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Abstract

Biodiesel is a mixture of an alkyl ester of long chain fatty acids produced by
transesterification of triglycerides with lower alcohols such as methanol, in the presence
of acid or base catalysts. Nearly all biodiesel processes use homogeneous base catalysts
that cannot be recovered and necessitate neutralisation of the glycerol-rich phase (a by-
product of the reaction). This increases the number of downstream separation steps,
thereby increasing the capital cost of biodiesel production processes. Replacing liquid
homogeneous catalysts with solid heterogeneous catalysts can intensify the process, by
reducing the total number of process steps, eliminate or reduce waste streams and result

in lower production costs, as the catalyst will not have to be continually replaced.

Strong anion exchange resins with QN'OH’, have the potential to be developed and
employed as heterogeneous catalyst for transesterification, as they are chemically stable
to leaching of the functional group. In this present work, nine different synthesized
anion exchange resins (SIER1-9) were prepared by suspensi.on polymerization of
vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers in the presence of n-
heptane as a pore-forming agent. These SIERs were evaluated as catalysts for
transesterification of triacetin. It was found that the “SIER-6” catalyst prepared with
the highest dilution degree (200%) and the lowest DVB content (10% DVB), achieved
the highest triacetin conversion (95.6% after 4h). This catalyst had the highest true pore
volume (0.89 cm’/g) and surface area (398.8 m*/g). In contrast, the “SIER-7” catalyst
synthesized with the lowest dilution degree (50%), but highest DVB content (40%),
resulted in the lowest triacetin conversion at 64.3%. Although there is a considerable
improvement in the physicochemical properties of the IERs, such as surface area, ‘true
pore’ volume and diameter, transesterification using rapeseed oil was rather poor with

only 16 wt. % of FAME obtained over SIER-6 after 6h reaction.

Overall, the ion exchange resin-catalyzed reaction were well-described by the Eley-
Rideal model. Significantly, the ER model data fitted the experimental data for all ion

exchange resins studied in this work.
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Nomenclature and Abbreviations

Symbols

D molecular diffusion coefficient (m%/s),

K adsorption coefficient (Lmol™)

k) forward rate constant for the reaction of triglyceride to diglyceride
(Lmol” min™)

ks backward rate constant for the reaction of triglyceride to diglyceride
(Lmol min™)

ks forward rate constant for the reaction of diglyceride to monoglyceride
(Lmol™ min™)

ky backlward rate constant for the reaction of diglyceride to monoglyceride (Lmol™
min~)

ks forward rate constant for the reaction of monoglyceride to glycerol
(Lmol” min™)

ks backward rate constant for the reaction of monoglyceride to glycerol
(Lmol™ min™)

Mr Thiele Modulus

Re Reynolds Number

¥V true pore volume (cm’/g)

&p catalyst particle porosity

T, catalyst particle tortuosity

Abbreviations

AgNO; silver nitrate

AIBN 2,2’-azobis(2-methylpropionitrile)

ASTM American Standards for Testing of Materials

ATR Attenuated Total Reflectance

BDs Biodiesels

BPO Benzoyl peroxide

C,H4C1L,O Bischloromethyl ether

C,HsClO Chloromethyl methyl ether

C3H/NO Dimethylformide
CoH;405 Triacetin

CoHyCl

Chloromethyl styrene

CaO Calcium oxide

CD;0D Deuterated methanol

CFPP Cold Filter Plugging Point

CP Cloud Point

DAc Diacetin :
DCSG 1,3-dicyclohexyl-2-sec-butyl-guanidine
DD Dilution Degrees

DG Diglyceride

DMF Dimethylformamide

DVB Divinylbenzene
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CHAPTER 1

INTRODUCTION

1.1 Background: Biofuels

The current high demand worldwide for transport fuels derived from fossil fuel has
largely resulted from the mass production of automobiles, which began early in the
19™ century (Hirao and Pefley, 1988). The emissions produced by fossil fuel-based
power stations and the growth in the number of automobiles, and the related use of
petroleum fuels around the world has led to a steady increase in atmospheric
pollution due to exhaust emissions. In 2004, 30% of total carbon dioxide discharges
in the United Kingdom (UK) were from the transport sector, and this sector has the
fastest growing rate of emissions (Hammond er al, 2008). Despite a UK
government target to reduce such emissions by 2010, an increase of 7.5% in carbon
emissions was recorded between 1995 and 2005, accounting for 120.1 million
tonnes of carbon dioxide emissions from road transport in the UK (Department for

Transport, 2007).

