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A B S T R A C T

Building Energy Management System (BEMS) has been a substantial topic nowadays due to its importance in
reducing energy wastage. However, the performance of one of BEMS applications which is energy consumption
prediction has been stagnant due to problems such as low prediction accuracy. Thus, this research aims to address
the problems by developing a predictive model for energy consumption in Microsoft Azure cloud-based machine
learning platform. Three methodologies which are Support Vector Machine, Artificial Neural Network, and k-
Nearest Neighbour are proposed for the algorithm of the predictive model. Focusing on real-life application in
Malaysia, two tenants from a commercial building are taken as a case study. The data collected is analysed and
pre-processed before it is used for model training and testing. The performance of each of the methods is
compared based on RMSE, NRMSE, and MAPE metrics. The experimentation shows that each tenant’s energy
consumption has different distribution characteristics.
1. Introduction

Recently, smart building concept has been adapted more frequently
as an initiative to create an intelligent space area by taking advantage of
the rapid development of computational and communication architec-
ture (Cheng and Kunz, 2009). This concept is not only limited toMalaysia
but other countries as well. General public understanding of smart
building concept rotates on the idea of automated process, which is able
to automatically control the building’s operation through the usage of
instrumentation measures and microcontrollers in two-way communi-
cation (Qolomany et al., 2019). Other than automated control, a smart
building also consists of an intelligent system which provides energy
consumption forecasts as an energy efficiency initiative. This is due to its
advantage of yielding economical savings and as a sustainable approach
for energy management to minimize energy wastage (Xu et al., 2018).

A smart energy consumption forecasting is important, especially for
buildings as buildings’ energy usage is increasing and almost reaches
40% of primary energy use in developed countries (Berardi, 2015). In
Malaysia alone, energy consumption has been increase gradually due to
the growth of population. The growth of population lead to the
increasing of energy demand in this country and have been estimated to
reach 116 million tons of oil equivalents (mtoe) by this year. Energy
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provided in Malaysia is influenced by the main fossil fuel sources which
included coal, natural gas and fuel oil. Buildings which including com-
mercial, residential and industrial in our country utilises a total of 48% of
the electricity that have been created (Hassan et al., 2014). The
increasing of energy consumptions towards buildings from day to day
create enforcement to this country in managing and reducing the energy
consumption as much as possible in order to improve energy efficiency.

This study is a continuing research from our previous work where
previously statistical analysis and k-nearest neighbour (k-NN) method
were proposed as the methodologies and SPSS was used as the platform
(Mazlan et al., 2020). In our previous study, only k-NN was proposed as
the method to predict energy consumption. It is difficult to knowwhether
the method proposed was the best since there is no comparison had been
made. Hence, another two methods from machine learning are added in
this study.

This research has utilised Microsoft Azure Machine Learning Studio,
which is a web service solution for the development of prediction model.
Starting from data analysis until performance evaluation, AzureML has
been successfully employed for the implementation of energy demand
forecasting. A major advantage of using Microsoft Azure over SPSS is it is
user friendly and easy to use even the user only has basic knowledge in
cloud computing and machine learning. One of the distinguishing
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features of AzureML was its ability to manoeuvre through a visualization
workflow. The workflow that was conducted inside the environment was
manipulated through a graphical drag and drop procedure. Other than
that, parsing data for experiment was simply done by joining of modules.
Additionally, the platform also supports script packages and algorithms
written in external programming language, particularly R programming.

The development of energy consumption predictive models that use
statistical analysis and learning methodology possesses several signifi-
cant challenges. Attewell and Monaghan (Attewel and Monaghan, 2015)
described that statistical prediction is restricted especially in the case of a
large dataset with several features, as it requires a higher computational
power for modeling. Other than that, the statistical prediction method
itself is comparably weak as it performs better only in the case of sta-
tionary time series and high similarity of consumption level (Abdul
Karim and Alwi, 2013). Newsham and Birt (2010) also deduced that time
series analysis for electricity consumption forecast performance was
unsatisfactory due to variables in the chosen attributes. Moreover, the
traditional development of a predictive model is usually based on the
trend of maximum demand (kW) consumption only, which is known as a
time series method (Xiangyu et al., 2019). The model development
would neglect other electrical parameters such as reactive power
changes, which causes the model to be trained only with historical data
of maximum demand value. On the contrary, the inclusion of other fea-
tures of electrical power data would improve the energy consumption
prediction (Wei et al., 2019). Therefore, machine learning methodology
is preferable when developing a predictive model of electrical
consumption.

Changing from the statistical method to machine learning method
itself does not solve all the problems with energy consumption predic-
tion. Missing data that was present on a set of data was well known to
cause the performance of the predictive model to deteriorate (Ahmad
et al., 2016; Nugroho and Surendro, 2019). This missing data exists
usually due to the interconnectivity or sensor problem which is the main
complication for smart building energy metering (Ahmad et al., 2016).
Additionally, the development of the machine learning model should
utilise a cloud-based service to reduce the dependency of prediction on
the hardware specifications (Mateev, 2019). Comprehensively, the three
critical areas of energy consumption forecast discussed are machine
learning prediction methodology, handling of missing data and
employment of cloud-based prediction modeling platform which will be
the basis of this research.

As the main objective of this research is to develop an energy con-
sumption predictive model for smart commercial building by using
several machine learning methods in a cloud-based machine learning
platform, this research focuses more on the accuracy of the methodology
applied in predicting energy consumption. Advances in machine learning
studies have a tremendous impact on the field of smart building energy
management as it is crucial to reduce energy consumption of various
types of building from residential buildings to industrial buildings.
Therefore, this study is essential to the following parties such as Ministry
of Green Energy and Water (KETTHA) and Malaysia Green Technology
Corporations in their determination to analyse energy consumption level
of the existing building. It is also helpful to industrial manufacturing
company in predicting electrical loading on their system for long range
projection, mapping of capacity versus demand and for factory growth
projection. Last but not least, academician majoring in engineering field
to understand the integration of data science and analytics in engineering
projects and higher education students to explore the services and pos-
sibility of utilising Microsoft Azure Machine Learning Studio for various
projects.

