cluster are normally not topically related such as inap-

propriate cluster context. The feature of a cluster will influence the reliability of contextual

data for estimating the information in the cluster. A number of clustering algorithms are ob-

served for the experiments, including the agglomerative algorithm (Bougouin et al., 2013)

including both average-link (Page, 2001) and complete-link (Page, 2001), the divisive al-

gorithm (G. A. Miller, 1995) and the Kmeans algorithm (Zha, 2002). In the collaborative

keyphrase extraction, all the candidate phrases are in a cluster depends on the graph-based

ranking algorithm. The global link graph points to join the cluster-level cooccurrence re-

lations between all the candidate phrases in the documents in a cluster. The final scores

of every word are calculated depending on the global affinity graph to show how much

knowledge about the main topic in the phrases displays. Depending on the cluster-level

phrase scores, the candidate phrases of every individual document is to evaluate and select

some outstanding phrases as keyphrases of the document. Cluster depends on the graph-

based keyphrase extraction and the ranking algorithm works on all documents in a cluster

in order to evaluate the words from a global perspective while the evaluation of candidate

phrases is applied on every single document in order to extract keyphrases from a per-

spective. Extremely remarkable phrases also can be probably included with keyphrases

in every document. From their analysis, the keyphrase extraction tasks are conducted in a

batch method for every cluster. If clustering is implemented on all single document without

considering the cluster context, the method declines the simple TextRank model (Mihalcea

& Tarau, 2004). For CollabRank, the graph is constructed based on the whole cluster and it

is described as Global Affinity Graph (Ajmani, Ghosh, Mallik, & Chaudhury, 2013). But

for the SingleRank it develops a local graph depends on every single document. SingleR-

ank supports most of the graph building rules for the CollabRank but CollabRank builds

a graph of all the documents in a cluster and SingleRank designs a graph only based on a

single document.

33

2.4.3.6 TopicRank

TopicRank is a graph-based keyphrase extraction algorithm that applies for topic-

based representation of a document. Depending on topics the candidate keyphrases are

clustered and used as vertices for building a complete graph. A graph-based ranking al-

gorithm is applied for a given significance score to every topic. Keyphrases are generated

from selecting candidate phrases and each of the top- ranked topics. They conducted an

experiment on four evaluation datasets of various languages and domains. TopicRank is

an enhancement of the TextRank algorithm applied for keyphrase extraction (Mihalcea &

Tarau, 2004). In the TextRank algorithm, a document is expressed by a graph where words

are applied as vertices and edges describe co-occurrence relations. A graph-based ranking

algorithm is always derived from PageRank (Brin & Page, 1998) and applied to indicate

a significance score to every word. TopicRank has represented a document as a complete

graph where vertices are not words but topics. They define a topic as a cluster of similar

single and multiword expressions.

The TopicRank algorithm requires three main steps: (1) Topic Identification (2)

graph-based Ranking (3) Keyphrase Selection.

In topic identification, a topic is normally conducted by more than one noun phrase.

Some keyphrase candidates are irrelevant in consideration of the topic they represent.

Graph-based keyphrase extraction methods such as SingleRank, TextRank, PageRank, etc

do not take that factor into account. Candidate keyphrases are normally independent and

the knowledge about the topic they represent is distributed throughout the graph. By this

way, a set of similar noun phrases works as a single entity in a topic. They recognize that if

two candidate keyphrases have at least 25% of overlapping words, they are similar. Candi-

date keyphrases are stemmed to conquer their inflected word from the root. For automati-

cally collecting a set of similar candidate keyphrase within topics, they use a ”Hierarchical

Agglomerative Clustering”(HAC) algorithm (Murtagh & Legendre, 2014). Between the

usually used linkage strategies, those are the complete, average and single linkage, they

34

apply the average linkage because it stands as an agreement between complete and single

linkage. Using a deeply agglomerative method such as complete the linkage is more likely

to group with irrelevant candidate phrases, although an approach such as a single linkage

is hidden likely to group topically related candidate phrases. Again, TopicRank also rep-

resents a full document by a complete graph where topics are considered as vertices and

edges are scored according to the intensity of the semantic relations between the vertices.

Also, TextRanks is used to indicate a significance value for each topic.

Let consider, G is a complete and undirected graph where a collection of vertices is

V and the edges are E, So a subset is V ∗V . Topics are considered as vertices and the edge

between two topics or vertices are ti and t j is weighted according to the strength of their

semantic relation. ti and t j have an influential semantic relation if candidate phrases often

close to each other in the document. Therefore, the score of their edge is,

ωi, j = ∑
ci∈ti

∑
c j∈t j

dist(ci,c j) 2.13

For ranking,

S(ti) = (1−λ)+λ ∗ ∑
t j∈vi

ω ji∗S(t j)

∑tk∈o(v j)ω jk
2.14

where Vi is the value of the topic for ti and λ is a damping factor and normally fixed

to 0.85 (Brin & Page, 1998).

Using candidate keyphrases as vertices significantly enhance SingleRank on Se-

mEval (Rowley & Hartley, 2017b), WikiNews (Bobadilla, Ortega, Hernando, & Gutiérrez,

2013) and DEFT (Han, 2004). It induces a significant lack of enforcement produced by

an important lack of connections that spans connected elements, as shown in Figure 2.6.

The graph is split depends on the connected elements and increases the difficulty to se-

lect ”fuzzy Bayesian inference techniques” (Yang, 1997) as a keyphrase. For the complete

graph, topics are interconnected among each other. The completeness of the graph has the

advantage of implementing an extra exhaustive view of the connections between all the

35

Decision making

Fuzzy data

Case

Technique

Bayesian approach

Main operation
Concept

Fuzzy Pseudofuzzy quantities

Problem

Practical realization

Fuzzy bayesian method

Mathematical fundamentals

Fuzzy Bayesian inference techniques

Figure 2.6. Sample graph build by TopicRank

topics. Also, calculating weights depends on the distances between offset, positions avoid

the necessity for the manually defined parameter. when the graph is generated, the ranking

method TextRank has applied to rank the topics. Depends on the concept of scoring, this

method assigns a meaningful score to the topics. High-scoring topics provide more score to

the related topics. Keyphrase collection is the ultimate level of TopicRank. Only the most

representative candidate phrases are selected from each topic. This selection skips repe-

tition and points to large coverage of the document topics because selecting n keyphrases

specifically covers n topics. To extract the candidate keyphrases which are best for a topic,

they suggest three approaches. When a topic is first represented by its general structure, the

primary approach is to select the candidate keyphrases that arrives first in the document.

The other method assumes that the general form of a topic is the one that is most fre-

quently used and the third strategy is deciding the centroid of the cluster. Those candidate

keyphrases that is the most similar to the other candidate keyphrases of the cluster.

2.4.3.7 MultipartiteRank

MultipartiteRank is one of the most important unsupervised keyphrase extraction

technique that extracts topical information within a multipartite graph structure. This algo-

rithm expresses keyphrases as candidate phrases with the topics within a single graph and

utilizes their complementary relationship to improve candidate phrase scoring. They found

36

a system that incorporates keyphrase selection preferences into the algorithm.

MultipartiteRank algorithm mainly operates in two steps. First, construct a word

graph depending on the document and implement a ranking algorithm to allocate a rele-

vance score to each keyphrase. The sequences of adjacent nouns with one or more previous

adjectives are used for selecting the candidate keyphrases. Then set into topics depending

on the stemming forms the words and using hierarchical agglomerative clustering with av-

erage linkage. There are so many different approaches to identify topics, supervised or

unsupervised probabilistic topic models is one of them.

Candidate keyphrases are used as nodes to create a complete directed multipartite

graph and those candidate keyphrases are connected particularly if they relate to different

topics. Weight between two nodes is calculated as the total of the inverse distances be-

tween the occurrences of candidates keyphrases. The final graph is a complete npartite

graph (Litvak & Last, 2008b) and nodes are distributed into n different independent sets.

Here n is the number of topics. The proposed algorithm does not create any hypotheses

about the topic collection and provides direct use of any topic decomposition. It implicitly

supports the significant number of topics covered in the selected keyphrases by discourag-

ing intra-topic recommendation and captures the mutually reinforcing connection between

topics and candidate keyphrases. We can also say that, excluding edges between candidate

keyphrases applying to a particular topic proves that the overall recommendation of each

topic is divided throughout the whole graph. Also, a benefit of encoding topic relevant

candidate phrases differentially is that the ones that best validation for every topic, that is

directly given by the model. Deciding the most suitable candidate keyphrases for a specific

topic is a complex task, and relying only on their importance in the document is not suffi-

cient (Hasan & Ng, 2014). Between the features introduced to address the problem in the

discussion, the position of the candidate keyphrases within the document is most reliable.

In order to capture this in the system, they accommodate the incoming edge weights of the

nodes communicating to the first occurring candidate keyphrases of all topic. Candidate

keyphrases occur at the beginning of the document are developed according to the other

37

candidate keyphrases belonging to the same topic. Note that the selection of the candidate

keyphrases is to support, such as the selection heuristic can be adapted to fit other needs

such as prioritizing candidate phrases from a dictionary.

7

3 4

6 2

1
5

8

Topic [3,6]

Topic [7,4]

Topic [2,8]

Figure 2.7. Sample graph build for keyphrase extraction in Multipartite graph

In Figure 2.7 a particular graph formation, called multipartite graph describes doc-

uments as tightly associated sets of topic associated candidate keyphrases. After the graph

built, candidate keyphrases are ordered by a graph-based ranking algorithm, and the top N

candidate keyphrases are selected as keyphrases. They also utilize the widely used Tex-

tRank algorithm (Mihalcea & Tarau, 2004) which leverages as consider as edge weights:

S(bi) = (1−λ)+λ . ∑
b j∈I(bi)

ωi j.S(b j)

∑bk∈o(bi)ω jk
2.15

where I(bi) is the set of predecessors of bi, O(b j) is the set of replacements of

b j , and λ is a damping factor set to 0.85 as in (Mihalcea & Tarau, 2004). Note that

different ranking algorithms can also be used. They apply TextRank because it was shown

to perform consistently well (Boudin, 2016a).

38

2.4.4 Statistical Approaches

Mathematical formulas, patterns, and methods are utilized in the statistical analy-

sis of raw research data like text XML. The application of statistical techniques such as

(Salton & Buckley, 1988b), KP-Miner (El-Beltagy & Rafea, 2009a), YAKE (Campos et

al., 2018b), etc extracts Keyphrases from text or XML data and presents several ways to

access the robustness of research products.

2.4.4.1 Term Frequency - Inverse Document Frequency

For the information retrieval system, Term Frequency-Inverse document frequency

(TFIDF) (Salton & Buckley, 1988b) is a statistical approach that explains the importance

of a word or phrase in a specific document in a corpus or dataset (Salton & Buckley,

1988b). It is usually applied as a weighting factor in the field of information text min-

ing, information retrieval, and user modeling. The TF-IDF score represents the number

of times a word or phrase appears in a document and is balanced by the total number of

documents in the data set or corpus that contain the word. It helps to adjust to the fact that

some words or phrase appear more regularly. TF-IDF is the most widely used term-scoring

algorithm and more than 80% of text-based recommender systems in digital libraries use

TF-IDF (Salton & Buckley, 1988b). Modifications of the TF-IDF scoring is often used by

search engines as a fundamental tool in scoring and ranking documents and importance are

given a user query. TF-IDF also applied for stop-words filtering in different fields such as

text summarization, text classification, etc.

Think of a group of English text documents or corpus and want to find out the most

appropriate document in the ”the recommendation system” query. Fast need to drop the

documents those do not contain all three words ”the”, ”recommendation”, and ”system”. It

might calculate the number of times each term or word occurs in a document and it is called

term frequency. Term frequency T F(t1,d1) is the simplest option to use the number of a

term or word in a document, consider the number of times that term t1 occurs in document

d1 and express the raw count by f t1,d1, then the simplistic TF scheme is T F(t1,d1) =

39

f t1,d1.

T F(t1,d1) = 0.5+0.5∗ f t1,d1

max f ′t ,d1 : t ′ ∈ d
2.16

where boolean frequencies T F(t1,d1) = 1 if t1 occurs in d1 and 0. Otherwise, term

frequency adjusted for document length f t1,d1 (number of words in d1) and logarithmi-

cally scaled frequency T F(t1,d1) = log(1+ f t1,d1).

Because the word ”the” is so frequent, term frequency will calculate incorrectly to

the document where use the word ”the”, without giving enough value to the important

terms ”recommendation” and ”system”. Hence an inverse document frequency is included

decreases the score of terms or words that use very frequently in the document set and

increases the weight of terms or words that occur infrequently.

IDF(t1,D1) = log∗ N
|d ∈ D : t ∈ d1|

2.17

where total number of documents in the corpus N = |D|, |{d1 ∈ D : t ∈ d1}| where

the term t appears.

Then the T F− IDF is calculation is,

TF− IDF(t1,d1,D) = TF(t1,d1) · IDF(t1,D) 2.18

High score in TF-IDF is shifted by a high term frequency with a low document

frequency of the term in the full collection of documents. The score manages to separate

common terms. Since the proportion inside the IDF 0, the log function is always greater

than or equal to 1, the value of IDF is higher than or equal to 0. If a term appears in

more documents then the ratio inside the logarithm approaches 1 and bringing the IDF and

TF-IDF closer to 0.

2.4.4.2 KP-Miner

KP-Miner (El-Beltagy & Rafea, 2009b) is an unsupervised automatic keyphrase ex-

traction algorithm that can extract keyphrases from English and Arabic documents. The

40

principal goal was to develop a keyphrase extraction method depends on the natural lan-

guage processing or linguistic tools, that do not require any training documents and can

be easily configured by users based on their knowledge of the documents. The primary

objective is to build this method is the lack of training data for any domain. KP-Miner

applies a set of rules for extract candidate keyphrases. A phrase will unusually contain

stop words within it and will never be divided by punctuation marks within text. The first

requires a sequence of words or phrase has to present in order to be recognized as a candi-

date keyphrase and it is not be divided by any punctuation marks or stop words. A total of

187 common stop-words such as the, then, in, above, etc are applied to extract candidate

keyphrase. Applying these rules, many candidate keyphrases will be generated for future

processing but some of them do not create any meanings to the human readers. For clean-

ing this, two additional conditions are employed. The first condition is, a phrase has to have

performed at least n times in a document from which keyphrases are to be extracted. This

is called the frequency factor. n is dependent on the length of the document and increment

or decrement is possible to depend on the length of the document.

The second condition is the position where a candidate keyphrase first appears in

a document. By research, it was discovered that phrases occurring for the first time after

a given threshold in a long document. If a phrase appears for the first time after a num-

ber of words, it is filtered out and ignored for final keyphrases. For the KP-Miner model

(El-Beltagy, 2006), this cutoff value is constant (850). An optimum value for this con-

stant is considered as 400 (El-Beltagy & Rafea, 2009b). The keyphrase extraction step

described above is carried out in two phases. In the first phase, words are considered until

a punctuation mark or a stop word. They also consider all possible n-grams within the con-

fronted sequence where n can vary from 1 to sequence length 1 are stemmed and saved in

both original and stemmed forms. Initially, the new phrase or sub-phrases is considered a

count of one and it will increase depending on the repetition. Porter stemmer (D. Miller &

Friesen, 1986) , a very week streaming algorithm is used for this algorithm. In the second

phase, it finds the longest possible sequence that satisfies the conditions mentioned above.

After that, this is considered as a candidate keyphrase. The devised algorithm sets no limit

41

on the length of keyphrases, but it was found that extracted keyphrases rarely exceed three

terms.

key features achieved from documents by models such as TF-IDF (Salton & Buck-

ley, 1988b) and represent documents from which they use clustering and classification

tasks. These models performed very badly (Frank et al., 1999b) when applied to the

keyphrase extraction task. In any document experiences of keyphrases are much less fre-

quent than the occurrence of single terms within the same document. When the keyphrase

extraction task applied, TF-IDF performs poorly because it does not consider the fact into

consideration which appears in a bias towards single words as they occur in larger numbers.

So, the preference of single terms in a document is a boosting factor. Consider an input

document d from where keyphrases will be extracted, a boosting factor Bd is calculated as

follows:

Bd =
|Nd|
|Pd| ∗β

2.19

i f Bd > σ ,Bd = σ 2.20

Here |Nd| is the total number of candidate keyphrases in document d, |Pd| is the

total number of candidate keyphrases whose length passes one in document d and β and

σ are the weight adjustment constants. The values selected for the implemented system

are 3 for σ and 2.3 for β . The TF-IDF model in combination with the introduced boosting

factor is used to calculate the score of document terms. For applying TF-IDF for a common

application rather than a corpus-specific one is that keyphrase sequences do not occur as

frequently within a document set. There are two potential methods to address this observa-

tion. A large corpus or dataset of various documents can be used to extract keyphrase with

frequency information. Any encountered keyphrase is estimated to have developed only

once in the corpus or dataset. For the compound keyphrases, frequency within a document

as well as the boosting factor are defining its weight as the IDF value for all compound

keyphrases will be a permanent c defined by the size of the corpus or dataset used to build

42

frequency knowledge for single terms. The position factor is also used in the calculation

for the term weights (El-Beltagy & Rafea, 2009b). In summary, the Next equation is used

to compute the score of candidate keyphrases whether single or compound:

Wi j = t fi j ∗ id f ∗Bi ∗Pf 2.21

where Wi j is the score of term t j in Document Di, t fi j frequency of term t j in Doc-

ument Di, idf is the inverse document frequency, Bi is the boosting factor associated with

document Di, Pf is the term position associated factor.

