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INTRODUCTION 
 In various fields, such as finance, physics, system biology, biochemical processes, and pharmacokinetics, stochastic 
differential equations (SDEs) have gained a lot of attention. SDEs introduce the uncertainty to a deterministic model 
described by ordinary differential equations (ODEs). SDEs can give a more flexible framework to account for the 
variation in states and parameters that define the underlying system than the deterministic counterpart. Experimental and 
computational research has made considerable progress in understanding cancer biology during the last few decades [1]. 
The biological system's tangible depiction has been used in the form of mathematical modeling of cancer either as 
continuous, discrete, or a (hybrid) mix of both, and has been thoroughly examined in the last decade [2-6].  

The single equation model can be described to predict cancer cell dynamics through the available tumor size at a 
specific time and can estimate the model’s parameters. The single equation model can only describe the cancerous cell 
growth pattern and distinguish the tumors in corresponds to their exponational growth [7]. TQ as a major constituent of 
black seed (Nigella sativa) has been well known for its anti-neoplastic anti-cancer properties in several different cancers 
including oral cancer [8]. However, there have been inadequate investigations on the toxicity of TQ in normal cells. A 
study reported that the water extract of N. Sativa’s whole seeds has an inhibitory impact on oral cancer cells progression 
when applied at the concentration of 0.5% v/v in in-vitro conditions. The cytotoxic effect of TQ in particular oral cancer 
cell lines (HSC-3) but not in normal cells, according to the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) 
test (human oral fibroblast cells). TQ seems to be a promising cancer chemotherapeutic candidate, according to [9].  

Cancer patients in Muslim countries take Nigella sativa as a dietary supplement in addition to traditional chemotherapy 
[10-12]. Also, [13-15] have recently reported TQ's anticancer capabilities against human oral cancer cells. The 
mathematical approach in studying tumor growth is to explain the patterns of growth and predict the behaviour of the 
process. Mathematical models have been developed and used to describe the tumor growth pattern using data and help to 
estimate patient survival rate and offer a treatment of choice. From a promising application of a mathematical model [16, 
17], by identifying the cells that play a role in cancer propagation, it was possible to determine parameters for stability 
analysis and anticipate tumour dynamics. These models help to describe the dynamics of interactions between the 
variables involve [18,19]. In modelling the process, the parameters added to the system need to be estimated. Monte Carlo 
Markov Chain (MCMC) method is one of the parameter estimation method that utilize the used of the generating the 
output variables based on the random input. It is used to simulate the repeated random sampling through the mathematical 
formulas in the model; where it determines how uncertainties in the input quantities to a functional relationship propagate 
through to the output can be accomplished using readily available data [18].  For Monte Carlo parameter estimation 
method, after an additive multinormal pseudo-random error has been added into the structural equation of the model or 
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even into the model's coefficients, the variances are estimated from the sample variances of replicated simulation trials. 
The Monte Carlo non-parametric method is used because has advantage to give normalized values for mean and variance 
[20]. 

In the present study, we use linear SDE in section 2 to explain the declining trend of oral cancer cell HSC-3 in the 
presence of TQ. Data description is described in section 3. The parameters of the model are estimated by using the non-
parametric MCMC method which is presented in section 4.  MCMC method was run for 100,500,1000 and 2000 
simulations. 

MATHEMATICAL MODEL AND PARAMETER ESTIMATION 
Linear stochastic differential equation is defined by 

( )t t tdX a X dt dWσ= − + , ( ) 00X X= (1) 

where tX  is the cancer cell and σ is the diffusion coefficient. 0X is the initial number of cancer cells at the initial time 

0 0.t = Also 0a >  is the cancer growth rate parameter and constant. tW  is the m-dimensional Wiener .The parameter 
estimation for SDE requires estimating the parameters 0a >  and 0σ > . The unknown parameters of the stochastic model 
are estimated using a non-parametric maximum likelihood approach. Starting and developing the transition density of iy  

from 1iy −  and evolving to iy  is 1 1p(t , | , , )i i i iy t y− − θ , where θ  is the parameter to be estimated. The MLE (maximum
likelihood estimator) of the θ  is attained by expanding the likelihood function to its maximum value of 
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      To derive ( )L θ which is proposed by [14], the Monte Carlo simulation is used. Monte Carlo algorithms are efficient 
numerical tool mostly used to solve the SDE problems. 
The algorithm of MC method is as follows: 

(i) The time interval is divided as  1[ , ]i it t−  into N subintervals have step size of 
( )1,i it t
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where ih is the kernel bandwidth at the time it and ( ).K  is a right symmetric, non-negative kernel function.
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The aforementioned algorithm was proposed by [20, 22]. It was translated into SDE Toolbox and this article utilized 
the MCMC method of SDE Toolbox. Data description is presented in next section. 