2. Literature review

2.1. Machine learning prediction methodology

Following the aforesaid problem, this research addresses its
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challenges by conducting prediction modeling through the evaluation of
historical power data. This method utilises a data-driven approach as
described by Corgnati et al. (2013) whereby the input (regressor vari-
ables) and output variables (response) are known. Based on this data,
system parameters will be estimated and thus, a mathematical model
could be generated. Several previous studies have analysed the
data-driven machine learning approach. Fu et al. (2015) proposed using
one of ML algorithms which is Support Vector Machine (SVM) to predict
the load at a building’s system-level (air conditioning, lighting, power,
and others) based on weather predictions and hourly electricity load
input. Overall, SVM method managed to predict the total electricity load
with root mean square error (RMSE) of 15.2% andmean bias error (MBE)
of 7.7%. Findings by Valgaev et al. (2016) proposed a power demand
forecast using k-Nearest Neighbour (k-NN) model at a smart building as
part of the Smart City Demo Aspern (SCDA) project. The k-NN forecasting
method was approached using a set of historical observations (daily load
curves) and their successors. The k-NN method is good at classifying data
but limited in forecasting future value as it only identifies similar in-
stances in large feature space. Therefore, it must be complemented with
temporal information identification whereby the prediction will be made
for the next 24 h during workdays.

Five methods of machine learning techniques were used for short-
term load forecasting by El Khantach et al. (El Khantach et al., 2019)
with an initial decomposition of the historical data done periodically into
time series of each hour of the day, which finally constituted 24-time
series that represented every past hour. The five machine learning
methods used are multi-layer perceptron (MLP), support vector machine
(SVM), radial basis function (RBF) regressor, REPTree, and Gaussian
process. The experimentation was done based on data derived from the
Moroccan electrical load data. The result showed that MLP method came
out as the most accurate with MAPE percentage of 0.96 while SVM came
second and although far from the result of MLP, it was still better than the
rest. Although the prediction of energy consumption usually uses a
classification-based machine learning method, prediction could also be
made based on the regression method as studied by Gonz�alez-Briones
et al. (2019). The research constructed a predictive model by analysing
the historical data set using Linear Regression (LR), Support Vector
Regression (SVR), Random Forest (RF), Decision Tree (DT) and k-Nearest
Neighbour (k-NN). The parameters of the research used one day-before
electricity consumption (kWh) as an additional attribute. The results
showed that LR and SVR models had the best performance with 85.7%
accuracy.

2.2. Management of missing data

Techniques in handling missing data have been vastly studied before
and methodologies have been deduced. There are two types of method-
ology that are removing the portion of the data which has missing value
and imputation method which is based on close estimation (Hegde et al.,
2019). The first method which omit the missing part of data is not
feasible as this causes valuable information to be removed (Manly and
Wells, 2015). Without the data, a biased estimation would be made.
Therefore, the imputation method is a preferable technique. Newgard
and Lewis (2015) presented several imputation techniques such as Mean
Value Imputation, Last Observation Carried Forward, Maximum Likeli-
hood Estimate (MLE) and Multiple Imputation (MI). The mean value
imputation basically substitutes the missing data with the mean value of
the dataset. However, this method is not suitable for data which is not
strictly random as it will introduce inequality in the data (Kang, 2013).
Another method presented was Last Observation Carried Forward, in
which imputation is made for historical data that was collected through
(Newgard and Lewis, 2015).

The more advanced methods presented were Multiple Imputation
(MI) and Maximum Likelihood Estimate (MLE) (Newgard and Lewis,
2015). The Multiple Imputation method substitutes the missing data by
gradually supplanting the missing data for every iteration made. This
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method utilises statistical analysis based on observed data to handle the
uncertainty that is introduced by the missing portion. An example of a
popular MI method is Multiple Imputation Using Chained Equations
(MICE) (Azur et al., 2011). Maximum Likelihood Estimate conducts
substitution through assumption made by initially identifying the pa-
rameters and boundaries based on the distribution of the data. The
imputation would then be made based on the assumed parameters. This
method of imputation was employed by Probabilistic Principal Compo-
nent Analysis (PPCA). Both advanced imputation methods have been
compared by Hegde et al. (2019) in which imputation method was made
on sampled dataset consisting of 87 numeric-converted categorical var-
iables and 29 continuous variables. The study used RMSE metrics to
evaluate imputation technique performance. From the research, the
PPCA method showed a much promising result compared to MICE, in
which 65% of data variables were successfully imputed by PPCA and only
38% correct imputation by MICE. This was further supported by Schmitt
et al. (Schmitt et al., 2015) wherein the research compared the perfor-
mance of six imputation methods including PPCA and MICE on a real
dataset of various sizes. The result showed that MICE managed to
perform well in a small dataset, but in a large dataset case, the MICE
method performed poorly.

2.3. Employment of cloud-based prediction modeling

There are various available cloud-based prediction modeling plat-
forms which are able to support machine learning process with addi-
tional capabilities to analyse big data and streaming data. When selecting
the preferable machine learning tool and platform, several important
factors need to be considered such as ascendable, pace, scope, practica-
bility, flexibility, and programming language (Landset et al., 2015).
Machine learning platform and tool are observed to be frequently utilised
with big data techniques for real-time analytics. Review of previous pa-
pers on utilising these ML platforms with big data analytics shows three
top platforms that are widely used for research which are Apache Spark’s
Machine Learning Library (Spark MLlib), TensorFlow, and Microsoft
Azure Machine Learning Studio (Azure ML). Apache Spark ML library
provides a platform which generally uses Machine learning algorithms
for regression, classification, and clustering (Quddus, 2018).

Literature by P�erez-Chac�on et al. (2016) showed k-means algorithm
in Spark MLlib was used to observe the electric energy consumption
behaviour in a big time series-based data. The results showed that the
software managed to discover a day-based consumption pattern with low
computing power for big data sizing up to 3 years (2011, 2012 and 2013)
for two buildings of a public university. Another type of platform is
TensorFlow, which is an open-source library, that is focuses more on
deep learning and reinforcement learning technique (Ramsundar and
Zadeh, 2018). Under Apache 2.0 open-source licensing, TensorFlow
development was then initiated by Google Brain team. The software’s
name, TensorFlow, basically explains its framework whereby it imple-
ments a data flow graph, consists of “tensors” (data batch which will be
processed) and “flows” (data motion in the system) (Abadi et al., 2016).
On the desktop, it is able to utilise both CPUs and GPUs resources such as
in the study by Cai (2019), where the research implemented Convolu-
tional Neural Networks (CNN) in TensorFlow. The computational plat-
form which consists of Intel Core i7 5820 K and Nvidia GeForce GTX
Titan X are both utilised to provide a learning-based power and runtime
modeling.