In the KP-Miner algorithm, the user can define a number n of keyphrases and return

the sorted list top n keyphrases defined by the user. The default value of n is five. When

forming candidate keyphrases, the highest possible sequence of words that are constant by

possible keyphrase terminators, are inquired and stored and so are sub-phrases included

within that sequence provided that they appear somewhere in the text on their own. To

improve outcomes in the KP-Miner algorithm, the top n keyphrases are considered to find

if any of them is a sub- phrase of another. The count is decremented for the term if any

of them are found in the candidate keyphrases. Finally, the weights are recalculated and

a final list of keyphrases sorted by weight is produced. The top n key phrases rather than

all candidate keyphrases are used in this step is so that lower scored keyphrases do not

affect the outcome of the final keyphrase list. The cleaning steps are very important for

the algorithm, but their research has shown that in the English version of the method,

eliminating this step leads to the production of keyphrase documents that match better

with author specified keyphrase.

2.4.4.3 YAKE

YAKE is a unique feature-based algorithm for multi-lingual keyphrase extraction

from single document with various sizes, domains or languages. Unlike most of the

keyphrase extraction algorithm, YAKE does not rely on references or training data. They

follow an unsupervised machine learning approach which creates upon features extracted

43

from the text, making it appropriate to documents written in several languages without any

external knowledge. This algorithm is beneficial for a large number of tasks and lots of

situations where the training data are limited or restricted. The proposed algorithm has

six main parts: (1) Text pre-processing (2) Feature extraction (3) Individual terms score

(4) Candidate keyphrases list generation (5) Data Deduplication and (6) Ranking. First, In

the pre-processing step, the text splits into unique terms and the empty space or a special

character such as brackets, line breaks, period, comma delimiter is found. Second, using a

set of five features to capture the property of each individual term. These are (1) Casing (2)

Word Positional (3) Word Frequency (4) Word Relatedness to Context and (5) Word Dif-

Sentence. Casing shows the character of a word. Word index values provide information

about those words occurring at the beginning of a document based on the cockiness that

related keyphrases often tend to accumulate more at the beginning of a document. Word

Frequency indicates the frequency of the word and also use for scoring those words. The

fourth feature, Word Relatedness to Context, calculates the number of different terms or

words that occur to the left side of the candidate keyphrases. Various terms or words that

co-occur with the candidate word or phrases and more meaningless the candidate word or

phrases are likely to be. Finally, Word DifSentence quantifies how frequently candidate

keyphrases appear within different sentences. Similar to Word Frequency, Word DifSen-

tence values means those words that often occur in different sentences. Both features,

however, are connected with Word Relatedness to Context, meaning that the more they

transpire in different sentences the better, as long as they do not transpire regularly with

different words or terms on the right or left side. They heuristically link all these features

into a single measure such that each term is allocated a score. This score will feed the

process of making keyphrases which are to be taken in the fourth step. Here, they ana-

lyze a sliding window of 3-grams, thus creating a contiguous pattern of 1, 2 and 3-gram

of candidate keyphrases. Each candidate keyphrase will then be given a final score, such

that the smaller the score the higher meaningful the keyphrase will be. After calculating

the weight of a candidate keyphrases, adding the score with the first term of the candidate

keyphrases by the following scores of the remaining terms. This is divided by the total

of the calculated scores to average out with respect to the length of the keyphrase. The

44

result is additionally divided by the term frequency of the keyphrases - to penalize less

frequent candidate keyphrases. In the final step, they remove similar candidate keyphrases

coming from the previous steps. For this, they apply the Levenshtein distance (Yujian &

Bo, 2007). Finally, the system will provide a list of relevant keyphrases.

 Algorithm Name

 Features

 Advantage

 Disadvantage

 Unsupervised
Models

Graph-based
Approach

Statistical
Approach

TopicRank
(Bougouin et al.,
2013)

✓ ✓

(1) Clustering keyphrase
candidates into topics
also eliminates
redundancy.

(2) Use a complete graph
that better captures the
semantic relations
between topics.

(1) Error in topic
identification and the
keyphrase selection.

(2) Does not provide the
best solution that could be
achieved with the ranked
clusters.

PositionRank
(Florescu &
Caragea, 2017b)

✓ ✓

(1) Works Comparatively
Well for Scientific
Research Articles.

(1) Ignoring Topical
Coverage and Diversity.

SingleRank
(Wan & Xiao,
2008)

✓ ✓

(1) Less time complexity. (1) Limitation to Extract
Keyphrases by Assembling
Ranked Words.
(2) Scoring limitation.

MultipartiteRank
(Boudin, 2018)

✓ ✓

(1) Relation
Reinforcement Between
Topics and Candidates.
(2) Solve the error
propagation problem.

(1) Clustering Error.

TF-IDF
(Salton & Buckley,
1988a)

✓ ✓

(1) Extract the Most
Descriptive Terms.

(1) Large Computational
Time.
(2) Biased towards single
terms over compound
terms

YAKE
(Campos et al.,
2018a)

✓ ✓

(1) Resolves the Inverse
Document Frequency
Problem.

(1) Computational
Complexity Increases
Linearly.

Figure 2.8. Analysis for automatic unsupervised keyphrase extraction

2.5 Critical Analysis

Starting with the relevant graph-based unsupervised keyphrase extraction techniques,

the basic idea is to build a graph from an input document and to rank its nodes according to

their importance (Brin & Page, 1998). Such a technique is KeyGraph (Ohsawa et al., 1998),

45

which is content sensitive and domain-independent technique that utilizes co-occurrence

of various terms for indexing vertices of the graph. However, it fails to detect the relation-

ships among the low-frequency items inside clusters and also ignores direct relationships

between the clusters (H. Wang, Xu, Hu, & Ohsawa, 2013).

On the other hand, PageRank (Page et al., 1999) is based on the concept of random

walks and is related to eigenvector centrality that tends to favor nodes with many important

connections regardless of cohesiveness considerations. Each node of the graph corresponds

to a candidate keyphrase from a document and an edge connects two related nodes; and

thus, weight of an edge represents the syntactic relevance between the connected candidate

keyphrases. This technique is well suited for raking pages on the web and social networks,

but not suitable for keyphrase extraction due to lack of consideration of cohesiveness (Mi-

halcea & Tarau, 2004; J. Wang, Liu, & Wang, 2007).

An extension of PageRank, called PositionRank (Florescu & Caragea, 2017b), in-

corporates all the positions of a word along with its frequency to score the word; and thus,

decides the rank of that word. This way, it outperforms all the techniques that consider only

the first position information in the ranking. However, due to ignoring topical coverage and

diversity which is not naturally handled by this kind of graphs (Hasan & Ng, 2014), this

technique suffers from considerably limited performance.

TextRank (Mihalcea & Tarau, 2004) is one of the most well-known graph-based

approaches for keyphrase extraction. Here, the scientific documents are modeled as undi-

rected or directed and weighted co-occurrence networks using a co-occurrence window of

variable sizes (Mihalcea & Tarau, 2004). It experiences several limitations, such as its in-

capability to capture cohesiveness. Again, retaining only the main core is suboptimal since

sometimes it is impractical to discover all the gold standard keyphrases within a unique

subgraph; whereas, many valuable keyphases may place in the lower levels of the hierar-

chy (Tixier, Malliaros, & Vazirgiannis, 2016). Moreover, due to selecting or discarding a

large group of words at a time reduces the flexibility of the extraction process, and nega-

46

tively impacts the performance.

An extension of TextRank, named SingleRank (Wan & Xiao, 2008), which weights

an edge equal to the number of times the two corresponding words co-occur. Unlike its pre-

decessor, it does not extract keyphrases by assembling ranked words, instead, only noun

phrases are extracted from a document. However, sometimes it assigns higher scores to

long but non-significant keyphrases which entices the ranking procedure.

Again, in enhancement of TextRank, called TopicRank (Bougouin et al., 2013) the

vertices of a graph are topics, not words. It extracts the noun phrases that represent the

main topics of a document and clustered them into topics. A notable advantage of this

technique is that it considers topical coverage and diversity. However, it equally weighs

all candidates belonging to a single topic. In addition, it suffers from the error propagation

problem which may occur during topics formation.

To resolve the error propagation problem of TopicRank, the MultipartiteRank tech-

nique (Boudin, 2018) utilizes multipartite graph. Here, a complete directed multipartite

graph is built that are connected only if they belong to different topics. Since this technique

makes good use of relation reinforcement between topics and candidates, it performs bet-

ter than other graph-based techniques. However, due to clustering error (where candidate

keyphrases could be wrongly assigned to a similar topic), it struggles in selecting the most

representative candidates.

Although graph-based techniques show acceptable performance in many occasions,

they are considerably difficult to implement in comparison to statistical unsupervised keyphrase

extraction techniques.

The most prominent and state-of-the-art statistical technique is Term Frequency -

Inverse Document Frequency (TF-IDF) (Salton & Buckley, 1988a), which reflects the im-

portance of a keyphrase to a document in a corpus. Among the two terms, TF provides

47

aboutness and IDF provides informativeness. The IDF discriminates between informa-

tive and non-informative keyphrases across the documents; whereas, the TF discriminates

between popular and non-popular keyphrases in a document. This technique is computa-

tionally expensive as IDF is calculated across different documents. Again, many studies

report that this technique is biased towards single terms over compound terms (El-Beltagy

& Rafea, 2010).

To resolve the problem of favoring single terms, KP-Miner (El-Beltagy & Rafea,

2010) is proposed. It utilizes some heuristics based on TF and positions to identify po-

tential keyphrases which are weighted with TF-IDF score (Jean-Louis, Zouaq, Gagnon, &

Ensan, 2014). Although it outperforms TF-IDF, it experiences several limitations such as

drop in global ranking performance with increasing length or number of documents (Mer-

rouni, Frikh, & Ouhbi, 2016). In addition, it is computationally expensive due to its depen-

dence on TF-IDF.

Another lightweight technique is YAKE (Campos et al., 2018a) which resolves the

IDF problem. It takes five features into consideration, namely casing, word position, word

frequency, word relatedness to context, and word in the different sentence to calculate the

weight of a keyphrase. Again, due to generating candidate keyphrases employing N-grams

technique, its computational complexity increases linearly with respect to N-grams (C. Xu

et al., 2017). Again, due to the same reason, a large number of keyphrases are generated,

which entices the ranking procedure.

From the above discussions, it is evident that graph-based techniques and statistical

techniques have several adverse characteristics, which restrict them in achieving better

performance. To overcome the identified shortcomings, in this thesis proposes a tree-based

technique to extract quality keyphrases from documents.

48

2.6 Summary

Figure 2.8 summaries the most common features that have been used in keyphrase

extraction systems. Observable features are covered, such as Punctuation, Stop-words,

Part-Of-Speech Tags (POS Tags) etc. A feature’s type is taken as a basis for categoriza-

tion. This chapter discusses the background knowledge that is essential to understand this

thesis. Initially, we propose a taxonomy where we divide all the existing keyphrase ex-

traction technique for academic literature. Afterward, they are further divided into several

subclasses. Since all the subclasses are not in-line, therefore, our further discussions are

limited to those classes that are similar to the proposed algorithm. Again, since every class

has numerous of an algorithm, so, only prominent algorithm are described, scrutinized,

and analyses with their advantages and limitations—which inspires to propose a new algo-

rithm. Furthermore, evaluation metrics for the various algorithm are also mentioned with

various comparison tables. In the end, the most related algorithms are deeply investigated

and their efficiency and drawbacks are highlighted.

49

CHAPTER 3

METHODOLOGY

3.1 Preamble

This section states the assumption of the proposed technique followed by formulat-

ing the problems of keyphrase extractions. Afterwards, the conceptual frameworks that are

taken into account while developing the proposed technique to resolve the aforementioned

problems are explained.

Generally, most of the unsupervised keyphrase extraction techniques immediately

start ranking after extracting candidate keyphrases. A large number of candidate keyphrases

contend for receiving good ranks, which many times entice ranking procedures. It could

be compared with a human analogy: too many options make it harder to choose (Scheve,

2018). Conversely, a refinement of candidate keyphrases and generation of final keyphrases

from them would reduce the keyphrase quantity to a considerable amount, thus, facilitate

the ranking procedure.

3.2 Problem Formulation

Considering a document, δ , which is passed to a keyphrase extraction technique to

extract final keyphrases, ϕ . For this, at first it is necessary to extract candidate keyphrases,

χ from δ , which will be processed later to extract ϕ . There are several techniques to extract

χ from δ and the one employed in the proposed technique can be found in Section 3.4.1.

For now, χ has been extracted from δ . Any candidate keyphrase χi in χ (i.e., χi ∈ χ)

50

is comprised of n number of ordered sequence of words, {w1,w2, ...,wm, ...,wn−1,wn},

where n ∈ Z+. As mentioned earlier, any keyphrase is a coherently connected sequence of

words that appear contiguously. Therefore, χi could be represented as an ordered set and

its segments also could be represented as ordered subsets. Again, when n = 1, χi contains

only one word; otherwise, multiple words. Note that χi cannot be empty; and therefore,

|χi|= n 6= 0.

For extracting a final keyphrase, ϕ j (where ϕ j ∈ ϕ) from a χi, the latter is necessary

to be processed. For this, following probable cases need to be considered:

Case 1 : χi is ϕ j, i.e., χi = ϕ j or χi ⊆ ϕ j and ϕ j ⊆ χi.

Case 2 : ϕ j is a part of χi, i.e., ϕ j ⊂ χi.

Case 3 : Again, χi is a part of ϕ j, i.e., χi ⊂ ϕ j.

Case 4 : χi is not a final keyphrase.

Although, four probable cases are identified, but it is difficult to determine under

which case a certain candidate keyphrase falls. To identify that, in the subsequent section,

we discuss some hypotheses and observations.

3.3 Conceptual Framework

The concept of extracting final keyphrases from candidate keyphrases relies on the

following hypotheses and observations:

Hypothesis 1 : For any χi, case 1 and case 4 can be determined by its popularity. In

other words, this decision can be taken based on the frequency of χi in a document

and applying a binary decision strategy.

Hypothesis 2 : For case 2, since a part of χi — denoted as χ ′i — is a final keyphrase

(i.e., χ ′i = ϕ j), the popularity and the cohesiveness of χ ′i must be higher than that of

χi. In this case, χi need to be appropriately reduced to χ ′i .

51

Hypothesis 3 : For case 3, since χi is a part of ϕ j, χi need to be expanded to χ ′i such

that χ ′i = ϕ j. Again in this case, the popularity and the cohesiveness of χ ′i must be

higher than that of χi.

Hypothesis 1 is quite straightforward. A simple binary decision strategy could be

applied to determine this. For instance, assuming that the frequency of χi is ρ in δ . Now,

it is compared with λ , which is a constant value, and also known as least seen allowable

frequency (lsaf) factor. The value of λ varies from one language to another (El-Beltagy &

Rafea, 2009a), and also subject to the length of a document (El-Beltagy & Rafea, 2009a).

When ρ < λ , it is not a final keyphrase, otherwise, it is likely to be a final keyphrase.

Again, for hypothesis 2 and hypothesis 3, the proposed rooted binary tree expands or

shrinks based on the candidate keyphrases and keeps track of the cohesiveness of various

words in a keyphrase with respect to the root. At the end, the final keyphrases are extracted

from the tree as detailed in the subsequent section.

Candidate Keyphrase
Selection

document

Candidat
e

Keyphrase
Generator

Candidate
Keyphrase

Ranking and Selecting Final
Keyphrases

Ranking
Mechanism

C
a

n
d

id
a

te
 K

e
y

p
h

ra
se

P

ro
ce

ssin
g

KePhEx
Tree

Final
Keyphrase

1. Keyphrase 1
2. Keyphrase 2
3. Keyphrase 3

…

Figure 3.1. Functional details of the proposed technique

52

3.4 Proposed Technique: Tree-based Keyphrase Extraction Technique (TeKET)

The entire process of keyphrase extraction using our proposed technique can be

parted into three main phases as exhibited in figure 3.1 : i) candidate keyphrase selection

or pre-processing, ii) candidate keyphrase processing or simply processing, and iii) rank-

ing and selecting final keyphrases or post-processing. Briefly, the pre-processing technique

selects candidate keyphrases from a document which are processed using the newly pro-

posed technique, and the final keyphrases are ranked based on the new ranking approach

(see section 3.4.3) that employs a combination of a value obtained from the tree and the

term-frequency as factor. At the end, top-N keyphrases are selected as final keyphrases.