DATA DESCRIPTION 
The oral cancer cell lines have been planted for 24 hrs using 96-well plates till they reached the density level of 70-

80% confluency per well. Later, samples were further incubated for 24 hrs of the time period. The 20 μL MTT 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide at concentration of 5 mg/mL (Sigma Aldrich, US) was added to 
each sample at a concentrations level of 5mg/mL Further, for 4 hrs the mixture was kept at 37°C in humidified conditions 
and the experimental value was used as averages standard error mean (SEM) of triplicates and expressed as a percentage 
of the control values.   

RESULTS AND DISCUSSION 
This section contains the numerical simulations of MCMC methods for 100, 500,1000 and 2000 trajectories. The 

value of 0 1X = , 0.5a =  and step size is 0.001.h =  The solution of SDE (1) is simulated using Euler’s method. Figure 
1 (a), (b), (c) and ( d) shows the true solution (dark solid lines) for 100,  500,1000 and 2000(cannot observe) trajectories. 

      (a)                                           (b)                                      (c)                      (d)  

Figure 1. Simulation results of SDE (1) for (a) 100, (b) 500 and (c) 1000 and (d) 2000 simulations. 

The mean and 95 percentiles of the solution of 100, 500,1000 and 2000 simulation of SDE (1) are computed and the 95% 
confidence interval of the solution mean are depicted in Figure 2 (a), (b), (c) and (d). The green line represents the average 
solution of simulations, and the blue dot is the experimental data. The black line depicts the 95 percentiles of the solution. 

Table 1. Estimated parameters and 95% confidence interval. 
Trajectories Parameter Estimated Values Confidence Interval 
100 𝑎𝑎 5.307620e-03 [ 0.0032573, 0.0073579] 

𝜎𝜎 8.335209e-03 [ 0.0038440, 0.0128260] 
500 𝑎𝑎 5.850240e-03 [ 0.0027801, 0.0089204] 

𝜎𝜎 9.106071e-03 [ 0.0020542, 0.0161580] 
1000 𝑎𝑎 5.877555e-03 [0.0033452,  0.0084099] 

𝜎𝜎 9.672986e-03 [0.0044814, 0.0148650] 
2000 𝑎𝑎 5.894822e-01 [0.5865400, 0.5924200] 

𝜎𝜎 3.025830e-01 [0.2950000, 0.3101700] 

(a)                                           (b)                                      (c)                      (d)  
Figure 2. Mean and 95 percentile of (a) 100, (b) 500, (c) 1000 and (d) 2000  simulated result. 
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The estimated parameter of SDE (1) and their corresponding 95% confidence interval is presented in Table 1. The 
distribution of the solution of SDE (1) is shown in Figure 3 (a), (b), (c) and (d). 

(a)                                           (b)                                      (c)                      (d) 
Figure 3. Distribution of the 𝑋𝑋𝑡𝑡 (a)100, (b) 500 (c) 1000 and (d) 2000 simulated result. 