The machine learning approach at the enterprise level has also
emerged suddenly due to the introduction of a scalable data framework
for handling big data. These companies would usually go for Microsoft
Azure Machine Learning Studio (AzureML) as it utilise cloud-based pre-
dictive analytics, thus requires less investment in hardware for con-
ducting analysis (Mateev, 2019). Such example of a company is British
Petroleum (BP) whereby Azure Artificial Intelligent is utilised to improve
their safety performance and work efficiency in terms of exploring po-
tential new energy by generating useful model within lesser time
3

(Microsoft Customer Stories, 2019). In addition to its functionality,
AzureML supports Python and R as its external programming (AzureML
Team, 2016). Moreover, Azure ML platform can provide machine
learning service from the start until the generation of a predictive model
and is able to continue with the next step, whether publishing or
deploying the model to a website or other platforms (Qolomany et al.,
2019).

3. Methodology

Based on the reviewed studies regarding the critical areas, this
research conducts energy consumption prediction using a dataset pre-
viously collected from a commercial building located in Klang Valley
Malaysia, from June 2018 until December 2018. The commercial
building is equipped with IoT meters that are connected to the power
inlet socket at two major tenants of the building. Each tenant is divided
into two areas consisting of two IoT meters named tenant A1, A2, B1 and
B2. Collected data per minute that mapped into Tenaga National Berhad
(TNB) requirements was saved in an open-source web server. Collected
data can be extracted manually from the online platform in the form of a
CSV file.

The prediction method will employ 3 machine learning algorithms
which are k-NN, SVM and ANN. Feature attributes for this prediction will
use electrical power data consisting of power factor, voltage and current,
in which the demand would be the targeted output. The prediction
modeling will be conducted inside Microsoft Azure Machine Learning
Studio (AzureML) utilising R programming language (Caret Package).
Microsoft Azure has been chosen as a platform in this research based on
the literature reviewed in the previous section. Before model training and
testing, the raw data will initially be analysed and pre-processed to
reduce the complexity of the model training and to manage any missing
data. Finally, each model will be evaluated using validation metrics.
Consequently, the energy consumption prediction framework will consist
of four parts, which are:

Step 1 Normality testing of dataset
Step 2 Data pre-processing
Step 3 Model development (training)
Step 4 Model evaluation (test)
3.1. Step 1: normality testing of dataset

In this research data analysis, a normality testing of the dataset for
each tenant was conducted to determine the dataset distribution. This
process was orchestrated by identifying the skewness and kurtosis of the
dataset. Normality testing is significant for model development as it
usually assumes that the dataset was normally distributed. Based on the
background research by Mishra et al. (2019), it was found that normality
testing is ignorable if the sample size exceeds 100. However, under-
standing of the dataset distribution could provide a consequential anal-
ysis for the result of the prediction. On the ground of statistical analysis,
skewness is defined as the measure of irregular probability distribution
around the mean value whereas kurtosis is a quantification of the dis-
tribution peakness. The formula for skewness and kurtosis is as shown in
equations (1) and (2), respectively

Skewness; S¼
XN
i¼1

ðxi � μÞ3 (1)

Kurtosis; K¼
XN
i¼1

ðxi � μÞ4 (2)

where N is the total number of hours, xi is power consumption, and i is
hour of the day.
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For this analysis, AzureML Summarize Data module was utilised to
present the normality testing numerically and graphically. This module
in AzureML is used to create a set of standard statistical measures that
describe each column in the input table.
3.2. Step 2: data pre-processing

The preliminary process in machine learning includes data pre-
processing for the preparation of data, and it usually consumes much
time and computational power. This process is required as the dataset
usually consists of missing value and an inconsistent scale of value be-
tween features (Fontama et al., 2014). In this research, the data was
pre-processed using mechanics of imputation of missing data and
standardisation in which the former utilised Azure ML proprietary Clean
Missing Data module while the latter was done using Caret R Package.
For Clean Missing Data module in AzureML, it was used to remove,
replace, or infer missing values. This module supports multiple types of
operations for cleaning missing values including replacing missing values
with a placeholder, mean, or other value; completely removing rows and
columns that have missing values; or inferring values based on statistical
methods.

Before proceeding with cleaning missing data, their mechanism was
recognised by identifying the correlation between the tendency of the
data to be missing and the data value itself. After the mechanism was
identified, the methodology was continued with imputation using
Probabilistic Principal Components Analysis (PPCA)method under Azure
ML Clean Missing Data module. PPCA is a Maximum Likelihood
Estimate-based method which applies the Expectation-Maximization
(EM) algorithm to determine the value of lost data. PPCA was derived
initially from Principal Component Analysis (PCA) method, which was
used for dimensionality reduction or also known as compression of data
(Hegde et al., 2019). During the process, the PCA method managed to
minimize the restructuring error on variance by decreasing the Euclidean
distance between the initial data and the conjectured data points. This
particular advantage of PCA was utilised for the imputation of lost data
by initially approximating the dispersion of the compressed data based
on the known data. Then, the missing data was restructured based on the
compressed details as predicted data points.

The imputation method was also evaluated to determine its perfor-
mance. The resultant cleaned data was then further pre-processed using
standardisation. Standardisation or also known as Z-score normalisation
is a transformation to change the observed data to have characteristics of
standard normal distribution in which the mean is 0, and the standard
deviation is 1. This transformed the data to be equally distributed above
and below the mean value by using the formula in equation (3).

xstandardized ¼ x� μ
σ

(3)

where μ is mean and σ is standard deviation.
The standardisation process under Caret Package consists of 2 steps

which are centring and scaling. The centring transformation computes
the mean for a feature and subtracts it from each data point of the feature.
On the other hand, the scale transformation computes the standard de-
viation for a feature and divides the output from centring transformation
with the standard deviation.
3.3. Step 3: model development (training)

This research used a supervised machine learning methodology to
predict energy consumption. After data was prepared, it was then
inputted into the learning algorithm. Different feature combinations
were fed into the algorithm to generate a candidate for the predictive
model. Before using the data to create and train the model, data parti-
tioning was done to separate the data into two groups – a training group
and a testing group.
4

The predictive modeling for this research used a classificationmethod
to predict discrete variables instead of regressive prediction. As Azure ML
does not have k-Nearest Neighbour and Artificial Neural Network for
classification, the modeling function in Caret R package was utilised for
all prediction to ensure uniform execution. Three types of machine
learning algorithm were used for this research which were Artificial
Neural Network (ANN-MLP), k-Nearest Neighbour (k-NN), and Support
Vector Machine (SVM-RBF). Fig. 1 below shows the process after the data
preparation until the generation of the predictive model.

3.3.1. k-Nearest Neigbour (k-NN)
The first predictive model to forecast energy consumption used the k-

Nearest Neighbour (k-NN) method. This machine learning method is
frequently used due to its simple criteria and its forecasting capability on
intricate non-linear pattern (Valgaev et al., 2016). It manages to provide
prediction by determining similar instances between data points in
feature space (Gonz�alez-Briones et al., 2019). For this research, the
method was used to predict maximum demand by using voltage, current
and power factor as the features as the resultant multiplication of the
values will output the electrical power usage (kW). Based on the
Euclidean distance function in equation (4), k-NN method was trained
repeatedly up to the maximum tuning parameter (k-value) which equals
to 49. The resultant model from the training with the lowest RMSE value
was chosen for prediction.