3.4.1 Candidate Keyphrase Selection

Generally, for selecting candidate keyphrases, most of the existing techniques ei-

ther employ N-gram approach (Kim, Baldwin, & Kan, 2010; Kim, Medelyan, Kan, &

Baldwin, 2010; Kumar & Srinathan, 2008) or Part-Of-Speech (POS) Tagging (POST) ap-

proach (Barker & Cornacchia, 2000; Hulth, 2003a; Ono, Hishigaki, Tanigami, & Takagi,

2001; Yu & Ng, 2018). However, the former one extracts a huge number of candidate

keyphrases, which are afterwards reduced employing several conditions, such as removing

stop words (Bird, Klein, & Loper, 2009; Fox, 1989), removing punctuation marks (Bayrak-

tar, Say, & Akman, 1998; R. Wang, Liu, & Mcdonald, 2014), removing keyphrases that fail

to satisfy lsaf factor, and so on (Hasan & Ng, 2014).

For instance, let us consider that a document has N = 1000 words, and 3-gram pro-

cedure is applied for selecting candidate keyphrases. In this case, if no condition is applied

to clean the keyphrase list, then N +(N− 1)+ (N− 2) candidate keyphrases will be gen-

erated; where N for 1-gram, N−1 for 2-gram, and so on. Hence, for 1000 words, around

2997 keyphrases will be generated; where many of them are nonsensical keyphrases. On

the other hand, due to considering these nonsensical keyphrases, feature space will in-

crease; and hence, the processing complexity will also increase.

53

For extracting candidate keyphrases, we employ the Part-Of-Speech (POS) Tagging

(POST) on a given document, D; and afterwards, we perform POS pattern matching to limit

ourselves only to noun phrases (Barker & Cornacchia, 2000; Frank et al., 1999a). In this

place, we would like to define noun phrases since it is necessary for clear understanding of

the further discussions. According to (“Noun Phrase”, (accessed May 3, 2018)), a noun

phrase is a phrase that is formed by a noun and functions in a sentence as subject, object,

or prepositional object. Therefore, in a sentence, a noun phrase may appear in many differ-

ent patterns. In (Popova & Danilova, 2014), authors found 56 such patterns (All patterns

are not only noun phrase) from a training dataset. However, only some of these patterns

could yield quality keyphrases from noun phrase. Therefore, in this thesis, only prominent

patterns are chosen for an initial investigation with an intention of selecting only one such

pattern for further processing. The patterns that are considered for the investigation are

mentioned in Table 3.1.

Table 3.1. POS patterns

Denoted as POS Pattern
1 A (< NN.∗>+)|(< NN.∗>+< JJ.∗>?)|(< JJ.∗>? < NN.∗>

+)
2 B < NN.∗ |JJ > ∗< NN.∗>
3 C (< JJ. > |< NN. >)∗< IN >?(< JJ. > |< NN. >)∗< NN. >
4 D < PRP >? < JJ.∗> ∗< NN.∗>+
5 E < DT |PP$ >? < JJ > ∗< NN.∗>+
6 F (< \w+DT >)?(< \w+JJ >)∗(< \w+> (<NN|NP|PRN >))
7 G (< NN.∗>+< JJ.∗>?)|(< JJ.∗>? < NN.∗>+)

There are 7 candidate POS patterns are asserted in the table, which are denoted

with characters from A to G. Aforementioned expressions are regular expressions, which

are written in a simplified format used by NLTK’s RegexpParser (Regular Expression

HOWTO, n.d.); where adjectives are tagged with JJ, nouns are tagged with NN, personal

pronouns are tagged with PRP, determiners are tagged with DT , prepositional phrases are

tagged with PP, and preposition/subordinating conjunctions are tagged with IN.

54

’self-adapt applic’, ’grid gosia wrzesinska
jason maassen henri e. bal dept’, ’comput
systems’, ’universiteit amsterdam’, ’gosia’,
’jason’, ’inher heterogen’, ’dynamic’, ’im-
port problem’, ’grid comput’, ’resourc se-
lection’, ’appropri resourc’, ’application’,
’problem’, ’chang characterist’, ’grid envi-
ronment’, ’solut’, ’problem requir’, ’perform
model’, ’construct such model’. . .

Figure 3.2. An example of the candidate keyphrases for POS patterns 1.

In POS patterns 1, where nouns are tagged with NN and adjectives are tagged with

JJ. This expression has three parts and is separated by the operator ”|”.The first part selects

those noun phrases that must have nouns of any format (i.e., NN, NNS, NNP, NNPS). The

second part selects those noun phrases that must have nouns of any format (i.e., NN, NNS,

NNP, NNPS) for at least one time or more followed by adjectives of any format (i.e., JJ,

JJR, JJS) once or none and the third part selects those adjectives of any format (i.e., JJ,

JJR, JJS) for at least once or none followed by noun phrases that must have nouns of any

format (i.e., NN, NNS, NNP, NNPS) one time or more. Figure 3.2 shows the example of

the POS patterns 1.

’self-adapt applic’, ’grid gosia wrzesinska
jason maassen henri e. bal dept’, ’comput
systems’, ’vrije universiteit amsterdam’,
’gosia’, ’jason’, ’inher heterogen’, ’dy-
namic’, ’import problem’, ’grid comput’,
’resourc selection’, ’appropri resourc’, ’ap-
plication’, ’problem’, ’chang character-
ist’. . .

Figure 3.3. An example of the candidate keyphrases for POS patterns 2.

In POS pattern 2, where nouns are tagged with NN and adjectives are tagged with

JJ. The POS pattern selects those noun phrases that have nouns of any format (i.e., NN,

NNS, NNP, NNPS) or adjectives of any format (i.e., JJ, JJR, JJS) with must have nouns

of any format (i.e., NN, NNS, NNP, NNPS). Figure 3.3 shows the example of the POS

patterns 2.

In POS pattern 3, where nouns are tagged with NN, adjectives are tagged with JJ

and prepositions are tagged with IN. The POS pattern selects those adjectives of any format

(i.e., JJ, JJR, JJS) or noun phrases that have nouns of any format (i.e., NN, NNS, NNP,

55

’systems’, ’models’, ’of resources’, ’statis-
tics’, ’needs’, ’bottlenecks’, ’processors’,
’therefor’, ’improvements’, ’networks’,
’techniques’, ’years’, ’problems’, ’parallel’,
’supercomputers’, ’node’, ’environments’. . .

Figure 3.4. An example of the candidate keyphrases for POS patterns 3.

NNPS) with must have a preposition. The preposition must have zero or one occurrence

of any format (i.e., JJ, JJR, JJS) or noun phrases that have nouns of any format (i.e., NN,

NNS, NNP, NNPS) with must have a noun phrase (i.e., NN, NNS, NNP, NNPS). Figure

3.4 shows the example of the POS patterns 3.

’self-adapt applic’, ’grid gosia wrzesinska
jason maassen henri e. bal dept’, ’comput
systems’, ’vrije universiteit amsterdam’,
’gosia’, ’jason’, ’inher heterogen’, ’dy-
namic’, ’import problem’, ’grid comput’,
’resourc selection’, ’appropri resourc’, ’ap-
plication’, ’problem’, ’chang characterist’,
’grid environment’, . . .

Figure 3.5. An example of the candidate keyphrases for POS patterns 4.

In POS patterns 4, where nouns are tagged with NN, adjectives are tagged with JJ

and Personal pronouns are tagged with PRP. The POS pattern selects those adjectives of

any format (i.e., JJ, JJR, JJS) with must have a noun that has nouns of any format (i.e.,

NN, NNS, NNP, NNPS). Figure 3.5 shows the example of the POS patterns 4.

’self-adapt applic’, ’the grid gosia wrzesin-
ska jason maassen henri e. bal dept’, ’com-
put systems’, ’vrije universiteit amster-
dam’, ’gosia’, ’jason’, ’inher heterogen’,
’dynamic’, ’import problem’, ’grid com-
put’, ’resourc selection’, ’an appropri re-
sourc’, ’the application’, ’anoth problem’,
’the chang characterist’, ’the grid environ-
ment’,. . .

Figure 3.6. An example of the candidate keyphrases for POS patterns 5.

In POS patterns 5, where nouns are tagged with NN, adjectives are tagged with

JJ, Determiners are tagged with DT . The POS pattern selects those adjectives that have

adjectives of any format (i.e., JJ, JJR, JJS) with nouns of any format (i.e., NN, NNS,

NNP, NNPS) with have once or none determiner. Figure 3.6 shows the example of the

POS patterns 5.

56

’self-adapt applic’, ’grid gosia wrzesinska
jason maassen henri e. bal dept’, ’comput
systems’, ’vrije universiteit amsterdam’,
’gosia’, ’power’, ’thu’, ’the possibl’, ’veri
larg problems’, ’multipl site’, ’the same
time’, ’the complex’, ’grid environ’, ’mani
time’, ’tradit parallel’, ’cluster’,. . .

Figure 3.7. An example of the candidate keyphrases for POS patterns 6.

In POS patterns 6, where nouns are tagged with NN, adjectives are tagged with JJ,

determiners are tagged with DT and Possessive pronoun are tagged with PRN. The POS

pattern selects determiners once or none with those adjectives that have adjectives of any

format (i.e., JJ, JJR, JJS) with nouns that must have nouns or possessive pronoun of any

format (i.e., NN, NNS, NNP, NNPS). Figure 3.7 shows the example of the POS patterns

6.

’self-adapt applic’, ’grid gosia wrzesinska
jason maassen henri e. bal dept’, ’comput
systems’, ’universiteit amsterdam’, ’gosia’,
’jason’, ’inher heterogen’, ’dynamic’, ’im-
port problem’, ’grid comput’, ’resourc se-
lection’, ’appropri resourc’, ’application’,
’problem’, ’chang characterist’, ’grid envi-
ronment’, ’solut’, ’problem requir’, ’perform
model’,. . .

Figure 3.8. An example of the candidate keyphrases for POS patterns 7.

In POS patterns 7, this expression has two parts and are separated by the operator

“|”. The first part selects those noun phrases that must have nouns of any format (i.e., NN,

NNS, NNP, NNPS) for at least one time or more followed by adjectives of any format (i.e.,

JJ, JJR, JJS) once or none; whereas, the second part selects those keyphrases that have

adjectives of any format once or none followed by nouns of any format for at least one

time. Figure 3.8 shows the example of the POS patterns 7.

Therefore, the proposed technique employs POST approach to extract those key-

phrases that make sense. Since keyphrases generally are noun phrases (Turney, 2000),

the proposed technique limits the extraction to noun phrases (Barker & Cornacchia, 2000;

Frank et al., 1999a; Goyvaerts & Levithan, 2012; Loper & Bird, 2002). Consequently, in

our proposed technique, following POS pattern is employed as it has been demonstrated

57

in (Rabby, Azad, Mahmud, & Zamli, 2018) is that it can extract more suitable candidate

keyphrases than other similar prominent patterns.

(< NN.∗>+< JJ.∗>?)|(< JJ.∗>? < NN.∗>+)

After extracting these noun phrases, they are cleaned before passing them to the pro-

cessing phase. In the cleaning process, candidate keyphrases that are less likely to be final

keyphrases are filtered out from the list. For that, following conditions are applied: i) any

candidate keyphrase that contains non-alphabetic characters, ii) any candidate keyphrase

that contains single alphabetic word(s), and iii) if the frequency of any candidate keyphrase

fails to satisfy lasf factor. The former two conditions are applied to filter out those candi-

date keyphrases that make no sense to the human reader in general; and hence, less likely

to become final keyphrases. On the other hand, the latter one filter out all non-popular can-

didate keyphrases from the list. The justification of this assumption is that generally final

keyphrases are not rare in a document. Here, note that lsaf is decremental with respect to

the length of a document (Nguyen & Kan, 2007), and varies from one language to another.

For academic literature in English language, lsaf value is suggested to be three by several

researchers for better cleaning performance (Nguyen & Kan, 2007; Witten et al., 2005;

Zhao et al., 2011).

3.4.2 Candidate Keyphrase Processing

In conventional unsupervised keyphrase extraction techniques, candidate keyprha-

ses are not processed; instead, they are sent to the ranking phase immediately after se-

lecting. On the contrary, an intermediate phase between candidate keyphase selection and

ranking — which would extract final keyphrases — could release the burden of ranking

unnecessary keyphrases, and thus, assist finding more appropriate keyphrases. The pro-

posed KePhEx tree takes all the hypotheses (see Section 3.3) into account for extracting

final keyphrases. The KePhEx tree expands (hypothesis 3) or shrinks (hypothesis 2) or

remains in the same state (hypothesis 1) based on the candidate keyphrases. The advan-

tages of employing KePhEx tree in keyphrase extraction are threefold: i) extracts quality

58

scalabl grid servic discoveri base, grid ser-
vic, servic discoveri mechan, scalabl web
servic permiss, distribut grid servic discov-
eri architectur, servic discoveri architectur,
grid discoveri servic, servic discoveri, grid
inform servic, servic discoveri grid comput,
servic technolog, servic discoveri function,
grid servic call registri, web servic version,
discoveri servic, servic properti, thi servic,
index servic, servic discoveri, web servic
commun, . . .

Figure 3.9. An example of similar candidate keyphrases consider servic as a root.

keyphases from candidate keyphrases, ii) provides flexibility during keyphrase extraction,

and iii) contributes in ranking by providing a value that represents cohesiveness of a word

in a keyphrase with respect to a root.

Although there exist a number of different binary trees, the KePhEx tree is different

from them in that, the position of a node in terms of the subtree and its level is fixed. Again,

all the predecessors of a node at the upper-levels (including root) are also fixed. It is so

because a good keyphrase must be a coherently connected sequence of words that appear

contiguously in the text (see Section 1.2). Thus, the KePhEx tree preserves the character-

istics of a good keyphrase intact. For instance, in a candidate keyphrase, cognitive agent

specification language, specification is the root. In the KePhEx tree, all the words at the left

side of specification will become the nodes of the left subtree and all the words at the right

side will become the nodes of the right subtree. Again, since cognitive is at the left side of

specification, it must be in the left subtree, and since it is two words away from the root, its

level must be two. Moreover, its predecessors must be agent and specification, respectively.

Every node in a KePhEx tree holds a 2-tuple data along with other information,

namely a word and its µ value. The latter one provides twofold advantages: i) it assists

in finding the cohesiveness of various words with respect to the root of a tree, which is

employed as a factor in ranking keyphrases, and ii) it provides flexibility during keyphrase

extraction. Again, note that the value of µ increases or decreases based on the existence of

that word in candidate keyphrases.

59

Root Selection

Before forming a KePhEx tree, it is necessary to select the root of that tree. This

is important since a poorly selected root may lead to a poor keyphrase. Therefore, in our

proposed technique, only nouns are designated as roots. The justification of the choice is

that noun phrases are the most likely candidate for final keyphrases; and hence, nouns as

roots would increase the chances of extracting quality final keyphrases. In the proposed

technique, nouns are selected from the candidate keyphase list, χ and saved them in a list,

η .

After selecting the roots, the trees are formed taking these roots into consideration.

The entire process from tree formation to final keyphrase extraction could be segmented

into three main steps, namely i) tree formation, ii) tree processing, and iii) keyphrase

extraction. They are discussed below with necessary examples.

Tree Formation

For forming a KePhEx tree, a root, γ is selected from η . Afterwards, the proposed

system selects candidate keyphrases that contains the root. Let us denote them as similar

candidate keyphrases, which could be defined as follows:

Definition 1. Similar candidate keyphrases, σ are those candidate keyphrases that contain

γ in them — irrespective of its position, and σ ⊆ χ .

A partial sample of σ for γ = servic is shown in Fig. 3.9. Among them, the first

encountered similar candidate keyphrase, σ1 (e.g., scalabl grid servic discoveri base of

Fig. 3.9) is employed to form the KePhEx tree and the rest are utilized for tree processing

(see Section 3.4.2).

Here, the process of tree formation starts by selecting the position of γ in σ1; but the

tree starts forming once the γ is assigned as the root of the tree and µ value is initialized to

1. Now, all the words at the left side of γ are included in the left subtree and all the words

at the right side of γ are included in the right subtree. The algorithm for adding a node in

60

servic, 1

grid, 1 discoveri, 1

scalabl, 1 base, 1

Figure 3.10. A newly created tree using a candidate keyphrase, where γ = servic.

the KePhEx tree is illustrated in Algorithm 1.

As the algorithm describes, when γ is passed to the AddNode function, if at that

time, the root is found NULL, it is designated as the root and µ value is initialized as 1. If

it is not the γ , in that case, position of wi, i.e., wp is determined to decide in which subtree

it would be placed. If position of γ , i.e., γp is more than wp (i.e., γp > wp), it would be

placed in the left subtree; otherwise, the right subtree.

Again, the depth of a word, wd in a phrase with respect to γ is also necessary to

calculate to determine the level of the tree where w would be added, which could be defined

as follows:

Definition 2. Depth of a word, wd in a keyphrase is the distance of that word from γ

irrespective of its direction, which is calculated as, wd = |γp−wp|.