In Figures 1 and 2 (a) ,(b), (c) and (d) it can be seen that the solution of SDE (1) shows the declining trend of the HSC-
3 cancer line in the presence of TQ. The model is adequately explaining this process as depicted by the average of 100, 
500, 1000 and 2000 simulated solutions and the data are in the 95 percentile of the solution. Figure 3 (a), (b), (c) and (d) 
shows the distribution of the solution is approximated Gaussian distribution with the mean parameter for 100,500, 1000 
and 2000 is approximately 0.77,0.76,0.75 and 0.04 respectively. The Gaussian distribution plot for 1000 simulations is 
close to the normal curve, indicating that the distribution of the solution approximate Gaussian distribution as the number 
of sample paths increase. Monte-Carlo statistics of the SDE (1) for 100,500,1000 and 2000 simulated results are computed 
and the values are depicted in Table 2. Before making conclusions from the created model, every fitted model should be 
tested and checked on its performance. This is essentially a check to see if the fitted model's projected values are close to 
the observed data. This is referred to as "fitness of fit" [23]. The increasing number of simulations like 2000 generate 
more sample paths that will give the possibility of the behaviour of cancer cell proliferation under different types of 
environmental noise. However, when the number of simulations is too large in SDEs, the noise generated by the Wiener 
process may contribute to the instability of the solution. The Monte-Carlo statistics were obtained at the endpoint of time 
48 hours. It can be summarized, the mean and median of 1000 simulated solutions of SDE (1) at time 48 hours 
approximately 7.5 (same values), hence indicating that the solution is approximated Gaussian distribution with the 
standard deviation from mean is 0.0592.  The measures of symmetry as depicted by the process skewness is in the range 
of -0.5 to 0.5, hence indicate the data solutions of HSC-3 are fairly symmetrical (a bell-shaped curve). The process kurtosis 
is less than 3, hence lack outliers in the data set. The process moment of a random process, X for order 2 till 7 has been 
computed and depicted in Table 2.  

Table 2. Monte-Carlo statistics of SDE (1) for 100, 500, 1000 and 2000 trajectories at end point of time 48 hours. 
Statistics Estimated 

Value(100) 
(500) (1000) (2000) 

Mean 7.6460e-01 7.5454e-01 7.5355e-01 4.1330e+10 
Variance 3.3688e-03 3.2528e-03 3.5285e-03 3.9831e+22 
Median 7.6460e-01 7.5454e-01 7.5355e-01 1.8824+09 

95 percent confidence 
interval 

[6.5038e-01, 
8.78837e01] 

[6.4407e-01, 
8.6501e-01] 

[6.4144e-01 
,6.6566e-01] 

[1.9518e+07, 
3.1258e+11] 

The process first and 
third quartiles 

[7.2338e01, 
8.0583e01] 

[7.1741e-01, 
7.9164e-01] 

[7.1293e-01, 
7.9416e-01] 

[2.9837e+08, 
1.2275e+10] 

Process skewness 9.7533e-15 7.0129e-18 2.0925e-14 1.0991e+01 
Process kurtosis 2.3401e+00 2.7649e+00 2.6177e+00 1.5968e+02 

Process moment of 
order 2 

3.3351e-03 3.2463e-03 3.5250e-03 3.9811e+22 

Process moment of 
order 3 

1.9071e-18 1.3010e-21 4.3859e-18 8.7379e+34 

Process moment of 
order 4 

2.6558e-05 2.9255e-05 3.2591e-05 2.5334e+47 

Process moment of 
order 5 

6.8474e-20 -1.3891e-21 6.8800e-20 8.3317e+59 

Process moment of 
order 6 

2.9754e-07 3.9364e-07 4.5208e-07 2.9511e+72 

Process moment of 
order 7 

1.7417e-21 -6.6597e23 1.36954e-21 1.0945e+85 
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CONCLUSION 
The study considers the model fitting using non-parametric estimation method with one of the most common MCMC 

methods in use. In vitro experimentation, TQ at the concentration level of 0.008mg/mL is the optimal dose for the 
treatment of HSC-3 cancer cell lines growth. The graphical visualization of dose-effect has shown that the simulated 
result using SDE (1) is consistent with obtained experimental data of HSC-3 interaction with TQ as reflected the declining 
trends of cell line growth. The Monte-Carlo statistics simulations show that the results follow the trajectories of the 
experimental data (decreasing trend) for 100, 500 and 1000 simulations. However, as the number of simulation is 2000 
the solution is instable. The instability of the solution might happen due to the noise generated by the Wiener process for 
2000 simulation is high.  In this research the focus is only for one equation model. However, to capture the behaviour of 
the dynamical system for the interaction of oral cancer and TQ, the model need to be extended to a system of SDEs that 
is can be considered for future research. 
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