Euclidian distance function¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

ðxi� yiÞ2
vuut (4)

3.3.2. Support Vector Machine (SVM)
In this research, the Support Vector Machine (SVM) was used with

Radial Basis Function (RBF) as its kernel function. This methodology is
usually known as a maximum margin classifier and is utilised to tackle
problems regarding classification and regression for a large dataset
(Ben-Hur et al., 2008). There are several kernel selections available for
SVM method. In this study, Radial Basis Function (RBF) as shown in
equation (5), was chosen due to the broad and non-linear characteristics
of the dataset.

KRBFðx; x0 Þ ¼ exp
�� γx� x

0 2� (5)

where γ is a gamma parameter to determine the spread distribution of the
kernel and x � x0 is the Euclidean distance between the set of points.

Equation (5) has a corresponding definition as represented in equa-
tion (6) using sigma parameter (Liu et al., 2010).

KRBFðx; x0 Þ ¼ exp
�
� x� x

0 2

2σ2

�
(6)

There are 2 tuning parameters for SVM-RBF which are kernel
parameter sigma ( σ) and cost parameter (C), that were adjusted for
repeated training. The sigma value plays an important role in getting a
good fit model to the data. Cost parameter is the penalty limit if the data
point is misclassified or oversteps maximum margin.

3.3.3. Artificial Nneural Network (ANN)
The third methodology in this research for energy consumption pre-

diction was Artificial Neural Network (ANN). The advantages of using
ANN such as its capability to learn complex behaviour, makes it widely
used for predictions and pattern recognition (Karunathilake and Naga-
hamulla, 2017). ANN model structure consists of a formation of inter-
connected neurons that have three main layers; input layer, hidden layer,
and output layer. By comparing the initial output with the desired output,
adjustment of the synaptic weight of each link that connects between the
neurons was made until the difference is minimal (minimising Sum
Squared Error (SSE)); this would provide regularization for the model



Fig. 1. Process of generating predictive model after data preparation.
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(Liu et al., 2019). The weight is the representation of the priority or
importance of the neuron input. For this research, a Multilayer Percep-
tron Model (MLP) type of ANN structure with error back propagation
learning algorithm was used for its network solution structure. In the
hidden layer, a suitable non-linear transfer function was used to compute
the information accepted by the input layer. The ANN model is as shown
in equation (7).

yt ¼α0 þ
Xn

j¼1

αjf
�Xm

i¼1

βijyt�i þ β0j

�
þ εt (7)

where m is the number of input nodes, n is the number of hidden nodes, f
is the Sigmoid Transfer function, fαj; j¼ 0; 1;…ng is the vector of
weights from the hidden layer to the output layer and
fβij; i¼ 0;1;…m; j¼ 0;1;…n g is the weight from the input to the hid-
den nodes.

For this research, the hyperparameter tuned was the number of
neurons per layer. This number of neurons denotes the width of the
network and its latent space (Weissbart et al., 2019). Another penalizing
parameter that was tuned and applied was weight decay. This parameter
is a penalizing method to constrain the complexity of the model and to
limit the growth of the model’s weight parameter (Gnecco and Sangui-
neti, 2009).

3.4. Step 4: model evaluation (test)

Before inputting the data to the machine learning algorithm, the data
was partitioned into two groups whereby 70% of the dataset was used for
training and the other 30% was partitioned as testing data groups. The
Fig. 2. Testing of the trai
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training groups of data were used to train each machine learning algo-
rithm and generate a predictive model that could output value that
matches with the recorded maximum demand data while the rest of the
data was held back to be used to test the trained predictive model. The
process is as illustrated in Fig. 2.

With AzureML, data partitioning for training and testing would not be
a hassle and biased as it has built-in support for data division. The par-
titioning process was straightforward in which selection was made
randomly. This process prevented overfitting, which could cause either
underestimation or overestimation of the maximum demand value.

During model training, several models were created with different
tuning parameters for each method, in which k-value was adjusted for k-
NN tuning; sigma and C parameter were modified for SVM-RBF tuning;
and weight decay and hidden unit size were adjusted for ANN-MLP
tuning. After the repeated tuning finished up to its respective
maximum parameters, each model was evaluated based on Root Mean
Square Error (RMSE), R-Squared (R2) and Mean Average Error (MAE).
The formula is as shown in equations (8)–(10), respectively, given that At
is the actual recorded values of maximum demand data, and Ft is the
predicted values. Although 3 evaluations were made, only RMSE result
was acknowledged as the best model for each method.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1ðAt � FtÞ2
n

s
(8)

R2 ¼
P

iðAt � FtÞ2P
iðAt � AÞ2 ; A¼ 1

n

Xn

t¼1

At (9)
ned predictive model.



Table 2
Kurtosis level for each tenant using aggregate data.

Tenants Kurtosis

Power Factor Current Voltage Demand

A1 6.026131 �1.648018 �0.45877 �1.053977
A2 2.839891 �1.763198 �0.768862 �1.584641
B1 2.062267 �1.011822 0.469322 �0.126043
B2 3.472321 �1.403968 4.623413 1.824909
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MAE¼ 1
n

Xn

t¼1

jAt � Ftj (10)

After the predictive model using each machine learning algorithm
was developed and prediction demand data was generated, they were
then evaluated to determine their performance and accuracy. Three
methods of evaluation were used which were Root Mean Square Error
(RMSE), Normalised RMSE andMean Absolute Percentage Error (MAPE).
The formula for RMSE is as shown in equation (8) and MAPE in equation
(11). Comparison of performance of the methods to different tenants was
made by using a normalised RMSE or also known as Coefficient of
Variation RMSE (CV RMSE). This metric removes the scale dependent of
RMSE (Botchkarev, 2019).