Note that wd in a candidate keyphrase and the level of that word in the KePhEx tree,

l is identical; and hence, they are used interchangeably in this thesis. Now, to determine

where the new word would be added in the tree, both wp and wd is necessary. Here, we

would like to mention that wp and wd are jointly unique with respect to any σi, where σi ∈

σ . Once they are determined, the next condition to be satisfied is that all the predecessors

must be in their respective places. This can be tracked by adding all the nodes in the tree

sequentially from higher level to lower level and by ensuring that all the words between

the depth 0 to d−1 are placed in their respective levels in the tree. Once these constraints

are satisfied, w is qualified for adding in the tree at the level l. For adding w in the tree, a

node is created incorporating it and initializing µ to 1. Afterwards, it is added in the tree

in its respective place.

61

Once all the words at the left side of γ is added in the left subtree; then the words

at the right side of γ are added in the right subtree following the same procedure. The tree

formation ends when all the words of σ1 are added in the tree. A sample tree is depicted in

Fig. 3.10.

Considering σ1 mentioned in Fig. 3.9, i.e., scalabl grid servic discoveri base, servic

is the root. Now, the tree formation starts by adding servic in the tree and initializing

µ of the node to 1. Afterwards, all the words at the left side (i.e., grid and scalabl) are

added in the left subtree in their respective levels, where levels are calculated based on

their respective depths in σ1. For instance, since gridd = 1, grid is added at level 1 in left

subtree, whereas, since scalabld = 2, scalabl is added at level 2 in left subtree. Again, when

grid is added in the tree, it is tracked that its predecessor is servic in the tree. Similarly,

when scalabl is added in the tree, it is tracked that grid and servic are its predecessors,

respectively. Once all the words at the left side of servic are added in the tree, the words at

the right side (i.e., discoveri and base) are added in the right subtree employing a similar

procedure as the left subtree.

servic, 2

grid, 2 discoveri, 0

scalabl, 0 base, 0

(a) σ ′1 = grid servic

servic, 3

grid, 1 discoveri, 1

scalabl, -1 base, -1mechan, 1

(b) σ ′2 = servic discoveri mechan

62

servic, 4

grid, 0 discoveri, 0

scalabl, -2 base, -2mechan, 0

(c) σ ′3 = scalabl web servic permiss

servic, 5

grid, 1 discoveri, 1

scalabl, -3 architectur, 1mechan, -1distribut, 1

(d) σ ′4 = distribut grid servic discoveri architectur

servic, 45

grid, 4 discoveri, 7

scalabl, -23 architectur, 3mechan, -11distribut, -18

(e) σ ′n = grid servic discoveri

Figure 3.11. Several tree processing steps, where γ = servic.

Tree Processing

After forming the tree employing σ1, the rest of the similar candidate keyphrases,

σ ′, where σ ′ = {σ2, σ3, ..., σn} are utilized to process the tree to extract final keyphrases.

Following the cases in processing the newly formed KePhEx tree (see Section 3.1), for

case 1 no processing is needed; for case 2 the tree must be trimmed properly to remove

unnecessary parts; and for case 3 it must be expanded to put on necessary parts from all

the similar candidate keyphrases in σ ′. This process has been described in Algorithm 1.

Let us fetch a similar candidate keyphrase, σ ′i from σ ′, and utilize it for processing

the KePhEx tree. At first, γp in σ ′i need to be determined. Afterwards, all the words are

63

1

Algorithm 1 Adding a Node in the KePhExTree
Input: word, wordIndex, root, rootIndex, termFreq, phrase
Output: return TRUE if a node is added; otherwise FALSE

1: if word is None then
2: return
3: if root is None then
4: create a node and assign it as root
5: return TRUE
6: depth ← abs(wordIndex - rootIndex)
7: count ← 0
8: newNode ← root
9: if wordIndex < rootIndex then

10: while count < depth - 1 or newNode is not None do
11: if newNode.word equals word then
12: return TRUE
13: else if newNode.prev is not None and newN-

ode.prev.word equals phrase[rootIndex - count -1]
then

14: assign newNode.prev to newNode
15: increase count by 1 and continue
16: else if newNode.next is not None and newNode is not

root and newNode.next.word equals phrase[rootIndex
- count -1] then

17: assign newNode.next to newNode
18: increase count by 1 and continue
19: else
20: if newNode.prev is None then
21: create a node and assign to newNode.prev
22: return TRUE
23: else if newNode.next is None and newNode is not

root then
24: create a node and assign to newNode.next
25: return TRUE
26: else if newNode.prev is not None and newN-

ode.prev.word is not phrase[rootIndex - count -1]
then

27: if newNode.prev.termFreq < termFreq then
28: create a node and assign to newNode.prev
29: return TRUE
30: else
31: return FALSE
32: else if newNode.next is not None and newN-

ode is not root and newNode.next.word is not
phrase[rootIndex - count -1] then

33: if newNode.next.termFreq < termFreq then
34: create a node and assign to newNode.prev
35: return TRUE
36: else

37: return FALSE
38: else
39: return FALSE
40: return FALSE
41: if wordIndex > rootIndex then
42: while count < depth - 1 or newNode is not None do
43: if newNode.word equals word then
44: return TRUE
45: else if newNode.next is not None and newN-

ode.next.word equals phrase[rootIndex + count +1]
then

46: assign newNode.next to newNode
47: increase count by 1 and continue
48: else if newNode.prev is not None and newNode is not

root and newNode.prev.word equals phrase[rootIndex
+ count +1] then

49: assign newNode.prev to newNode
50: increase count by 1 and continue
51: else
52: if newNode.next is None then
53: create a Node and assign to newNode.next
54: return TRUE
55: else if newNode.prev is None and newNode is not

root then
56: crete a Node and assign to newNode.prev
57: return TRUE
58: else if newNode.next is not None and newN-

ode.next.word is not phrase[rootIndex + count +
1] then

59: if newNode.next.termFreq < termFreq then
60: create a Node and assign to newNode.next
61: return TRUE
62: else
63: return FALSE
64: else if newNode.prev is not None and newN-

ode is not root and newNode.prev.word is not
phrase[rootIndex + count + 1] then

65: if newNode.prev.termFreq < termFreq then
66: create a Node and assign to newNode.next
67: return TRUE
68: else
69: return FALSE
70: else
71: return FALSE
72: return FALSE

64

passed to the AddNode function (see Algorithm 1.) for possible inclusion. This function

returns true for successful inclusion of a word in the tree or if that word already exists in

the tree. On the contrary, returns false, which stops processing of the rest of the words

in the same direction and moves to the alternative side if that is not yet processed. For

instance, if the function returns false for a word at the left side of γ , and the right side is not

yet processed; it stops processing the other words at the left side and moves to the words

at the right side and vice-versa.

Like tree formation, the tree processing also starts from γ followed by the words at

the left side of γ and then, right side. Since γ is present in every σ ′i , the AddNode func-

tion always returns true after increasing the µ value by 1. Considering a word (w ∈ σ ′i)

at position wp is passed to the function for possible inclusion in the tree. If wp < γp, it is

added to the left subtree; otherwise, the right subtree. Again, depth (wd) is calculated to

determine at which level w is added in the subtree. Furthermore, all the predecessors must

be checked with the ones in σ ′i before inclusion. For that, an iterative procedure is applied

which compares all the words from depths 0 to d−1 in σ ′i with their respective equivalent

levels. The iterator increases when the word in a certain depth is same as the word in the

equivalent level in the tree; otherwise, returns false.

When the iterator reaches at level l, three events can occur: i) there is no node in l,

ii) there is only one node in l, and iii) there is two nodes in l. In case of the first event, a

node is created incorporating w and initializing µ to 1; and then, add it as a left child for

the left subtree or as a right child for the right subtree. For the second event, if the word in

the node is same as w; then no node is added. Otherwise, a node is created incorporating

w and initializing µ to 1; and add it as the child that is NULL at present at that level in

the tree. Last event but not least, if both children already exist at that level; then, the node

created with w replaces the node whose word has the lowest TF with respect to w. The

reason is that any word with higher TF is highly likely to form a quality final keyphrase

since generally keyphrases are not rare in a document. For that, if the lower TF node is

a leaf node, the new node will replace it. Otherwise, if it is a root of a subtree, then the

65

subtree is deleted from the tree and the new node is added in that position. This process is

deemed complete when all the words of σ ′i are taken into account.

Update µ Values

The process of updating µ values starts immediately after the process of node addi-

tion is over for any σ ′i . This process is demonstrated in Algorithm 2.

Like tree formation and tree processing, this process also starts by determining γp in

σ ′i . If γp is 0 but the root in the tree has a left child then, µ values of all the nodes in the left

subtree are decreased. Similarly, if γp is |σ ′i | − 1, i.e., the rightmost node in the tree, but

the root has a right child then, µ values of all the nodes in the right subtree are decreased.

Afterwards, the µ value of the root is increased and the tree is traversed and compared

starting from the left subtree followed by the right subtree using iterative procedures.

For any w when it reaches to its own level, l, three events may occur: i) w is absent

in l, ii) w is present as a left child, and iii) w is present as a right child. For the first event,

µ values of all the nodes in the left and right subtree are decreased. In the second case, µ

value of the left child is increased; whereas, they are decreased for all nodes in the right

subtree, and then, move to the next level. In case of the last event, µ value of the right child

is increased; whereas, they are decreased for all nodes in the left subtree, and then, move

to the next level. This procedure continues until all the words are taken into account.

An example of tree processing and updating µ values are demonstrated in Fig. 3.11.

In this example, the tree shown in Fig. 3.10 and σ in Fig. 3.9 are utilized. Again, the

tree is formed using σ1 in σ , and the rest (i.e., σ ′) are utilized to process the tree. As in

Fig. 3.11.a, since σ ′1 is grid servic, and both the words already exist in the tree in sequence,

the tree remains in the same state as before. However, µ values of the nodes that contain

grid and servic are increased, and all others are decreased. In Fig. 3.11.b, among the three

words, only mechan does not exist in the right subtree at level 2 and it is added as left child.

Afterwards, µ values are increased based on σ ′2. Similarly, the tree keeps amending with

66

2

Algorithm 2 Update µ values
Input: root, phrase

1: find rootPosition in the phrase
2: if root not found then
3: return
4: else if rootPosition equals 0 and root.prev is not None

then
5: decrease µ of all Nodes in left subree
6: else if rootPosition equals len(phrase) - 1 and root.next is

not None then
7: decrease µ of all Nodes in right subree
8: increase µ value of root by 1
9: assign root.prev to newNode

10: for i from rootPosition - 1 to 0 do
11: if newNode is None then
12: break
13: if newNode.word equals phrase[i] then
14: increase µ value of newNode by 1
15: if newNode.prev is not None and i − 1 > −1 and

newNode.prev.word equals phrase[i - 1] then
16: if newNode.next is not None then
17: decrease µ of all Nodes in right subree
18: assign newNode.prev to newNode and continue
19: else if newNode.next is not None and i − 1 > −1

and newNode.next.word equals phrase[i - 1] then
20: if newNode.prev is not None then
21: decrease µ of all Nodes in left subree
22: assign newNode.next to newNode and continue
23: else
24: decrease µ of all Nodes in left subree
25: decrease µ of all Nodes in right subree

26: break
27: else
28: decrease µ of all the nodes in the subtree where

newNode is the root
29: assign root.next to newNode
30: for i from rootPosition + 1 to len(phrase) - 1 do
31: if newNode is None then
32: break
33: if newNode.word equals phrase[i] then
34: increase µ value of newNode by 1
35: if newNode.next is not None and i + 1 < len(phrase)

and newNode.next.word equals phrase[i + 1] then
36: if newNode.prev is not None then
37: decrease µ of all Nodes in left subtree
38: assign newNode.next to newNode and continue
39: else if newNode.prev is not None and i + 1 <

len(phrase) and newNode.prev.word equals phrase[i
+ 1] then

40: if newNode.next is not None then
41: decrease µ of all Nodes in right subtree
42: assign newNode.prev to newNode and continue
43: else
44: decrease µ of all Nodes in left subree
45: decrease µ of all Nodes in right subree
46: break
47: else
48: decrease µ of all the nodes in the subtree where

newNode is the root

every encountered σ ′i and µ values are also updated accordingly. This process keeps con-

tinuing until all the keyphrases in σ ′ are processed. Although this example demonstrated

only expansion or no change of tree state, the shrinkage occurs in the keyphrase extraction

phase.

67

servic, 45

grid, 4 discoveri, 7

architectur, 3

Figure 3.12. The resultant tree for mamu = 2 for the KePhEx tree in Fig. 3.11.

Keyphrase Extraction

In this step, final keyphrases are extracted from the KePhEx tree. This process is

initiated by pruning the weak nodes from the tree. Here, weak nodes are selected based

on their cohesiveness with respect to γ with an assumption that they may not be the parts

of final keyphrases. For that, a constant value, named minimum allowable µ (mamu), is

utilized. A node whose µ value is lower than mamu is pruned from the tree. Hence, if

that node is a root of a subtree than that entire subtree is also erased from the tree with

the assumption that a weak root would form a weak subtree. Again, a mamu value must

be selected with considerable attention as because a smaller mamu value results in many

and/or long keyphrases; whereas a large mamu value results in lower an/or abbreviated

keyphrases. Therefore, it is essential to find a suitable mamu value for improved perfor-

mance of the system. Hence, this thesis utilizes an experiment to find a suitable mamu value

(see Section 3.4.2). Again, this mamu value also provides flexibility during keyphrase ex-

traction. Such a tree is depicted in Fig. 3.12, where mamu is considered as 2.

Afterwards, all paths from the root to the leaves are extracted to discover final

keyphrases. Since this procedure is dissimilar to any conventional tree traversal technique

(namely preorder, inorder, and postorder), they are not directly applicable in this case.

Hence, inorder tree traversal technique is enhanced to perform the task, which is explained

in Algorithm 3.

This algorithm extracts all the paths from root to leaf and separates them in left

paths (paths from left subtree) and right paths (paths from right subtree), which are later

68

3

Algorithm 3 Find paths from leaf to root
Input: root, nodeList
Output: return leftPaths, rightPaths

Procedure ROOTTOLEAFPATHS(root, nodeList, leftPaths,
rightPahts)

1: if root is None then
2: return
3: append root in nodeList
4: ROOTTOLEAFPATHS(root.prev, nodeList, leftPaths, right-

Pahts)
5: if node.prev is None and node.next is None then
6: create an empty container, x
7: for j from 0 to length(nodeList) - 1 do
8: append nodeList[j] in x
9: if length(nodeList) > 1 then

10: if nodeList[0].prev equals nodeList[1] then
11: append x in leftPaths
12: else
13: append x in rightPaths
14: else
15: append x in leftPaths
16: return
17: ROOTTOLEAFPATHS(root.next, nodeList, leftPaths, right-

Paths)
18: pop an element from the nodeList

processed to generate final keyphrases individually (one final keyphrase from one path) or

collectively (by joining a path from the left subtree and a path from the right subtree) as

demonstrated in Algorithm 4.

Now, in case of left paths, since they are extracted from root to leaf, they are unlikely

to be the final keyphrases as they are aligned in reverse direction; and hence, misses the co-

herent relationship. Therefore, all left paths are reversed before extracting final keyphrases.

Afterwards, all the words are acquired from each path and a keyphrase is formed. Then,

its presence (entirely) is checked in χ as a candidate keyphrase or a part of candidate

keyphrase. A similar technique is followed to extract keyphrases from right paths with an

exception is that the paths are not reversed since they are already satisfying the coherent re-

lationship conditions. After acquiring all the final keyphrases from the left and right paths,

69

4

Algorithm 4 Find Keyphrases from the KePhExTree
Input: µ, finalPhraseList, root
Output: finalPhraseList

1: prune the tree according to the µ value
2: if root is None then
3: return finalPhraseList
4: else if root.µ ¡ µ then
5: return finalPhraseList
6: create empty lists, such as nodeList, leftPaths, rightPaths
7: call the procedure at Algo. 3
8: create two empty lists, namely leftPhraseList, right-

PhraseList
/* Append from leftPaths */

9: for i from 0 to length(leftPaths) - 1 do
10: create an empty list, named newPhrase
11: for l from 0 to length(leftPaths[i] - 1 do
12: create an empty list, named morePhrase
13: insert leftPaths[i][l] in newPhrase at position 0
14: copy newPhase in morePhrase
15: append morePhrase in leftPhraseList
16: if morePhrase does not exist in finalPhraseList and it

is found in candidatePhraseList then
17: append morePhrase to finalPhraseList

/* Append from rightPaths */
18: for j from 0 to length (rightPaths) - 1) do
19: create an empty list, named newPhrase
20: for m from 0 to length(rightPahts[j]) - 1 do
21: create an empty list, named morePhrase

22: append rightPaths[j][m] in newPhrase
23: copy newPhase in morePhrase
24: append morePhrase in rightPhraseList
25: if morePhrase does not exist in finalPhraseList and it

is found in candidatePhraseList then
26: append morePhrase to finalPhraseList

/* Combine leftPhraseList and rightPhraseList */
27: for i from 1, length(leftPhraseList) - 1 do
28: create an empty list, named newPhrase
29: if length(leftPhraseList[i]) > 1 then
30: for l from 0, length(leftPhraseList[i]) - 1 do
31: append leftPhraseList[i][l] to newPhrase
32: else
33: continue
34: for j from 0, len(rightPhraseList) - 1 do
35: if length(rightPhraseList[j]) > 1 then
36: create an empty list, named morePhrase
37: copy newPhase in morePhrase
38: for r from 1, length(rightPhraseList[j]) do
39: append rightPhraseList[j][r] in morePhrase
40: if morePhrase does not exist in finalPhraseList and

it is found in candidatePhraseList then
41: append morePhrase is finalPhraseList
42: return finalPhraseList

they are concatenated to generate more long and meaningful keyphrases. Again, these

keyphrases will qualify as final keyphrases if they are entirely found in χ as candidate

keyphrases or part of candidate keyphrases.

Flexibility during Keyphrase Extraction

The proposed technique offers flexibility in keyphrase extraction via employing

the mamu values. As an example, the Table 3.2 is generated using the tree in Fig. 3.12.

As expected, for different mamu values different final keyphrases are generated. These

keyphrases also differ in length and quantity. For instance, the longest keyphrase gener-

ated by mamu values from 1 to 3 is 4, whereas, it is 3 for mamu value 4, 2 for mamu values

from 5 to 7 and so on. On the other hand, for mamu values from 1 to 4, 3 final keyphrases

are extracted; whereas, it is only 1 for mamu values from 5 to 45 and 0 afterwards. From

70

Table 3.2. Final Keyphrases from the resultant tree in Fig 3.12
mamu value Final Keyphrase

1 1 to 3 grid servic
2 1 to 3 servic discoveri architectur
3 1 to 3 grid servic discoveri architectur
4 4 grid servic
5 4 servic discoveri
6 4 grid servic discoveri
7 5 to 7 servic discoveri
8 8 to 45 servic
9 ≥ 46 —

here, we can conclude that a greedy approach may choose a lower mamu value and hence,

would get considerably many and/or lengthy keyphrases; but the quality would be a little

bit compromised. On the other hand, a conservative approach may choose a large mamu

value which will in turn provide considerably lower and/or mostly abbreviated keyphrases.

Hence, to receive a desired level of performance, mamu value must be set properly. To

realize this, an experimental evaluation is performed in Section 3.4.2 and the results are

analyzed with detail evidences.

After extracting all the final keyphrases from the tree for a γ , the next γ is chosen

from the list η and the same procedure is repeated again. It continues until all the nouns in

η are considered as γ . After finish extracting all the final keyphrases, they are passed for

ranking and selecting.

3.4.3 Ranking and Selecting Final Keyphrases

Generally, various applications, such as academic literature, document indexing,

and so on, utilize a certain number of top keyphrases only. Therefore, an automatic

keyphrase extraction technique must offer the most relevant top-N keyphrases to these

applications. Hence, most of the automatic keyphrase extraction techniques irrespective

of supervised or unsupervised approaches employ one or more classification or ranking

strategies, respectively.

71

Again, most of the techniques in a certain group differ from each other based on

only ranking or classifying. Therefore, keyphrase extraction is also accounted as a ranking

problem.

In the proposed ranking technique, only TF is employed along with the µ value as

follows to calculate weight, ω of a keyphrase p:

ωp =
N

∑
k=1

t fk×
N

∑
k=1

µk 3.1

Here, N is the number of words in a keyphrase, p. In Eq. 3.1, instead of averaging each

factor, summation is performed to eliminate the biasness towards the single terms. The

first factor is to identify the popularity of that particular keyphrase in a document and the

second factor is for realizing the cohesiveness of every word in that keyphrase to γ .

After performing calculation of ω values for all keyphrases, they are sorted to ar-

range them in rank. Since the quantity of final keyphrases is limited, any sorting algorithm

is suitable. In the proposed system, the quick sort algorithm is applied to perform the task

rapidly. After ranking, these keyphrases are ready for the selection. Now, when a user or

an application seeks for any N keyphrases, the system will provide top-N keyprhases from

the rank 1 to N, respectively.

3.5 Experimental Setup

Since the proposed technique is an unsupervised machine learning based technique,

its performance is compared it with other relevant unsupervised techniques. For this, both

statistical (TD-IDF and YAKE) and graph based (singleRank (SR), positionRank (PR),

topicRank (TR), and multipartiteRank (MR)) keyphrase extraction techniques are taken

into account. All of these techniques are evaluated under a uniform experimental setup

(see Section 3.5.2) taking a benchmark dataset into consideration (see Section 3.5.1).

72

Table 3.3. Number of documents per topic in the four ACM document classifications
Dataset Total Document Topic

C H I J
Train 144 34 39 35 36
Test 100 25 25 25 25

Table 3.4. Keyphrase distribution of gold standard in different datasets
Dataset Author-assigned Reader-assigned Combined
Training 559 1824 2223

Test 387 1217 1482

3.5.1 Corpus Details

The proposed technique was tested on the SemEval-2010 benchmark dataset (Kim,

Medelyan, et al., 2010). This dataset is comprised of a train and a test dataset along with

other datasets that are collected from the ACM Digital Library. In the corpus, to ensure

the variability in terms of topics, all the papers are clustered in four groups following four

1998 ACM classifications: C2.4 — Distributed Systems, H3.3 — Information Search and

Retrieval, I2.11 — Distributed Artificial Intelligence — Multiagent Systems, and J4 — So-

cial and Behavioral Sciences — Economics. The distribution of documents in the corpus

is mentioned in Table 3.3.

All the documents in the corpus are in plain text and the average length of these

documents is about 2000 words. Although, the XML version of this dataset exists, we

prefer text dataset since the former one is heavy, verbose, and rare. For comparison, gold

standard keyphrases were employed that came along with the dataset and comprised of

author-assigned keyphrases and reader-assigned keyphrases. Table 3.4 exhibits the distri-

bution of author- and reader-assigned keyphrases in the corpus.

3.5.2 Evaluation Metrics

Three prominent and relevant metrics, namely, precision (ρ), recall (ς), and F1-

score (φ) have been used for comparing the proposed technique’s performance with other

73

considered techniques. Here, ρ is the ratio of correctly predicted positive values with

respect to the total predicted values. It can be calculated using the following formula:

Precision(ρ) =
κcorrect

κextract
3.2

where, κcorrect is the number of correctly matched keyphrases with gold standard keyphrases

and κextract is the number of extracted keyphrases from a document, i.e., value of N in case

of extracting top-N keyphrases.

On the other hand, ς is the ratio of correctly predicted positive values with respect

to the actual positive values; and can be calculated as follows:

Recall(ς) =
κcorrect

κstandard
3.3

where, κstandard is the number of keyprhases in gold standard keyphrase list for that par-

ticular document. Again, φ is the weighted average of ρ and ς , which can be calculated

using the following formula:

F1− score(φ) =
2×ρ× ς

ρ + ς
3.4

This metric is much more sophisticated than conventional accuracy metric since it

takes both false positives and false negatives into consideration.

3.5.3 Implementation Details

The proposed technique was implemented using Python3 and utilized several other

necessary packages, such as PorterStemmer (Kantrowitz, Mohit, & Mittal, 2000; Karaa &

Gribâa, 2013), Sent tokenize, Word tokenize of Natural Language Tool Kit (Bird & Loper,

2004; Sugiyama & Kan, n.d.), Regular Expression (Barker & Cornacchia, 2000; Regular

Expression HOWTO, n.d.), and so on. Note that all the words are stemmed initially before

passing them to the processing phase employing porterStemmer. Again, for gold standard

keyphrases, no such processing is required since they are already stemmed.

74

For other compared techniques, Python Keyphrase Extraction (PKE) (Boudin, 2016b)

— which is an open source python-based keyphrase extraction toolkit — is utilized. Here,

we would like to mention that for all the experiments, whatsoever, an uniform experimen-

tal environment is offered to ensure a level playing ground for all the techniques. For the

compared techniques, Application Programming Interface (API) of those techniques are

employed to acquire top N keyprhases. Afterwards, these acquired keyphrases are com-

pared with the gold standard keyphrases; and then, metrics are calculated accordingly. All

experiment codes will be uploaded in GitHub (GitHub, n.d.) for further reference (Rabby

& Azad, 2018).

3.6 Summary

This chapter has addressed the topic of keyphrase extraction from scientific pub-

lications, going through an account of previous efforts, the variety of keyphrase features

currently in use, as well as the presentation of a novel approach. The approach is Tree-

based, utilizing only a simplistic set of features derived from the input document to carry

out the extraction task. It identifies, filters and merges keyphrase candidates using linguis-

tic methods, such as POS tagging, Streaming etc. It then weighs the candidates using TF

and mamu value, to yield a dynamic ranking of their significance within the document. Fi-

nally, it provides the flexibility to extract keyphrases that occur in every part of a document.

The system implementing the proposed method, TeKET, was evaluated in one setting: a

benchmark against the state-of-the-art. This scenario yielded promising outcomes.

75

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Preamble

This section includes the results that are acquired from the experiments along with

their detail analyses. Again, since there are some parameters that have direct influence on

the performance of the proposed technique; hence, relevant experiments are performed to

select suitable values for those parameters. This action is performed before comparing the

performance of the proposed technique with other considered techniques and described in

the subsequent section in details.

4.2 Parameter Value Selection

Among various parameters of the proposed technique, two parameters have definite

impacts on the performance, which are: lsaf and mamu. Here, the former parameter is

utilized to filter out all non-popular candidate keyphrases from the list and the latter plays

an important role in extracting keyphrases from the resultant tree. As mentioned earlier,

a lower mamu value would result in many but low quality keyphrases, whereas, a high

mamu value would result in few but abbreviated keyphrases. Therefore, it is necessary to

determine, which mamu value would give the superlative performance.

For determining the suitable lsaf value, it is varied from 0 to 5 in our conducted ex-

periments for two arbitrarily selected mamu values. The experiments are performed on test

dataset by acquiring top-N keyphrases, where N = 5, 10, and 15. The acquired results are

demonstrated in Table 4.1. The highest performance shown for F1 value is 15.6 for top-15

76

Table 4.1. Performance of proposed technique for various lsaf values for two
arbitrarily selected µ values on test dataset
lsaf µ Top 5 Top 10 Top 15

P R F1 P R F1 P R F1
1 0 20.3 7.1 10.5 16.2 11.5 13.3 13.5 14.1 13.7
1 2 20.5 7.2 10.6 16.8 11.9 13.8 14.0 14.6 14.2
2 0 21.3 7.6 11.2 17.2 12.3 14.2 14.3 15.2 14.6
2 2 21.9 7.8 11.5 17.0 12.1 14.1 14.4 15.3 14.7
3 0 21.3 7.6 11.1 17.7 12.6 14.6 14.9 15.8 15.3
3 2 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.1 15.6
4 0 21.6 7.7 11.28 17.9 12.71 14.74 15.2 16.1 15.5
4 2 21.6 7.7 11.28 17.9 12.71 14.75 15.3 16.2 15.6
5 0 21.6 7.7 11.28 17.9 12.71 14.74 15.1 16 15.4
5 2 21.6 7.7 11.28 17.9 12.71 14.75 15.2 16.1 15.5

Table 4.2. Performance of proposed technique for various µ values on test dataset
µ Top 5 Top 10 Top 15

P R F1 P R F1 P R F1
0 21.3 7.6 11.1 17.7 12.6 14.6 14.9 15.8 15.3
1 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.2 15.6
2 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.1 15.6
3 21.5 7.7 11.2 17.7 12.5 14.5 15.1 15.9 15.4
4 21.7 7.8 11.4 17.9 12.7 14.7 15.0 15.9 15.3
5 21.3 7.6 11.2 17.8 12.6 14.6 14.7 15.6 15.0

Table 4.3. Performance of proposed technique for various µ values on train dataset
µ Top 5 Top 10 Top 15

P R F1 P R F1 P R F1
0 17.6 6.0 8.8 14.8 9.9 11.7 13.3 13.6 13.2
1 17.6 6.0 8.8 14.7 9.9 11.6 13.1 13.5 13.1
2 17.9 6.1 9.0 14.5 9.8 11.5 13.2 13.6 13.2
3 17.6 5.9 8.8 14.4 9.7 11.4 13.0 13.3 13.0
4 17.6 5.9 8.8 14.5 9.8 11.5 13.1 13.4 13.0
5 17.4 5.9 8.7 14.4 9.7 11.5 13.1 13.5 13.1

keyphrases by lsa f values 3 and 4; whereas, the lowest performance shown is 7.1 for top-5

keyphrases by lsa f value 1. It is because, a lower value of lsa f incorporates non-popular

keyphrases during ranking; and thus, entice ranking approach. From the results, it is evi-

dent that with increasing lsaf value, F1 value increases for any mamu value until lsa f = 3;

afterwards, it becomes almost steady. Hence, 3 could be considered as the threshold value

of lsaf; and is utilized in other experiments.

77

Again, to select a suitable mamu value, we conduct experiments varying mamu

values from 0 to 5, fixing lsaf to 3, and taking test and train datasets of the corpus into

consideration. For both datasets, results are acquired for top N keyphrases, where N =

5, 10, and 15. All the acquired results are stated in Table 4.2 and 4.3 for test and train

datasets, respectively. They are also plotted using contour graphs in Fig. 4.1 and 4.2 for

more depictions.

5 6 7 8 9 10 11 12 13 14 15
top N keyphrases

0

1

2

3

4

5

μ
va

lu
es

11.0

11.6

12.2

12.8

13.4

14.0

14.6

15.2

F1 score for various μ values and top N keyphrases for Test Data

Figure 4.1. Performance of the proposed technique for various µ values on test dataset

As could be observed from the tables as well as from the figures is that performance

differences in several mamu values are not as evident as lsaf values since we have already

filtered out non-popular keyphrases by selecting lsa f = 3. The highest F1 achieved is 15.6

for test data and 13.2 from train data, and both cases, it is achieved by mamu = 2. Again,

as could be observed that for most of the cases with increasing mamu values performance

increases to a certain point, and afterwards, it decreases. In our case, mamu = 2 is that

threshold for both the datasets. The reason is that it maintains the trade-off between the

keyphrase length and quantity. On the other hand, smaller mamu values produce consider-

ably many and/or lengthy keyphrases; but the quality is a little bit compromised; whereas,

higher mamu values attain considerably lower and/or mostly abbreviate keyphrases. In the

78

5 6 7 8 9 10 11 12 13 14 15
top N keyphrases

0

1

2

3

4

5

μ
va

lu
es

8.6

9.2

9.8

10.4

11.0

11.6

12.2

12.8

F1 score for various μ values and top N keyphrases for Train Data

Figure 4.2. Performance of the proposed technique for various µ values on train dataset

latter case, since lengthy keyphrases are ignored; therefore, the performance is also a little

bit compromised. Hence, mamu = 2 is locked for the rest of the experiments.

4.3 Results Analyses

Here, we would like to note that the performance of all the technique would have

improved if 15% of the reader-assigned keyphrases that are absent would have appeared in

the text, and if 19% of the author-assigned keyphrases that are absent would have appeared

in the text. Hence, all the results in this thesis are based on 85% and 81% for the reader-

and author-assigned keyphrases, respectively.

For all the techniques, three experiments are performed for each dataset with a tar-

get of extracting top-N keyphrases, where N = 15 is preferred in many literatures Kim,

Medelyan, et al. (2010); Kim, Medelyan, Kan, and Baldwin (2013); and hence, is our

choice. Again, once we have top-15 keyphrases, we can derive top-5 and top-10 keyphrases

from there. These experiments are performed for — i) reader-assigned keyphrases, ii)

author-assigned keyphrases, and iii) combined keyphrases (combines reader- and author-

79

Table 4.4. Performance of different unsupervised machine learning based keyphrase
extraction techniques for reader-assigned keyphrases on test dataset
Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-base

TopicRank 9.4 4.0 5.5 7.8 6.6 7.1 6.6 8.4 7.3
PositionRank 3.8 1.6 2.3 4.4 3.8 4.0 3.9 5.1 4.4
SingleRank 1.9 0.8 1.2 1.8 1.5 1.6 1.7 2.2 1.9
Multipartite
Rank

11.3 4.8 6.7 9.2 7.8 8.4 8.0 10.3 8.9

Statistical-base
TF-IDF 11.1 4.7 6.6 7.4 6.4 6.8 6.9 8.9 7.5
YAKE 12.7 5.5 7.7 12.0 10.4 11.1 10.9 14.1 12.2

Tree-base
(proposed)

TeKET 16.5 7.2 10.0 14.5 12.6 13.4 12.5 16.1 13.9

Table 4.5. Performance of different unsupervised machine learning based keyphrase
extraction techniques for author-assigned keyphrases on test dataset
Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-base

TopicRank 6 7.2 6.3 3.9 9.5 5.4 3.1 11.2 4.7

PositionRank 1.2 1.8 1.3 1.5 3.9 2.0 1.5 6.8 2.4
SingleRank 0.4 0.4 0.3 0.3 0.7 0.4 0.2 1.2 0.41
Multipartite
Rank

6.4 8.1 6.9 4.4 11.0 6.1 3.7 13.7 5.7

Statistical-base
TF-IDF 6.4 7.9 6.8 4.9 11.9 6.8 4.3 16.4 6.7
YAKE 7.8 10.3 8.6 6.8 18.6 9.8 6.2 2.4 9.8

Tree-base
(proposed)

TeKET 8.8 11.6 9.7 7.3 19.8 10.4 6.1 24.2 9.6

Table 4.6. Performance of different unsupervised machine learning based keyphrase
extraction techniques for combined keyphrases on test dataset
Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-base

TopicRank 12.3 4.2 6.3 9.4 6.5 7.6 8 8.3 8.1
PositionRank 4.2 1.4 2.1 5.1 3.6 4.1 4.6 4.9 4.7
SingleRank 2.2 0.7 1.1 1.9 1.2 1.5 1.8 1.8 1.8
Multipartite
Rank

13.9 4.8 7.1 11.1 7.8 9.1 9.5 10.1 9.7

Statistical-base
TF-IDF 14.3 5.1 7.5 10.3 7.4 8.6 9.4 10.1 9.6
YAKE 16.9 6.0 8.83 14.9 10.6 12.3 13.5 14.3 13.8

Tree-base
(proposed)

TeKET 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.1 15.6

assigned keyphrases). The acquired results for test dataset are shown in Table 4.4, 4.5,

and 4.6 for reader-assigned, author-assigned, and combined keyphrases, respectively.