MAPE¼ 1
n

Xn

t¼1

ðAt � FtÞ2 (11)

NRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1
ðAt� Ft Þ2
n

r
Mean

(12)

4. Results and discussion

The results of the experimentation were discussed in sections based
on the steps of the predictions’ framework. The pre-processing method
and imputation of missing data using modules provided by both Micro-
soft Azure Machine Learning Studio and Caret Package were discussed in
terms of procedure, effects, and importance. The findings regarding en-
ergy consumption prediction were reviewed for each tenant and per-
formance comparison was provided for the prediction result of Artificial
Neural Network (ANN), Support Vector Machine (SVM) and k-Nearest
Neighbour (k-NN). Holistically, utilisation of Azure ML Studio as a
forecasting medium was inspected to identify its reliability and
compatibility to predict energy consumption.
4.1. Normality testing of dataset

For the normality test of the energy demand data, the skewness and
kurtosis values were calculated using the aggregate data for each tenant,
starting from June 2018 until December 2018. This assessment was
intended to analyse whether the shape of data affects the performance of
the developed predictive model. The generated data was compiled in
Table 1 and Table 2, for skewness and kurtosis, respectively. Addition-
ally, Fig. 3 shows the form of the dataset for a graphical assessment of
normality. The skewness and kurtosis values were computed for all at-
tributes, including the demand.

Based on Table 1 and Fig. 3, Tenant A1, A2, and B1 dataset was
approximately symmetry and skewed with bimodal shape density.
Nevertheless, for Tenant A1, the density was skewed left, as the long tail
pointed to the left whereas for Tenant B1, the density was skewed right.
Tenant A2 shows asymmetry normal whereby the tails between each end
were approximately balanced. Different from Tenant B2, the distribution
was highly skewed as the skewness was more than 1 at 1.267578. The
density plot of Tenant B2 distribution shows that the density was also
bimodal with right-skewed.
Table 1
Skewness for each tenant using aggregate data.

Tenants Skewness

Power Factor Current Voltage Demand

A1 �0.457296 �0.17541 �0.116392 �0.279034
A2 �1.564851 �0.105746 �0.054989 �0.182159
B1 �1.877798 �0.666165 �0.310973 0.282481
B2 1.735751 0.202681 �0.714503 1.267578
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In terms of kurtosis, from Table 2, Tenant A1, A2 and B1 had excess
kurtosis less than 0. This means that the distributions were platykurtic.
This characteristic was also observed based on Fig. 3 (A1, A2, B1)
whereby the probability density plot has a broader tail, and the peak
centre was wider. Contrary to Tenant B2, the excess kurtosis was higher
than 0 at 1.824909. This indicates that Tenant B2 distribution was lep-
tokurtic and had a higher variance. From this normality testing, Tenant
A1 and A2 had an approximately normal distribution. However, Tenant
A1 has a mean value less than the median. Tenant B1 had also an
approximately normal distribution but had slightly higher skewness and
kurtosis compared to Tenant in department A. Tenant B2 dataset was
highly skewed and had a higher variance in comparison with the other
tenants.
4.2. Imputation of missing data

The study of missing data was conducted inside Azure ML studio
whereby Summarize Data module was utilised to determine the amount
of missing data and to reveal the rows which have missing data. The
diagnosis of missing data was also conducted via observation on the
value of other attributes in the same row. Table 3 shows a summary of the
analysis.

Briefly, the total number of data for A1 is 4666, A2 is 4666, B1 is 4648
and B2 is 4648. Based on Table 3, it was noticed that the dataset only had
a missing value for demand, which was the targeted output. It was also
observed that Tenant B2 had the highest number of missing data. The
identification of the missing data mechanism was made by referring to
the power formula and the method of data generation. The voltage and
current values were captured by the voltage and current sensors. On the
other hand, the values for power demand and power factor were
generated bases on analysing the magnitude and waveform for both
voltage and current. The electrical power formula also shows that the
power value was the multiplication result of the three attributes. This
indicates that demand and power factor variables are dependent on
voltage and current value. Observation in Table 3 shows that although
power factor, current and voltage attributes had value, the respective
demand output was missing. This deduces that the missing value was
Missing Completely at Random (MCAR), in which the missingness of
demand data does not depend on the observed attributes. The missing
value for this data was then imputed using the PPCAmethod utilising the
Clean Missing Data module in Azure ML Studio. Although data MCAR
was negligible, the dataset was not ignored as it would discard valuable
information. Understanding the mechanism of the missing data has
provided proper guidance for the imputation process of missing data.
This prevents the missing data from being imputed with the wrong value,
which could generate more outliers. Continuing with missing data
imputation, Probabilistic Principal Component Analysis was chosen as
the configuration for the imputation method utilising AzureML Clean
Missing Data module. Fulfilling the objective of this research, the
cleaning method was evaluated based on Raw Bias (RB), Coverage Rate
(CR) and R-Squared criteria. Table 4 shows the result of the evaluation
for each tenant.

From the raw biased result, PPCA managed to produce imputation
value with a low difference between the mean of the estimated value and



Fig. 3. Probability density for tenant A1, A2, B1 and B2.

Table 3
Number of missing data for all tenants.

Tenants Number of missing data Total number of missing
data

P.
Factor

Current Voltage Demand

A1 0 0 0 1 1
A2 0 0 0 3 3
B1 0 0 0 1 1
B2 0 0 0 171 171

Table 4
Evaluation of PPCA based imputation using AzureML Clean Missing Data
Module.

Tenants Raw Bias Coverage Rate R-Squared

A1 �0.02813237 0.9003215 0.8997098
A2 �0.006479131 0.9011366 0.9039039
B1 0.1121446 0.9014418 0.9051205
B2 �0.000560815 0.9014965 0.90587942
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the mean of the actual value; this shows that the method was unbiased.
Notably, the result for Tenant B2 shows a higher biased in comparison
with the result for the other tenants. The coverage rate result shows that
90% of the imputed values fall within the confidence interval. Although
it was less than 95%, the coverage rate did not fall below 90%, which in
that case will be denoted as poor (Demirtas et al., 2008). The R-Squared
result shows the estimated value has a good fit for the actual value.
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4.3. Data pre-processing

For data pre-processing, it was observed from Fig. 4 that the original
dataset contained different scale ranges between power factor with
current, voltage and demand. The power factor has a value ranging from
0 (min) until 1 (max). However, the current, voltage and demand all have
a higher range of scale. After the standardised transformation, the value
managed to be scaled within the same range for all attributes and cen-
tralised to achieve a mean of 0 and a standard deviation of 1. This is the
same for all tenants.

4.4. Performance evaluation and comparison

Subsequently, after model training and testing, the predictive model
generated was compared in terms of performance between algorithms for
each tenant. Initially, the result of the testing was observed by comparing
the performance of the methods for individual tenants. The comparison
table is as shown in Table 5.