80

From the tables, it could be observed that generally, statistical-base techniques per-

formed better than graph-based techniques. It is because, graph-based techniques are not

good in capturing the cohesiveness of words in a keyphrase.

On the other hand, statistical-based techniques are simple to implement and uti-

lize basic features, like term frequency, inverse document frequency, word positions, word

relatedness to a context, and so on, to extract the most descriptive terms in a document. Al-

though, these techniques utilize some basic statistical knowledge to find top-N keyphrases,

they perform better is because — aforementioned statistical characteristics of top keyphrases

repeat over and over in most of the documents.

Again, among all the graph-based techniques, SR performs the worst in terms of

all the considered metrics. The highest F1 achieves is only 1.9 for top-15 in the case of

reader-assigned gold standard keyphrases; whereas, the lowest is 0.3 for top-5 keyphrases

in the case of author-assigned gold standard keyphrases. It is because, SR assigns higher

scores to long but non-significant keyphrases. In details, SR assign the weights of the edges

with the number of co-occurrences. Afterwards, keyphrases are extracted in the form of

noun phrases and then, raked based on the sum of the significance of the words they con-

tain. Therefore, non-significant long keyphrases receive higher scores than abbreviated

keyphrases.

With respect to SR, PR outperforms the former in terms of all the metrics and for

all top-N keyphrases. This happens because it incorporates the position information of a

word and its occurrences into a biased PageRank to score words. It receives an average F1

score of 3.57 for reader-assigned keyphrases, 1.9 for author-assigned keyphrases, and 3.63

for combined keyphrases for all top-N cases that we considered in this thesis. However, it

fails to ensure topical coverage and diversity that are not naturally handled by this kind of

graphs.

81

On the other hand, due to taking the topical coverage into account, TR overpowers

PR technique for any metric or any parameter, which was absent in the latter technique.

Here, topic relations are accounted to find the semantic relatedness between the candi-

date keyphrases they instantiate. It demonstrates an average performance improvement of

93.55% over PR for reader-assigned keyphrases, 216.82% for author-assigned keyphrases,

and 119.24% for combined keyphrases. Again, F1 value of top-5 keyphrases contributes

more in these performance differences — around 140% for reader-assigned, 385% for

author-assigned, and 200% for combined keyphrases. Although, it maximizes the topi-

cal coverage, but it suffers from several limitations. For instance, all candidates under a

single topic are considered equally; and therefore, post-ranking heuristics are necessary

to select the most representative keyphrases from each topic. Again, if any error occurs

while forming topics, it will propagate throughout the model and thus, negatively impacts

its performance.

Since MR resolves the issue of error propagation, it performs superiorly over TR,

and thus over SR and PR. To resolve this issue, MR utilizes the multipartite graph; and

hence, the name, which connects sets of topic related candidates tightly. The average F1

receives for reader-assigned keyphrases is 8; whereas, it is for author-assigned keyphrases

is 5.47, and combined keyphrases is 7.33. However, it struggles with selecting the most

representative candidates due to clustering errors, where candidate keyphrases could be

wrongly assigned to the same topic.

Among the statistical-based approaches, TF-IDF performs comparably to MR for all

the metrics and attributes. For instance, it receives an average F1 of 7 for reader-assigned

keyphrases, 6.8 for author-assigned keyphrases, and 8.57 for combined keyphra-ses. In

TF-IDF, IDF provides informativeness and TF provides aboutness. Here, TF discriminates

the non-popular keyphrases from the popular keyphrases in a document; whereas, IDF dis-

criminates between informative and non-informative keyphrases across the documents. A

keyphrase receives high IDF when it is rare along the collections. However, it favors single

terms or bias towards single terms over compound terms and hence, demonstrates consid-

82

erably lower performance over YAKE on test dataset.

In case of YAKE, it takes five features into account, namely casing, word posi-

tion, word frequency, word relatedness to Context, and word in the different sentences,

to rank keyphrases. Since many quality keyphrases pursue these statistical features un-

consciously, it shows better performance over TF-IDF technique. It receives an average

performance enhancement of 47.53% for reader-assigned keyphrases, 38.95% for author-

assigned keyphrases, and 34.83% for combined keyphrases. However, since candidate

keyprhases are generated using N-grams technique, where N is 1-, 2-, and 3-grams, a con-

siderably large number of keyphrases are generated, which entices ranking procedure.

In terms of any metric and any attribute, TeKET outperforms the other techniques

that are considered in this evaluation significantly. For instance, it outperforms YAKE by

21.51% for F1 measure on an average in case of reader-assigned keyphrases, 5.61% in case

of author-assigned keyphrases, and 20.49% in case of combined keyphrases. Again, our

proposed technique receives the highest F1 value among all the techniques, i.e., 15.6, for

top-15 keyphrases in case of combined gold standard keyphrase list. One of the reasons

of its excellent performance is that it extracts final keyphrases from candidate keyphrases

using the KePhEx tree, and hence, consider most likely keyphrases during ranking. In

addition, it utilizes two factors (TF and µ) in ranking, where the preceding factor is uti-

lized to discriminate non-popular keyphrases from popular keyphrases and the latter factor

is utilized to find the cohesiveness of various words in a keyphrase with respect to the

root. Again, in the calculation, summation is preferred over average to facilitate longer

keyphrases.

In Fig. 4.3, 4.4, and 4.5, F1 scores of various techniques for top-5, -10, and -15

keyphrases are shown in case of reader-assigned, author-assigned, and combined gold stan-

dard keyphrases. Like the table, SR demonstrates the substandard performance. Although,

PR outperforms SR, but it falls short in front of TR for a considerably larger margin. Again,

MR and TF-IDF demonstrate comparable performance in case of all three top-N values.

83

TR PR SR MR Tf-Idf YAKE TeKET
0

2

4

6

8

10
F1

 S
co

re
s

reader
author
combine

Figure 4.3. F1-Scores of various unsupervised keyphrase extraction techniques for
Top-5 keyphrases employed on test dataset

TR PR SR MR Tf-Idf YAKE TeKET
0

2

4

6

8

10

12

14

F1
 S

co
re

s

reader
author
combine

Figure 4.4. F1-Scores of various unsupervised keyphrase extraction techniques for
Top-10 keyphrases employed on test dataset

84

TR PR SR MR Tf-Idf YAKE TeKET
0

2

4

6

8

10

12

14

16
F1

 S
co

re
s

reader
author
combine

Figure 4.5. F1-Scores of various unsupervised keyphrase extraction techniques for
Top-15 keyphrases employed on test dataset

Although, YAKE performs better over other considered keyphrase extraction techniques,

but our proposed technique overpowers all others. The reasons of their performance differ-

ences are same as before.

Table 4.7. Performance of different unsupervised machine learning based keyphrase
extraction techniques for reader-assigned keyphrases on train dataset
Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-base

TopicRank 8.0 3.1 4.5 6.3 5.0 5.5 5.4 6.5 5.8
PositionRank 3.6 1.4 2.0 3.2 2.6 2.9 2.9 3.6 3.2
SingleRank 1.5 0.58 0.84 0.97 0.77 0.85 1.2 1.4 1.3
Multipartite
Rank

8.8 3.5 5.0 7.5 6.0 6.6 6.3 7.7 6.8

Statistical-base
TF-IDF 7.5 3.1 4.4 5.9 4.9 5.3 4.7 5.8 5.2
YAKE 7.4 3.0 4.2 7.0 5.6 6.1 6.7 8.1 7.2

Tree-base
(proposed)

TeKET 14.0 5.7 8.0 11.0 9.0 9.8 10.1 12.7 11.1

The acquired results for train data are plotted in Table 4.7, 4.8, and 4.9 for reader-

assigned, author-assigned, and combined keyphrases respectively. Alike train data, all the

results are acquired for three metrics and compared with top-N keyphrases, where N = 5,

85

Table 4.8. Performance of different unsupervised machine learning based keyphrase
extraction techniques for author-assigned keyphrases on train dataset
Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-base

TopicRank 3.4 4.7 3.9 2.7 7.6 3.8 2.2 9.4 3.5
PositionRank 1.8 2.4 2.0 1.7 5.0 2.5 1.3 5.8 2.2
SingleRank 0.4 0.6 0.4 0.6 1.8 0.9 0.6 2.6 1.0
Multipartite
Rank

4.4 6.2 5.0 3.4 9.8 5.0 3.0 12.7 4.7

Statistical-base
TF-IDF 4.2 5.9 4.6 3.1 8.0 4.3 2.6 10.0 4.0
YAKE 5.4 7.2 6.0 4.8 12.8 6.8 4.5 17.9 7.1

Tree-base
(proposed)

TeKET 8.4 11.3 9.4 6.7 18.1 9.6 6.1 24.4 9.6

Table 4.9. Performance of different unsupervised machine learning based keyphrase
extraction techniques for combined keyphrases on train dataset
Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-base

TopicRank 9.5 3.0 4.5 7.5 4.8 5.8 6.5 6.3 6.3
PositionRank 4.8 1.5 2.3 4.4 2.9 3.4 3.8 3.8 3.8
SingleRank 1.6 0.5 0.7 1.3 0.9 1.0 1.7 1.6 1.6
Multipartite
Rank

11.2 3.6 5.4 9.3 6.1 7.3 8.1 7.9 7.9

Statistical-base
TF-IDF 10.1 3.4 5.0 8.1 5.4 6.4 6.4 6.4 6.3
YAKE 10.8 3.5 5.3 10.0 6.6 7.9 9.3 9.2 9.1

Tree-base
(proposed)

TeKET 17.9 6.1 9.0 14.5 9.8 11.5 13.2 13.6 13.2

10, and 15. The average F1 scored by the SR technique for all cases is 1.05, which is the

lowest among all. On the other hand, it is 2.7, 4.84, and 6.03 for PR, TR, and MR, respec-

tively. Due to utilizing multipartite graph, it is extracting more gold standard keyphrases

than others. Again, the average F1 scores for TF-IDF and YAKE are 5.06 and 6.63, re-

spectively. Unlike test data, TF-IDF fails to achieve comparable performance to MR for

train data; however, the latter almost catches YAKE in terms of F1 score. Conversely, our

proposed technique overpowers all the considered techniques with an average F1 score of

10.13 for the reasons that are stated before.

The F1 scores of various gold standard keyphrase classes (reader, author, and com-

bined) for train data are shown in Fig. 4.6, 4.7, and 4.8 for top-5, -10, and -15 keyphrases,

respectively. Like the previous cases, performances of SR, PR, and TR remain in the same

86

TR PR SR MR Tf-Idf YAKE TeKET
0

2

4

6

8
F1

 S
co

re
s

reader
author
combine

Figure 4.6. F1-Scores of various unsupervised keyphrase extraction techniques for
Top-5 keyphrases employed on train dataset

TR PR SR MR Tf-Idf YAKE TeKET
0

2

4

6

8

10

12

F1
 S

co
re

s

reader
author
combine

Figure 4.7. F1-Scores of various unsupervised keyphrase extraction techniques for
Top-10 keyphrases employed on train dataset

87

TR PR SR MR Tf-Idf YAKE TeKET
0

2

4

6

8

10

12
F1

 S
co

re
s

reader
author
combine

Figure 4.8. F1-Scores of various unsupervised keyphrase extraction techniques for
Top-15 keyphrases employed on train dataset

increasing order. However, F1 scores of MR, TF-IDF, and YAKE are comparable for all

top-N keyphrases, unlike test data where YAKE outperforms the other two. In any case,

our proposed technique overpowers the rest of the compared techniques.

4.4 Summary

This chapter analysis the performance of the proposed algorithm based on three dif-

ferent parameters, namely, precision (ρ), recall (ς), and F1-score (φ) for Test and Train

data. In the precision (ρ), recall (ς), and F1-score (φ) analysis, the proposed algorithm is

tested by, Top 5, 10 and 15 keyphrases for reader-assigned, author-assigned and combined

keyphrases of Test and Train data, where the proposed algorithom shown an acceptable re-

silience against each unsupervised machine learning based keyphrase extraction technique.

Another advantage of this algorithm is flexibility depends on suitable mamu value, we con-

duct experiments varying mamu values from 0 to 5, fixing lsaf to 3, and taking test and train

datasets of the corpus into consideration(Figure 4.1 and 4.2). Afterwards, the algorithm

is compared deeply with the most relavent unsupervised keyphrase extraction algorithm

88

based on different parameters. In most case, the proposed algorithm is found effective

than the other related algorithm. At the end, the validity threats of proposed algorithm are

discussed briefly.

89

CHAPTER 5

CONCLUSIONS

5.1 Preamble

This thesis proposes a novel automatic keyphrase extraction algorithm, which is

implemented and tested according to the design. Then an in-lab experiment is performed

to discover that it works better than other unsupervised keyphrase extraction algorithm and

an extensive comparison using SemEval-2010 benchmark dataset conducted to evaluate

the usability of it. In the end, contributions, limitations and the future work are discussed,

following by a brief summary of the entire research.

5.2 Concluding Remarks

In this thesis, a new unsupervised automatic keyphrase extraction technique, named

Tree-based Keyphrase Extraction Technique (TeKET) is proposed, which is domain inde-

pendent, employs limited statistical knowledge, but no train data are required. It introduces

a new variant of binary tree, called KeyPhrase Extraction (KePhEx) tree, for extracting fi-

nal keyphrases from candidate keyphrases. The proposed tree is formed using a candidate

keyphrase and processed with other similar candidate keyphrases of a certain root. In the

end, final keyphrases are extracted from the resultant tree employing the mamu value. Af-

terward, all the final keyphrases are ranked taking TF and µ factors into account where

T F is the popularity of that particular keyphrase in a document and µ is considered for

realizing the cohesiveness of every word in that keyphrase, and then, sorted. At last, top-N

keyphrases are selected from the sorted list and returned.

90

Our proposed technique is compared with other prominent unsupervised keyphrase

extraction techniques on a uniform experimental setup. The results are acquired for two

datasets, namely test and train, for the SemEval-2010 corpus. According to the acquired

results, TeKET outperforms the rest of the compared techniques in terms F1 scores for all

considered parameters.

5.3 Contributions

The main contributions of the thesis are described below:

1. A new domain-independent flexible unsupervised keyphrase extraction technique

called TeKET is introduced in this thesis. A new variant of a binary tree called

KePhEx tree is also introduced for extracting final keyphrases from candidate keyp-

hrases.

2. A new ranking technique is introduced in this thesis that can select most relevant

top-N keyphrases from a list of final keyphrases. Here, a final keyphrase is scored

by TF and µ values where TF identifies the popularity of that particular keyphrase

in a document and µ realizes the cohesiveness of every word in that keyphrase.

3. The proposed technique is implemented and tested on a benchmark dataset called

SemEval-2010 and also compared with other unsupervised keyphrase extraction

techniques (PositionRank, CollabRank (SingleRank), TopicRank, MultipartiteR-

ank, Term Frequency-Inverse Document Frequency, and YAKE).

5.4 Limitations

Although the proposed algorithm is effective, domain independent and not required

any train data, still it has some limitations, such as TeKET offer huge flexibility and pro-

vide good quality keyphrases, but this flexibility does not have a strong influence on the

immensely small length data. For the small length data, it works as like as TF-IDF because

of the less repetition.

91

5.5 Future works

This work lays the foundation for a flexible unsupervised automatic keyphrase ex-

traction. It also introduced the use of tree in an unsupervised keyphrase extraction al-

gorithm. The next upgradation of this algorithom can be done by integrating TeKET in

supervised machine learning approach as a feature. A novel supervised approach can be

proposed using TeKET and incorporate it with the former algorithms, especially for train-

ing purposes. This algorithom will fall under the class of supervised learning. Afterwards,

TeKET can be used to identify meaningful keyphrases with the help of Deep Learning or

Hierarchical Learning (Meng et al., 2017), which work on deep semantic meaning basis,

where a system is taught by a specific algorithm to recognize any specific items even if

they come up with different attributes. Likewise in this case, the keyphrases of every do-

main will definitely not the same. Therefore, Deep Learning will be a good choice where

different set of keyphrase can be fed into the algorithm to train the system to recognize

semantic meaning properly.

5.6 Summary

This section concludes the thesis by giving a brief summary of the entire research.

The contributions of the thesis are discussed, where the three phases of the proposed al-

gorithom and the comparison of the proposed algorithom with other existing unsupervised

keyphrase extraction algorithom are enlightened. Afterwards, the limitations of the pro-

posed algorithom are detailed, such as, text must have a minimum length, and so on. The

chapter ends by giving a vision for the future works, where some hints are given; how a

the proposed algorithom can be transformed into as a feature of a supervised keyphrase

extraction algorithom based on Deep Learning or Hierarchical Learning.

92

89

REFERENCES

Adeniyi, D., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and

recommendation system using k-nearest neighbor (KNN) classification method.

Applied Computing and Informatics, 12(1), 90–108.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE

Transactions on Knowledge & Data Engineering(6), 734–749.

Ajmani, S., Ghosh, H., Mallik, A., & Chaudhury, S. (2013). An ontology based

personalized garment recommendation system. In Proceedings of the 2013

ieee/wic/acm international joint conferences on web intelligence (wi) and

intelligent agent technologies (iat)-volume 03 (pp. 17–20).

Barker, K., & Cornacchia, N. (2000). Using noun phrase heads to extract document

keyphrases. In Conference of the canadian society for computational studies of

intelligence (pp. 40– 52).

Bayraktar, M., Say, B., & Akman, V. (1998). An analysis of english punctuation: The

special case of comma. International Journal of Corpus Linguistics, 3(1), 33–57.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python:

analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”.

Bird, S., & Loper, E. (2004). Nltk: the natural language toolkit. In Proceedings of the

acl 2004 on interactive poster and demonstration sessions (p. 31).

Bobadilla, J., Ortega, F., Hernando, A., & Gutie´rrez, A. (2013). Recommender systems

survey. Knowledge-based systems, 46, 109–132.

Boudin, F. (2016a, December). pke: an open source python-based keyphrase extraction

toolkit. In Proceedings of coling 2016, the 26th international conference on

computational linguistics: System demonstrations (pp. 69–73). Osaka, Japan.

Retrieved from http://aclweb.org/anthology /C16-2015.

Boudin, F. (2016b, December). pke: an open source python-based keyphrase extraction

toolkit. In Proceedings of coling 2016, the 26th international conference on

computational linguistics: System demonstrations (pp. 69–73).

Osaka, Japan: The COLING 2016 Organizing Committee. Retrieved from

http://aclweb.org/anthology/C16-2015.

Boudin, F. (2018). Unsupervised keyphrase extraction with multipartite graphs. arXiv

preprintarXiv:1803.08721.

Bougouin, A., Boudin, F., & Daille, B. (2013). Topicrank: Graph-based topic ranking

for keyphrase extraction. In International joint conference on natural language

processing (ijcnlp) (pp. 543–551).

http://aclweb.org/anthology/C16-2015
http://aclweb.org/anthology/C16-2015

90

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search

engine. Computer networks and ISDN systems, 30(1-7), 107–117.

Broder, A., Fontoura, M., Josifovski, V., & Riedel, L. (2007). A semantic approach to

contextual advertising. In Proceedings of the 30th annual international acm sigir

conference on research and development in information retrieval (pp. 559–566).

Brown, J. S., & Duguid, P. (1998). Organizing knowledge. California management

review, 40(3), 90–111.

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M., Nunes, C., & Jatowt, A.

(2018a). A text feature based automatic keyword extraction method for single

documents. In European conference on information retrieval (pp. 684–691).

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M., Nunes, C., & Jatowt, A.

(2018b). Yake! Collection independent automatic keyword extractor. In European

conference on information retrieval (pp. 806–810).

Chien, L.-F. (1997). Pat-tree-based keyword extraction for chinese information

retrieval. In Acm sigir forum (Vol. 31, pp. 50–58).

Chor, B., Gilboa, N., & Naor, M. (1997). Private information retrieval by keywords.

Citeseer. Das, A. S., Datar, M., Garg, A., & Rajaram, S. (2007). Google news

personalization: scalable online collaborative filtering. In Proceedings of the 16th

international conference on world wide web (pp. 271–280).

Dashtipour, K., Poria, S., Hussain, A., Cambria, E., Hawalah, A. Y., Gelbukh, A., &

Zhou, Q. (2016). Multilingual sentiment analysis: state of the art and independent

comparison of techniques. Cognitive computation, 8(4), 757–771.

Dean, J. A., Harik, G. R., & Bucheit, P. (2010, May 11). Methods and apparatus for

serving relevant advertisements. Google Patents. (US Patent 7,716,161).

El-Beltagy, S. R. (2006). Kp-miner: A simple system for effective keyphrase

extraction. In Innovations in information technology, 2006 (pp. 1–5).

El-Beltagy, S. R., & Rafea, A. (2009a). Kp-miner: A keyphrase extraction system for

english and arabic documents. Information Systems, 34(1), 132–144.

El-Beltagy, S. R., & Rafea, A. (2009b). Kp-miner: A keyphrase extraction system for

english and arabic documents. Information Systems, 34(1), 132–144.

El-Beltagy, S. R., & Rafea, A. (2010). Kp-miner: Participation in semeval-2. In

Proceedings of the 5th international workshop on semantic evaluation (pp. 190–

193).

Felfernig, A., & Kiener, A. (2005). Knowledge-based interactive selling of financial

services with fsadvisor. In Proceedings of the national conference on artificial

intelligence (Vol. 20, p. 1475).

Florescu, C., & Caragea, C. (2017a). A position-biased pagerank algorithm for

keyphrase extraction. In Aaai (pp. 4923–4924).

91

Florescu, C., & Caragea, C. (2017b). Positionrank: An unsupervised approach to

keyphrase extraction from scholarly documents. In Proceedings of the 55th

annual meeting of the association for computational linguistics (volume 1: Long

papers) (Vol. 1, pp. 1105–1115).

Fox, C. (1989). A stop list for general text. In Acm sigir forum (Vol. 24, pp. 19–21).

Franceschini, F., Maisano, D., & Mastrogiacomo, L. (2016). Empirical analysis and

classification of database errors in scopus and web of science. Journal of

Informetrics, 10(4), 933–953.

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., & Nevill-Manning, C. G. (1999a).

Domain-specific keyphrase extraction. In 16th international joint conference on

arti- ficial intelligence (ijcai 99) (Vol. 2, pp. 668–673).

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., & Nevill-Manning, C. G. (1999b).

Domain-specific keyphrase extraction. In 16th international joint conference on

arti- ficial intelligence (ijcai 99) (Vol. 2, pp. 668–673).

Freitag, D. (2000). Machine learning for information extraction in informal domains.

Machine learning, 39(2-3), 169–202.

Giguere, E. (2005). Make easy money with google: using the adsense advertising

program. Peachpit Press.

Girardi, R., & Marinho, L. B. (2007). A domain model of web recommender systems

based on usage mining and collaborative filtering. Requirements Engineering,

12(1), 23–40.

GitHub. (n.d.). https://github.com/. (Accessed: 20108-10-11)

Goyvaerts, J., & Levithan, S. (2012). Regular expressions cookbook. O’reilly.

Han, Y. (2004). Digital content management: the search for a content management

system. Library Hi Tech, 22(4), 355–365.

Hariharan, R., Hore, B., Li, C., & Mehrotra, S. (2007). Processing spatial-keyword (sk)

queries in geographic information retrieval (gir) systems. In Scientific and

statistical database management, 2007. ssbdm’07. 19th international conference

on (pp. 16–16).

Hasan, K. S., & Ng, V. (2014). Automatic keyphrase extraction: A survey of the state

of the art. In Proceedings of the 52nd annual meeting of the association for

computational linguistics (volume 1: Long papers) (Vol. 1, pp. 1262–1273).

Herrera, J. P., & Pury, P. A. (2008). Statistical keyword detection in literary corpora.

The European Physical Journal B, 63(1), 135–146.

Holzinger, A. (2017). Introduction to machine learning & knowledge extraction

(make). Multidisciplinary Digital Publishing Institute.

Huang, F., Zhang, Y., & Vogel, S. (2005). Mining key phrase translations from web

92

corpora. In Proceedings of the conference on human language technology and

empirical methods in natural language processing (pp. 483–490).

Hulth, A. (2003a). Improved automatic keyword extraction given more linguistic

knowledge. In Proceedings of the 2003 conference on empirical methods in

natural language pro- cessing (pp. 216–223).

Hulth, A. (2003b). Improved automatic keyword extraction given more linguistic

knowledge. In Proceedings of the 2003 conference on empirical methods in

natural language pro- cessing (pp. 216–223).

Huynh, T., & Hoang, K. (2012). Modeling collaborative knowledge of publishing

activities for research recommendation. In International conference on

computational collective intelligence (pp. 41–50).

Jean-Louis, L., Zouaq, A., Gagnon, M., & Ensan, F. (2014). An assessment of online

semantic annotators for the keyword extraction task. In Pacific rim international

conference on artificial intelligence (pp. 548–560).

Jo, T., Lee, M., & Gatton, T. M. (2006). Keyword extraction from documents using a

neural network model. In Hybrid information technology, 2006. ichit’06.

international confer- ence on (Vol. 2, pp. 194–197).

Joachims, T. (1998). Text categorization with support vector machines: Learning with

many relevant features. In European conference on machine learning (pp. 137–

142).

Judd, D. T., Brewster, J. A., Melia, P. M., & Lilly, D. J. (2006, March 21). Content

management and transformation system for digital content. Google Patents. (US

Patent 7,016,963)

Kantrowitz, M., Mohit, B., & Mittal, V. (2000). Stemming and its effects on tfidf

ranking (poster session). In Proceedings of the 23rd annual international acm

sigir conference on research and development in information retrieval (pp. 357–

359).

Kara, W. B. A., & Griba, N. (2013). Information retrieval with porter stemmer: a

new version for english. In Advances in computational science, engineering and

information technology (pp. 243–254). Springer.

Kim, S. N., Baldwin, T., & Kan, M.-Y. (2010). Evaluating n-gram based evaluation

metrics for automatic keyphrase extraction. In Proceedings of the 23rd

international conference on computational linguistics (pp. 572–580).

Kim, S. N., Medelyan, O., Kan, M.-Y., & Baldwin, T. (2010). Semeval-2010 task 5:

Automatic keyphrase extraction from scientific articles. In Proceedings of the 5th

international workshop on semantic evaluation (pp. 21–26).

Kim, S. N., Medelyan, O., Kan, M.-Y., & Baldwin, T. (2013). Automatic keyphrase

extraction from scientific articles. Language resources and evaluation, 47(3),

723–742.

93

Kononenko, I. (2001). Machine learning for medical diagnosis: history, state of the art

and perspective. Artificial Intelligence in medicine, 23(1), 89–109.

Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd

Explorations Newsletter, 2(1), 1–15.

Kotler, P., & Roberto, E. L. (1989). Social marketing. strategies for changing public

behavior. Free Press.

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A

review of classification techniques. Emerging artificial intelligence applications

in computer engineering, 160, 3–24.

Kumar, N., & Srinathan, K. (2008). Automatic keyphrase extraction from scientific

documents using n-gram filtration technique. In Proceedings of the eighth acm

symposium on document engineering (pp. 199–208).

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields:

Probabilistic models for segmenting and labeling sequence data.

Langville, A. N., & Meyer, C. D. (2011). Google’s pagerank and beyond: The science

of search engine rankings. Princeton University Press.

Lau, R. Y., Song, D., Li, Y., Cheung, T. C., & Hao, J.-X. (2009). Toward a fuzzy

domain ontology extraction method for adaptive e-learning. IEEE transactions on

knowledge and data engineering, 21(6), 800–813.

Laursen, A., Olkin, J., & Porter, M. (1994). Oracle media server: providing consumer

based interactive access to multimedia data. In Acm sigmod record (Vol. 23, pp.

470–477).

Lawrence, S., Giles, C. L., & Bollacker, K. (1999). Digital libraries and autonomous

citation indexing. Computer, 32(6), 67–71.

Litvak, M., & Last, M. (2008). Graph-based keyword extraction for single document

summarization. In Proceedings of the workshop on multisource multilingual

information extraction and summarization (pp. 17–24).

Liu, F., Pennell, D., Liu, F., & Liu, Y. (2009). Unsupervised approaches for automatic

keyword extraction using meeting transcripts. In Proceedings of human language

technologies: The 2009 annual conference of the north american chapter of the

association for computational linguistics (pp. 620–628).

Loper, E., & Bird, S. (2002). Nltk: The natural language toolkit. In Proceedings of the

acl-02 workshop on effective tools and methodologies for teaching natural

language processing and computational linguistics-volume 1 (pp. 63–70).

Manevitz, L. M., & Yousef, M. (2001). One-class svms for document classification.

Journal of machine Learning research, 2(Dec), 139–154.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).

The stanford corenlp natural language processing toolkit. In Proceedings of 52nd

94

annual meeting of the association for computational linguistics: system

demonstrations (pp. 55–60).

Massa, P., & Avesani, P. (2007). Trust-aware recommender systems. In Proceedings of

the 2007 acm conference on recommender systems (pp. 17–24).

Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using

word co-occurrence statistical information. International Journal on Artificial

Intelligence Tools, 13(01), 157–169.

McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive bayes

text classification. In Aaai-98 workshop on learning for text categorization (Vol.

752, pp. 41–48).

Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., & Chi, Y. (2017). Deep keyphrase

generation. arXiv preprint arXiv:1704.06879.

Merrouni, Z. A., Frikh, B., & Ouhbi, B. (2016). Automatic keyphrase extraction: An

overviewof the state of the art. In Information science and technology (cist), 2016

4th ieee international colloquium on (pp. 306–313).

Mihalcea, R. (2004). Graph-based ranking algorithms for sentence extraction, applied to

text summarization. In Proceedings of the acl 2004 on interactive poster and

demonstration sessions (p. 20).

Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of

the 2004 conference on empirical methods in natural language processing.

Mihalcea, R., Tarau, P., & Figa, E. (2004). Pagerank on semantic networks, with

application to word sense disambiguation. In Proceedings of the 20th

international conference on computational linguistics (p. 1126).

Miller, D., & Friesen, P. H. (1986). Porter’s (1980) generic strategies and performance:

an empirical examination with american data: part i: testing porter. Organization

studies, 7(1), 37–55.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the

ACM, 38(11), 39–41.

Miller, J. C., Rae, G., Schaefer, F., Ward, L. A., LoFaro, T., & Farahat, A. (2001).

Modifications of kleinberg’s hits algorithm using matrix exponentiation and web

log records. In Proceedings of the 24th annual international acm sigir conference

on research and development in information retrieval (pp. 444–445).

Murtagh, F., & Legendre, P. (2014). Ward's Hierarchical Agglomerative Clustering

Method: Which Algorithms Implement Ward's Criterion? Journal of classification,

31(3), 274– 295.

Narasimhamurthy, A. (2005). Theoretical bounds of majority voting performance for a

binary classification problem. IEEE Transactions on Pattern Analysis and

Machine Intelli- gence, 27(12), 1988–1995.

95

Nguyen, T. D., & Kan, M.-Y. (2007). Keyphrase extraction in scientific publications. In

International conference on asian digital libraries (pp. 317–326).

Noun phrase [Computer software manual]. ((accessed May 3, 2018)). Retrieved from

https://en.oxforddictionaries.com/definition/us/noun phrase/

Ohsawa, Y., Benson, N. E., & Yachida, M. (1998). Keygraph: Automatic indexing by

co- occurrence graph based on building construction metaphor. In Research and

technology advances in digital libraries, 1998. adl 98. proceedings. ieee

international forum on (pp. 12–18).

Ono, T., Hishigaki, H., Tanigami, A., & Takagi, T. (2001). Automated extraction of

information on protein–protein interactions from the biological literature.

Bioinformatics, 17(2), 155–161.

Page, L. (2001, September 4). Method for node ranking in a linked database. Google

Patents. (US Patent 6,285,999)

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking:

Bringing order to the web. (Tech. Rep.). Stanford InfoLab.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification

using machine learning techniques. In Proceedings of the acl-02 conference on

empirical methods in natural language processing-volume 10 (pp. 79–86).

Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic

filter- ing. Artificial intelligence review, 13(5-6), 393–408.

Popova, S., & Danilova, V. (2014). Keyphrase extraction. abstracts instead of full

papers. In 25th international workshop on database and expert systems

applications (pp. 241– 245).

Pudota, N., Dattolo, A., Baruzzo, A., Ferrara, F., & Tasso, C. (2010). Automatic

keyphrase extraction and ontology mining for content-based tag recommendation.

International Journal of Intelligent Systems, 25(12), 1158–1186.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81–106.