From the performance evaluation in Table 5, the SVM method uti-
lising Radial Basis Function kernel had the best performance for Tenant
A1 and A2, in which the RMSE value was 4.7506789 and 3.5898263,
respectively. Even though SVM had the best performance, the difference
between RMSE value in comparison to k-NN method was minor. The
MAPE result also indicates that SVM prediction had a lower absolute
error percentage. For Tenant B1, k-NN was the best performing method
in which the RMSE value was comparably smaller than the other method
at 14.934312. However, its absolute error was higher than SVM absolute
error. This event happened similarly to Tenant B2. The best performing
algorithm was k-NN with 0.5439403 RMSE value, which was smaller



Fig. 4. Summary of transform dataset for Tenant A1.

Table 5
Performance evaluation of test prediction for all tenants using trained SVM, k-NN
and ANN model.

Tenant Method RMSE NRMSE (%) MAPE (%)

A1 k-NN 5.0025748 4.06 3.02
SVM 4.7506789 3.85 2.76
ANN 8.874015 7.19 5.02

A2 k-NN 3.6548885 11.46 9.98
SVM 3.5898263 11.25 9.38
ANN 4.540988 14.23 14.16

B1 k-NN 14.934312 23.87 15.43
SVM 16.0690844 25.69 12.09
ANN 20.63566 32.99 28.00

B2 k-NN 0.5439403 55.87 48.75
SVM 0.5558279 57.09 43.97
ANN 0.547152 56.20 60.62

Table 6
Mean Absolute Percentage Error (MAPE) of forecasted method for all tenants.

Tenant k-NN SVM ANN

A1 0.40 0.241318507 1.108522675
A2 0.942855477 0.666018364 1.841600488
B1 8.596963137 8.174497001 18.03425668
B2 24.61323638 17.78423714 29.0736946
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compared to the RMSE result for SVM and ANN. However, the MAPE
result for SVM was lower than the result for k-NN. As the forecast stated
was in terms of the expectation of value, the square error method was a
much better evaluation method (Tilmann, 2010). Thus, the k-NNmethod
was denoted as the best performing algorithm for Tenant B1 and B2.
Referring to the normalised RMSE result, it can be observed how each of
the prediction methods performed differently under different datasets.
The performance of every method deteriorated from Tenant A1 until
Tenant A2, in which Tenant A2 had the worst performance for every
method.

Under TNB tariff category, the tenants at both departmental lots A
and B were categorised as Medium Voltage General Commercial (Tariff
C1). This means that the monthly electricity charges were calculated by
acquiring the maximum demand of the month and the kWh (Tenaga
Nasional Berhad, 2006). For Tariff C1, the off and on-peak period was not
applied to the billing process. Therefore, to predict energy billing thor-
oughly, the maximum energy demand and the kWh need to be deter-
mined. For maximum demand, forecasting an expectation of value can be
done to predict the maximum demand of the month. However, for the
energy consumption (kWh) prediction, the hourly predicted demand
needs to be added up. As the average value shows the characteristics of
the whole dataset, the average forecasted consumption was quantified
and compared with the actual average consumption. The percentage of
difference error between the forecasted and actual value would deter-
mine the best forecasting method. The comparison between actual and
forecasted average consumption was tabulated and visualized in the form
of a line graph, as shown in Fig. 5 until Fig. 8 in the Appendices.

Fig. 5 shows that the ANN forecasted average consumption had a
stagnant peakness in which the forecasted average was almost the same
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for every month. The SVM forecasted average consumption, on the other
hand, had better forecasted performance in which the line graph was
much closer to the actual average consumption line graph. The k-NN
forecast had a slightly larger error in comparison to the SVM forecasted
result. Comparison between predicted and actual consumption for Ten-
ant 2 in Fig. 6 shows that both predictions of average consumption made
by k-NN and SVM method had better fit to the actual values than ANN
method. In November, it can be observed that all methods forecasted a
lower consumption for Tenant A2 than the actual consumption. In Fig. 7,
the forecasted average consumption by k-NN and SVM was better than
ANN. It was also perceived that all methods did not take into consider-
ation the individual high consumption in the month of June. The per-
formance of all methods in Tenant B1 was approximately similar to the
performance of predicted consumption in Tenant B2. Identification of the
best method to determine the average consumption on a monthly basis
was made by calculating the MAPE value for every month. This calcu-
lated value was tabulated in Table 6, whereas Fig. 9 in the Appendices
shows a bar graph that compares the percentage of different errors.

From Table 6 and Fig. 9, a conclusion can be made in which SVM
forecasting is the best method to forecast monthly average consumption.
The difference between the percentage of error by SVMmethod with that
of k-NN was not significant. From the visual, the average consumption
predicted by ANN method had the highest percentage in every tenant.
This denotes that ANNmethod is inferior in comparison to both SVM and
k-NN methods. Comparison of the model training time, as shown in
Table 7, was conducted to determine the method with the lowest running
time. From the tabulation, the SVMmethod took the longest time to train
while k-NN method was the fastest to finish training. ANN method was
faster compared to SVM but still took several hours to complete the
training.

From the performance evaluation and comparison, SVM method was
the best method to predict the individual peak energy demand for
department lot A, while k-NN was the preferable choice for department
lot B. In terms of average energy consumption, SVM method has proven
to be the best method to predict the monthly mean value for energy
consumption. However, high training time was required for SVM model
training to achieve this high performance. This result further supports the
“No Free Lunch” theorem by Wolpert (1996), which was discussed by



Table 7
Comparison of model training running time.

Tenant k-NN SVM ANN

A1 37.916s 18 h 38 m 55.324s 4 h 39 m 30.035s
A2 28.978s 17 h 23 m 32.637s 5 h 14 m 22.311s
B1 34.350s 13 h 20 m 3.722s 5 h 13 m 9.418s
B2 34.5s 12 h 43 m 48.147s 6 h 34 m 48.972s

M.K.M. Shapi et al. Developments in the Built Environment 5 (2021) 100037
Stenudd (2010). No Free Lunch stated that many scenarios would
determine whether a machine learning method would perform much
better than the other. In this research, the scenario would be the dataset
distribution and the targeted output (max demand or average con-
sumption). Due to the small difference in performance result between
k-NN and SVM methods, it can be concluded that both of these methods
were excellent prediction methods. The choosing element would be
whether the users want a slightly better accurate result or a faster
training method.
4.5. Effect of skewness and kurtosis level on non-parametric classifier

Observing the performance evaluation of each test method in Table 5
shows that Tenant A1, A2, and B1 result was normal as the RMSE value
was not unreasonably small and the absolute error between the fore-
casted demand to the actual demandwas low. On the contrary, Tenant B2
prediction model for each method was considerably poor even by
referring the normalised RMSE. From data analysis, it was determined
that Tenant B2 dataset was highly skewed, and its kurtosis was lep-
tokurtic, which means presence of high variance in the dataset. Corre-
lating both observations, it can determine that the skewness and kurtosis
of a dataset have an effect, especially towards a non-parametric classifier.
A non-parametric classifier is an algorithm which falls under probabi-
listic density supervised classification (Kumar and Sahoo, 2012). This
classification model was used if the density function was unknown and
does not have a fixed size of parameters. Other than that, the model does
not have an initial assumption of the probability density of the dataset
(Sampat et al., 2005).

During the training and learning process of these algorithms, the
parameters increase with the training set. In this research, the model that
was used, which are k-Nearest Neighbour, Support Vector Machine with
Radial Basis Function kernel, and Artificial Neural Network with Multi-
layer Perceptron model, is a non-parametric classifier. SVM was initially
considered as parametric, but due to the introduction of RBF kernel, the
model becomes nonparametric as RBF kernel matrix computes the dis-
tance between two pairs of data points (Vasile and Camps, 2013). Skewed
and positive/negative kurtosis signifies that the dataset was not normally
distributed. Several works of literature described how these properties
influence the performance of a non-parametric classifier. Kurtosis level
for a dataset has a significant effect on the performance of a nonpara-
metric classifier. This was as indicated by Larasati et al. (2018) in which a
leptokurtic type of distribution have a considerably higher chances to be
misclassified as it have a higher dispersion of data from the mean value.
Another study from the same researcher established the relationship
between a skewed dataset and the accuracy of a non-parametric classifier
(Larasati et al., 2019). The study concluded that a skewed data does
affect the performance of the predictive model, especially the research
focussed model, which was artificial neural network. A highly skewed
data indicates that the data was unbalanced in which certain classes or
output exist much frequently than the other output. Since non-parametric
classifier model train by learning the pattern arrangement of the parti-
tioned dataset, data that occurred less frequently was ignored. Therefore,
the prediction model performed poorly for a highly skewed dataset. This
explanation was further supported by Siddiqui and Ali (2016) in which
the study was conducted to determine the performance of nonparametric
on a skewed data. The study dictates that a skewed data would require a
notable high learning effort for training, consideration for outliers and
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complicated computation. This requirement thus limits the performance
of any non-parametric classifier on skewed data. Non-normal distributed
data have shown to have great influence on the prediction model.
Therefore, countermeasure needs to be taken to nullify this impact. Based
on McCarthy et al. (2019), three techniques were suggested which are
using transformation pre-processing for variance stabilizing; binning
transformation which fraction the attributes into several group with a
proper control of the weight at each range; and combination of both
transformation method.
4.6. Analysis of Microsoft AzureML studio environment

This research has utilised Microsoft Azure Machine Learning Studio,
which is a web service solution for the development of prediction model.
Starting from data analysis until performance evaluation, AzureML has
been successfully employed for the implementation of energy demand
forecasting. In this section, the employment of AzureML was analysed in
terms of 3 criteria which are: a) Distinguishing Features, II) System
Overview, and III) Experimentation Overview. Thoroughly, this analysis
would provide an insight on how reliable and capable AzureML studio for
developing a prediction model.

4.6.1. Distinguishing features
One of the distinguishing features of AzureML was its ability to

manoeuvre through a visualization workflow. The workflow that was
conducted inside the environment was manipulated through a graphical
drag and drop procedure. Other than that, parsing data for experiment
was simply done by joining of modules. Additionally, the platform also
supports script packages and algorithms written in external programming
language, particularly R programming. In this research, R programming
was heavily utilised to conduct prediction modeling such as data pre-
processing and model training. The versioning feature of AzureML had
helped to reduce the time for experimentation, in which each version of
individual experiment information, for instance, parameter settings, was
cached.

4.6.2. System Overview
Prediction model development inside AzureML has utilised four pri-

mary services which are the studio user interface, Experimentation Ser-
vice (ES), Job Execution Service (JES) and Singe Node Runtime (SNR).
The studio interface of AzureML provides important item for model
development which include the availability of a significant number of
modules and the ability to import and save user assets. In this research,
the Summarize Data module, Clean Missing Data module and Execute R
Script module were used. Under primary user interface is the ES which is
the backend of AzureML. This service is the system that command the
interaction between components that were present in the main interface,
which include managing the events in the main interface such as data
transformation and program execution. Other than that, the ES plays an
important role as the repository for all the imported and saved assets,
which in this research was the.CSV file containing energy consumption
data.

JES act as the scheduler that performs the module execution. Re-
sponsibility of a scheduler was to track the task execution for each
experiment. Inside the workspace of AzureML, modules used for exper-
iment can be placed in parallel with other modules. When this module
meets the requirements, such as selection of column to be manipulated,
the ES runs the modules while JES scheduled each modules timing to be
executed. In this research, cleaning of dataset need to be done before
partition the dataset into testing and training. JES ensure that the
cleaning process were executed first before the partitioning. The service
that run the respective experiment is the Singe Node Runtime (SNR). SNR
will receive the task parse by JES and execute the task. All this service
works dependent to each other to ensure that the experiment works as
desired.
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4.6.3. Experimentation Overview
The experimentation of prediction model development was able to be

done using the provided service by AzureML. This includes data import,
data analysis, and data manipulation. However, under modeling,
parameter tuning, and evaluation, the web service was unable to provide
the required service. The algorithm for this research was k-Nearest
Neighbour, Support Vector Machine with Radial Basis Function, and
Artificial Neural Network with Multilayer perceptron model. AzureML
does not provide this particular service, in which SVM model available
was only made to provide binary and multiclass classification, not
discrete value classification. Moreover, neural network provided was
only available for regression and binary classification. Compensating for
a low number of available models, AzureML provides Execute R Script
module, which solves the problems as R package for modeling was able to
be imported into the workspace. Albeit, using external R programming
for prediction modeling requires the use of parameter tuning and per-
formance evaluation by executing R codes. Thus, the parameter tuning,
model scoring and evaluation module inside AzureML was not utilised.
Collectively, AzureML platform provides a reliable and comprehensive
environment for prediction model development, provided that the
required machine learning algorithm for the development was available.
Furthermore, AzureML provides conversion of an experiment into a web
service, in which real-time data collection can be input into the work-
space. Initially, the utilisation of this service was proposed. But due to
Coronavirus 2019 (Covid-19) pandemic, the proposal was withheld, and
prediction model development was done by using dataset that have been
previously collected instead.

4.7. Comparison with previous study

Analysing the result of this study have shown significant discoveries
in terms of the performance comparison between k-NN, SVM and ANN in
forecasting maximum demand and average monthly demand. Further-
more, the process of prediction model development itself has displayed
the capability of AzureML platform in terms of data pre-processing and
computational power itself. From these discoveries, a comparative
analysis was made with the previous study relating to machine learning.