Rabby, G., & Azad, S. (2018). Teket. https://github.com/corei5/TeKET. GitHub.

Rabby, G., Azad, S., Mahmud, M., & Zamli, R. M. M., Kamal Z. (2018). A flexible

keyphrase extraction technique for academic literature. In Procedia compute

science (Vol. 135, pp. 653–663). Elsevier.

Regular expression howto. (n.d.). Retrieved from https://docs.python.org/3

/howto/regex.html.

Reilly, R. G., & Sharkey, N. (2016). Connectionist approaches to natural language

processing. Routledge.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems

handbook. In Recommender systems handbook (pp. 1–35). Springer.

https://docs.python.org/3%20/howto/regex.html
https://docs.python.org/3%20/howto/regex.html

96

Robertson, S. (2004). Understanding inverse document frequency: on theoretical

arguments for idf. Journal of documentation, 60(5), 503–520.

Robertson, S. E. (1977). The probability ranking principle in ir. Journal of

documentation, 33(4), 294–304.

Rowley, J., & Hartley, R. (2017a). Organizing knowledge: an introduction to managing

access to information. Routledge.

Rowley, J., & Hartley, R. (2017b). Organizing knowledge: an introduction to managing

access to information. Routledge.

Salton, G., & Buckley, C. (1988a). Term-weighting approaches in automatic text

retrieval. Information Processing & Management, 24(5), 513-523. Retrieved from

http://www.sciencedirect.com/science/article/pii/ 0306457388900210 doi:

https://doi.org/10.1016/0306-4573(88)90021-0

Salton, G., & Buckley, C. (1988b). Term-weighting approaches in automatic text

retrieval. Information processing & management, 24(5), 513–523.

Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic

indexing. Communications of the ACM, 18(11), 613–620.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th international

conference on world wide web (pp. 285–295).

Scheve, T. (2018). Why does having too many options make it harder to choose?

Retrieved from https://science.howstuffworks.com/life/ choose-options.htm

Seuring, S., & Gold, S. (2012). Conducting content-analysis based literature reviews in

supply chain management. Supply Chain Management: An International Journal,

17(5), 544– 555.

Siddiqi, S., & Sharan, A. (2015). Keyword and keyphrase extraction techniques: a

literature review. International Journal of Computer Applications, 109(2).

Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering

techniques. In In kdd workshop on text mining.

Sterckx, L., Demeester, T., Deleu, J., & Develder, C. (2015). Topical word importance

for fast keyphrase extraction. In Proceedings of the 24th international conference

on world wide web (pp. 121–122).

Sterckx, L., Demeester, T., Deleu, J., & Develder, C. (2018). Creation and evaluation of

large keyphrase extraction collections with multiple opinions. Lang Resources &

Evaluation, 52, 503–532.

Sugiyama, K., & Kan, M.-Y. (2017). Scholarly paper recommendation datasets.

Retrieved from http://www.comp.nus.edu.sg/˜sugiyama/ SchPaperRecData.html

Thomas, J. R., Bharti, S. K., & Babu, K. S. (2016). Automatic keyword extraction

http://www.sciencedirect.com/science/article/pii/
https://doi.org/10.1016/0306-4573(88)90021-0
https://science.howstuffworks.com/
http://www.comp.nus.edu.sg/

97

for text summarization in e-newspapers. In Proceedings of the international

conference on in- formatics and analytics (p. 86).

Tixier, A., Malliaros, F., & Vazirgiannis, M. (2016). A graph degeneracy-based

approach to keyword extraction. In Proceedings of the 2016 conference on

empirical methods in natural language processing (pp. 1860–1870).

Tomokiyo, T., & Hurst, M. (2003). A language model approach to keyphrase extraction.

In Proceedings of the acl 2003 workshop on multiword expressions: analysis,

acquisition and treatment-volume 18 (pp. 33–40).

Tumer, D., Shah, M. A., & Bitirim, Y. (2009). An empirical evaluation on semantic

search performance of keyword-based and semantic search engines: Google,

yahoo, msn and hakia. In Internet monitoring and protection, 2009. icimp’09.

fourth international conference on (pp. 51–55).

Turney, P. D. (2000). Learning algorithms for keyphrase extraction. Information

retrieval, 2(4), 303–336.

Vallez, M., Pedraza-Jimenez, R., Codina, L., Blanco, S., & Rovira, C. (2015). A semi-

automatic indexing system based on embedded information in html documents.

Library Hi Tech, 33(2), 195–210.

Vencovsky, F., Lucas, B., Mahr, D., & Lemmink, J. (2017). Comparison of text mining

techniques for service aspect extraction. In Ecsm 2017 4th european conference

on social media (p. 297).

Wan, X., & Xiao, J. (2008). Collabrank: towards a collaborative approach to single-

document keyphrase extraction. In Proceedings of the 22nd international

conference on computational linguistics-volume 1 (pp. 969–976).

Wang, H., Xu, F., Hu, X., & Ohsawa, Y. (2013). Ideagraph: a graph-based algorithm of

mining latent information for human cognition. In Systems, man, and cybernetics

(smc), 2013 ieee international conference on (pp. 952–957).

Wang, J., Liu, J., & Wang, C. (2007). Keyword extraction based on pagerank. In

Pacific-asia conference on knowledge discovery and data mining (pp. 857–864).

Wang, L., Zeng, X., Koehl, L., & Chen, Y. (2015). Intelligent fashion recommender

system: Fuzzy logic in personalized garment design. IEEE Trans. Human-

Machine Systems, 45(1), 95–109.

Wang, R., Liu, W., & Mcdonald, C. (2014). How preprocessing affects unsupervised

keyphrase extraction. In International conference on intelligent text processing

and computational linguistics (pp. 163–176).

Willett, P. (2006). The porter stemming algorithm: then and now. Program, 40(3), 219–

223. Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., & Nevill-Manning, C.

G. (2005). Kea: Practical automated keyphrase extraction. In Design and

usability of digital libraries: Case studies in the asia pacific (pp. 129–152). IGI

Global.

98

Wolf, N., Zhu, Z., Semret, N., & Baskin, J. (2013, August 20). Providing product

recommendations through keyword extraction from negative reviews. Google

Patents. (US Patent 8,515,828)

Wu, Z., Zhu, H., Li, G., Cui, Z., Huang, H., Li, J., Xu, G. (2017). An efficient wikipedia

semantic matching approach to text document classification. Information Sciences,

393, 15–28.

Xu, C., Wu, Y., & Liu, Z. (2017). Multimodal fusion with global and local features for

text classification. In International conference on neural information processing

(pp. 124– 134).

Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative

matrix factorization. In Proceedings of the 26th annual international acm sigir

conference on research and development in informaion retrieval (pp. 267–273).

Yager, R. R. (2003). Fuzzy logic methods in recommender systems. Fuzzy Sets and

Systems, 136(2), 133–149.

Yang, C. C. (1997). Fuzzy bayesian inference. In Systems, man, and cybernetics, 1997.

computational cybernetics and simulation., 1997 ieee international conference on

(Vol. 3, pp. 2707–2712).

Yoo, S.-C., & Eastin, M. S. (2017). Contextual advertising in games: Impacts of game

context on a players memory and evaluation of brands in video games. Journal of

Marketing Communications, 23(6), 614–631.

Yu, Y., & Ng, V. (2018). Wikirank: Improving keyphrase extraction based on

background knowledge. arXiv preprint arXiv:1803.09000.

Yujian, L., & Bo, L. (2007). A normalized levenshtein distance metric. IEEE

transactions on pattern analysis and machine intelligence, 29(6), 1091–1095.

Zha, H. (2002). Generic summarization and keyphrase extraction using mutual

reinforcement principle and sentence clustering. In Proceedings of the 25th

annual international acm sigir conference on research and development in

information retrieval (pp. 113–120).

Zhai, C., & Lafferty, J. (2017). A study of smoothing methods for language models

applied to ad hoc information retrieval. In Acm sigir forum (Vol. 51, pp. 268–

276).

Zhang, K., Xu, H., Tang, J., & Li, J. (2006). Keyword extraction using support vector

machine. In International conference on web-age information management (pp.

85–96).

Zhao, W. X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.-P., & Li, X. (2011).

Topical keyphrase extraction from twitter. In Proceedings of the 49th annual

meeting of the association for computational linguistics: Human language

technologies-volume 1 (pp. 379–388).

99

APPENDIX A

Research Papers

1. Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z. and Rahman, M.M., (2018). A

Flexible Keyphrase Extraction Technique for Academic Literature. Procedia

Computer Science, 135, pp.553-563.

2. Yong, T.F., Azad, S., Rahman, M.M., Zamli, K.Z. and Rabby, G., 2018. A Highly

Accurate PDF-To-Text Conversion System for Academic Papers Using Natural

Language Processing Approach. Advanced Science Letters, 24(10), pp.7844-7849.

3. Rabby, G., Azad, S., Mahmud, M., Zamli, K. Z., and Rahman, M. M. (n.d.).

TeKET: A Tree-based Keyphrase Extraction Technique for Decision Support

Systems. Applied Soft Computing(Under Review).

Awards

1. GOLD in CITREX-2019, UMP, MALAYSIA, with project ”TeKET: A Tree-

based Keyphrase Extraction Technique.”

2. SILVER in CITREX-2018, UMP, MALAYSIA, with project ”A Highly Accurate

PDF- to-Text Conversion System for Academic Papers using Natural Language

Process- ing Approach.”

100

APPENDIX B

Sample Experiment Data

Scalable Grid Service Discovery Based on UDDI* * Authors are listed in

alphabetical order. Sujata Banerjee$, Sujoy Basu$, Shishir Garg , Sukesh Garg ,

Sung-Ju Lee$, Pramila Mullan , Puneet Sharma$ $ HP Labs 1501 Page Mill Road

Palo Alto, CA, 94304 USA +1- 650-857-2137 sujata.banerjee, sujoy.basu,

sungju.lee, puneet.sharma@hp.com France Telecom R&D Division 801 Gateway

Blvd, # 500 South San Francisco, CA, 94080 USA +1 650 -875- 1500 shishir.garg,

sukesh.garg, pramila.mullan@francetelecom.com ABSTRACT Efficient dis- covery

of grid services is essential for the success of grid computing. The standardization

of grids based on web services has resulted in the need for scalable web service

discovery mech- anisms to be deployed in grids Even though UDDI has been the de

facto industry standard for web-services discovery, imposed requirements of tight-

replication among registries and lack of autonomous control has severely hindered

its widespread deployment and usage. With the advent of grid computing the

scalability issue of UDDI will become a roadblock that will prevent its deployment

in grids. In this paper we present our distributed web-service dis- covery

architecture, called DUDE (Distributed UDDI Deployment Engine). DUDE

leverages DHT (Distributed Hash Tables) as a rendezvous mechanism between

multiple UDDI registries. DUDE enables consumers to query multiple registries,

still at the same time allowing orga- nizations to have autonomous control over

their registries.. Based on preliminary prototype on PlanetLab, we believe that

DUDE architecture can support effective distribution of UDDI registries thereby

making UDDI more robust and also addressing its scaling issues. Further- more,

The DUDE architecture for scalable distribution can be applied beyond UDDI to

any Grid Service Discovery mechanism. Categories and Subject Descriptors C2.4

[Distributed Systems] General Terms Design, Experimentation, Standardization. 1.

INTRODUCTION Efficient discovery of grid services is essential for the success

of grid computing..........

Sample Candidate Phrases

’scalabl grid servic discoveri base’, ’list’, ’alphabet order’, ’sujata banerje’,

’shishir garg’, ’sukesh garg’, ’pramila mullan’, ’puneet’, ’hp lab’, ’page mill road

palo alto’, ’d divi’, ’gateway blvd’, ’san francisco’, ’grid servic’, ’success’, ’grid

comput’, ’standard’, ’grid base’, ’web servic ha result’, ’need’, ’scalabl web servic

discoveri mechan’, ’uddi ha’, ’industri stan- dard’, ’web-serv discoveri’, ’impo

requir’, ’registri’, ’lack’, ’autonom control ha sever hinder’, ’widespread deploy’,

’usag’, ’advent’, ’scalabl issu’, ’uddi’, ’roadblock’, ’grid’, ’thi paper’, ’distribut web-

serv discoveri architectur’, ’dude’, ’uddi deploy engin’, ’dude leverag dht’, ’distribut

hash tabl’, ’rendezv mechan’, ’multipl uddi registri’, ’dude’, ’consum’, ’multipl

registri’, ’same time’, ’organ’, ’autonom’, ’registries.. base’, ’preliminari prototyp’,

’planetlab’, ’architectur’, ’effect distribut’, ’uddi registri therebi’, ’scale issu’, ’dude

mailto:sujata.banerjee,%20sujoy.basu,%20sungju.lee,%20puneet.sharma@hp.com
mailto:sujata.banerjee,%20sujoy.basu,%20sungju.lee,%20puneet.sharma@hp.com
mailto:shishir.garg,%20sukesh.garg,%20pramila.mullan@francetelecom.com
mailto:shishir.garg,%20sukesh.garg,%20pramila.mullan@francetelecom.com

101

architectur’, ’scalabl distribut’, ’ser- vic discoveri mechan’, ’categori’, ’subject

descriptor c2.4 [distribut system] gener term de- sign’, ’experiment’, ’standard’,

’introduct effici discoveri’, ’grid servic’, ’success’, ’grid com- put’, ’standard’, ’grid

base’, ’web servic ha result’, ’need’, ’scalabl web servic permiss’, ’digit’, ’hard copi’,

’part’, ’thi work’, ’person’, ’classroom use’, ’fee provid’, ’copi’, ’profit’, ’advan-

tag’, ’bear thi’, ’full citat’, ’first page’, ’server’, ’list’, ’prior specif permiss’, ’fee’,

’mgc’, ’28- decemb’, ’grenobl’, ’franc discoveri mechan’, ’grid’, ’grid discoveri

servic’, ’abil’, ’resourc’, ’servic’, ’grid’, ’abil’, ’inform’, ’addit’, ’threshold trap’,

’specif chang’, ’exist condit’, ’state’, ’data’, ’soft state’, ’recent inform’, ’inform

gather need’, ’system’, ’purpo’, ’grid’, ’summari inform’, ’fundament problem’,

’need’, ’huge amount’, ’data’, ’multipl sourc’, ’web servic com- mun ha’, ’need’,

’servic discoveri’, ’befor grid’, ’industri standard call uddi’, ’uddi ha’, ’industri

standard’, ’web-serv discoveri’, ’impo requir’, ’registri’, ’lack’, ’autonom control’,

’other thing ha sever hinder’, ’widespread deploy’, ’usag [’, ’advent’, ’scalabl issu’,

’uddi’, ’roadblock’, ’grid’, ’thi paper’, ’scalabl issu’, ’way’, ’multipl registri’,

’distribut web servic discoveri archi- tectur’, ’distribut uddi function’, ’multipl way’,

’corba’, ’dce’, ’thi paper’, ’distribut hash tabl’, ’dht’, ’technolog’, ’scalabl distribut’,

’servic discoveri architectur’, ’dht’, ’p2p’, ’distribut sys- tem’, ’structur overlay’,

’more effici rout’, ’underli network’, ’crucial design choic’, ’factor’, ’first motiv

factor’, ’inher simplic’, ’dht provid’, ’top’, ’dht’, ’abstract’, ’distribut applic’, ’other

distribut’, ’provid more function’, ’higher overhead’, ’complex’,..........

Sample Keyphrases

(’uddi registri ’, 26322), (’registri ’, 25600), (’servic ’, 11236), (’proxi registri

’, 10908), (’dht ’, 9604), (’uddi ’, 7396), (’local registri ’, 6916), (’servic name ’,

5040), (’dht node ’, 4026), (’servic discoveri ’, 3360), (’servic inform ’, 2196),

(’proxi ’, 1764), (’queri ’, 1296), (’thi ’, 1156), (’key ’, 1156), (’hash tabl ’, 832),

(’thi work ’, 768), (’search ’, 676), (’grid ’, 576), (’node ’, 576), (’client ’, 484),

(’local ’, 484), (’scalabl ’, 400), (’hash ’, 400), (’name ’, 400), (’comput ’, 256),

(’architectur ’, 256), (’inform ’, 256), (’http ’, 256), (’discoveri ’, 196), (’work ’,

196), (’top ’, 196), (’section ’, 196), (’proceed ’, 196), (’tabl ’, 144), (’abil ’, 144),

(’valu ’, 144), (’rout ’, 144), (’prefix ’, 144)

Sample Match with Gold Standard Keyphrases

Match Keyphrase:

uddi registry

dht

Match in Gold Standard Keyphrases keyphrases: 2

Top n keyphrase: 5

Lenth of the Gold Standard Keyphrases: 19

102

Match Keyphrase:

uddi registri

dht

uddi

Match in Gold Standard Keyphrases keyphrases: 3

Top n keyphrase: 10

Lenth of the Gold Standard Keyphrases: 19

Match Keyphrase:

uddi registri

dht

uddi

queri

Match in Gold Standard Keyphrases keyphrases: 4

Top n keyphrase: 15

Lenth of the Gold Standard Keyphrases: 19