One of the assumptions was made based on the research conducted by
Fu et al. (2015), in which the next day electricity load was predicted
using the Support Vector Machine algorithm. The input data used was
weather predictions and hourly electricity loads from two days earlier.
This dataset was separate into training and testing based on the cooling
season of the area. Specification on the algorithm used was SVM with
Radial Basis Function kernel, which was similar to the kernel used for the
SVM model in this research. However, Fu et al. (2015) also tuned the
epsilon parameter, ε, other than optimising the gamma, γ, and cost, C,
parameter. The case study was also conducted with three different al-
gorithms which are ARIMAX, Decision Tree and Artificial Neural
Network, in which prediction of electricity load was made on four
different systems, particularly air conditioning, lighting, power and
other. The result of the research shows that the SVM method provided a
lower error rate prediction for lighting and power, in which the dataset
was determine as normally distributed due to a stable electricity load.
However, for air conditioning and others, the SVM method has a large
error as both the system electricity usage was more complex and sto-
chastic as it was dependent on the occupants’ behaviour. The result has a
similar performance result when utilising SVM RBF method in this
research. For Tenant A1 and Tenant A2, which have an approximately
normal distribution, the best performing model was SVM. The SVM
method also have better performance compared to ANN.

ANN and SVM methods were significant in this study, as both
methods are more complex compared to k-NN. In the previous research
regarding the model accuracy analyses for building energy consumption
prediction studied by Liu et al. (2019), the SVM method has better ac-
curacy and higher complexity compared to ANN. But when kernel and
model were applied, ANN with Multilayer perceptron was more complex
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than SVM Radial Basis Function. This was as concluded in the short-term
load forecasting by El Khantach et al. (2019). In both of this research, the
SVM method utilising RBF kernel was better in predicting energy
demand.

With remarks on the performance analysis tabulated in Table 5, the
RMSE difference between k-NN and SVM was small. Compared to the
previous study done by Gonz�alez-Briones et al. (2019), the electricity
consumption forecasting comparison between SVM and k-NN was
considerably small. The research was conducted by learning the energy
consumption in a different time granularity from daily, to yearly. The
study also conducted prediction using Random Forest, Decision Tree, and
Linear regression, in which Linear regression have similar accuracy with
SVM at 0.857, while k-NN prediction accuracy was at 0.854, out of 1.
Assessment of contrast between present and past research shows simi-
larity in prediction result; nonetheless, this similarity was basically due to
the fitting of the dataset to the prediction model assumption.

AzureML utilisation in this research was compared to Mateev (2019),
whereby the AzureML platform was used to manage smart energy system
and predictive analytics. Regarding predictive model development, the
study utilised completely the solution provided by AzureML such as
Cloud getaway, Data Storage and Prediction Layer. On account of the
unavailable required algorithm in AzureML, the present study utilised
the R programming inside AzureML instead for prediction model
training, testing and evaluation. As AzureML perform model develop-
ment in the server, the performance of the modeling does not dependent
on the hardware system.

5. Conclusion

The course of this research has focused on developing an energy
consumption predictive model for two commercial departments that
have adopted the smart building ecosystem. The energy demand data
collected from June 2018 until December 2018 has been analysed and
pre-processed for training and testing of the predictive models. Utilising
the Microsoft Azure Machine Learning studio (AzureML), statistical
analysis of the data collected was made to determine the normality of the
dataset. From this analysis, skewness and kurtosis values were acquired
and established that all collected data was different in distribution
characteristics. Continuing with the process of predictive model devel-
opment, the data collected was pre-processed through the imputation of
missing data using PPCA method and standardisation transformation.
The pre-processing was successfully executed inside AzureML environ-
ment, in which the resultant processed data had a mean valued at 0 and a
standard deviation of 1. An experimentation process was also made to
determine the capability of the missing data imputation method. A
sampled data with missing value was generated to evaluate the PPCA
method, in which it produced a promising result with low raw bias and
coverage rate of more than 90% of the actual value.

Focusing on the objective of this research, three supervised machine
learning prediction methods namely k-Nearest Neighbour, Support
Vector Machine with Radial Basis Function kernel, and Artificial Neural
Network with Multilayer Perceptron model, were chosen as the algo-
rithm for the predictive model. These methods were successfully
compared in terms of their resultant structure and prediction perfor-
mance. The consequence of the model training and testing shows that
each method performed differently for every tenant. SVM method shows
the most promising result, whereby it managed to be the best method for
2 tenants which were Tenant A1 and Tenant A2, with RMSE valued at
4.7506789 and 3.5898263, respectively. Furthermore, SVM result also
shows a lower mean absolute error for Tenant B1 and Tenant B2 at 12.09
and 43.97, respectively, although k-NN had lower RMSE result for these
two tenants. SVM predicted demand also had better accuracy when
average consumption was calculated from the demand, in which it ach-
ieved a lower MAPE than the rest of the methods for all tenants. All in all,
this SVM auspicious result comes with a price, whereby the model
developed with the algorithm took 13–18 h to train. In contrast with k-



M.K.M. Shapi et al. Developments in the Built Environment 5 (2021) 100037
NN method that performed slightly worse than SVM, it only took
maximum 40 s to train. For this research, Azure ML was employed for all
processes and R programming was used extensively for data stand-
ardising, model training and testing and finally performance evaluation.

Cloud-based predictive model development has its advantage as it
does not depend on the performance of the hardware it is running on.
Moreover, it could manage to prevent from failing due to sudden hard-
ware shutdown. However, AzureML particularly does not have the right
algorithm needed for this research; as a result, R programming was used
for the model training and testing and performance evaluation. Holisti-
cally, this research was triumphantly conducted and the objectives were
achieved.

There are a few recommendations for future study that can be done to
improve this study. Since the limitation of this study is the time taken to
11
run the algorithm, hence, more powerful computer or platform should be
used to run SVM algorithm. Secondly, more variables related and data
should be collected as the input since there is limitation in this study on
the data collection. Hybrid or ensemble methods can be proposed in the
future study as well since it shows more accuracy than a single classifier.
This study did not proposed hybrid classifier due to our focus is more on
the platform than the method. Lastly, a comparison with another smart
building could be added to differentiate the results obtained.
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Appendices.

Fig. 5. Comparison between the actual and forecasted average demand for Tenant A1.
Fig. 6. Comparison between the actual and forecasted average demand for Tenant A2.
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Fig. 7. Comparison between the actual and forecasted average demand for Tenant B1.
Fig. 8. Comparison between the actual and forecasted average demand for Tenant B2.
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Fig. 9. Percentage of difference error between forecasted and actual average consumption.
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