Fossil fuel deposits used to produce diesel and gasoline are likely to run out within a
century (Ranganathan et al., 2008). The high demand for these finite reserves has
recently led to steep worldwide increases in fossil fuel prices, adversely affecting the
economic stability of countries that import crude petroleum, including the UK. In
addition, the risk of potential disruptions in the supply of petroleum due to the
political instability of some major exporting countries, especially in the Middle East,
will also influence supply. This dependence on fossil fuels constitutes a threat to

European Union (EU) and UK competitiveness (Lin et al., 2011).

The contribution of fossil fuels to the accumulation of carbon dioxide in the
environment, as well as the drive for future UK competitiveness, have encouraged

the use of alternative fuels, which are more “environmental friendly”. It is necessary
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to look for alternative fuels that can be produced from local resources. Research
into and developments of carbon neutral and renewable fuels have therefore received
considerable interest in the scientific community. As energy demands and the price
of fossil fuels increase, the search for alternative fuels has gained greater
prominence. Liquid fuels derived from biomass using various chemical and
biological processes have been identified as possible alternative energy resources.
Two types of biofuel whose development has advanced the most are biodiesel and
bioethanol. They have already been produced commercially on an industrial scale.
Others, such as biomethanol and biobutanol, have been subject to research but are

not yet produced commercially (Agarwal, 2007).

Biodiesel derived from vegetable oil, is oﬁe type of alternative fuel that could be
produced in the UK, since there are abundant local oil crops available as feedstoék,
such as rapeseed and corn. According to Demirbas (2005), more than 350 oil crops
can be used as feedstock for biodiesel. Among these are rapeseed, sunflower,
soybean, jatropha, palm oil, and peanut oil. Recent increases in UK crude oil prices,
from around £50 per barrel in 2008 to around £62 per barrel in 2011 (Energy
Information Administration, 2011), have led to renewed interest in utilizing
vegetable oil as a biofuel. Indeed, the use of biodiesel as an alternative fuel could
contribute to meeting the growing demand for energy, especially in the UK transport

sector, while at the same time reducing carbon dioxide emissions.

There is a need to balance the usage of oil crops as a feedstock, since most such
crops in the UK are intended for use in the food industry. The introduction of
biodiesel has increased the demand for oil crops, created business opportunities from
the use of biomass, and helped agricultural devélopment in the UK. However,
without a proper balance between food and fuel, food shortages and price increases
may have negative effects on consumers as well as on farmers, most of whom use
such crops to feed their livestock. Sustainable agriculture is currently a topic of
intense debate, and policy-makers must make difficult decisions to balancé future

food and energy needs.

Since 2003, the biodiesels market in Europe has grown rapidly to meet the European
Biofuels Directive (2003/30/EC) target of 5.75% by volume of biofuels to be used in
the transport sector by 2010. In the UK itself, biodiesel consumption in 2006 has
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increased more than five fold compared to 2005, as can be seen in Figure 1.1, before
doubling by 2007. However, it has been reported that by 2010, the majority of EU
members had been unable to reach the target. Because of this, the Renewable
Energy Directive (2009/28/EC) came into force in 2011, replacing the Biofuels
Directive, and introducing the mandatory use of renewable energy in the EU
transport sector. The Renewable Energy Directive target for the UK is to achieve
15% of its energy consumption from renewable resources by 2020 (European

Commission Energy, 2011).

Country Year 2005 {tonnes) Year 2006 (tonnes) Year 2007 {tonnes) Year 2008 {(1onnes)
Germany 209 . 342 393 335
France 466 80 164 273
United Kingdom 3.4 18 37 94
Italy 233 20 18 75
Spain 11 732 35 70
Poland 1.8 : 57 338 45
Netherlands 0 2 ) 30 21
Austria 107 45 26 25
Portugal 0 951 18 18
Sweden 11 6.08 14 18
Belgium 0 0.12 12 12
Hungary 0 0.05 0.27 10.96
Czech Republic 04 248 ' 38 1025
Greece 0.4 6.28 1099 1023
Romania 4] 0.37 541 8.14
Slovenia 07 056 1042 718
Lithuania 1 1.88 569 6.19
Luxembourg 0.1 0.07 5.63 561
ireland 01 0.09 2.34 5.41
Slovenia 13 173 1.76 30
Cypnus ] 0 01 1.92
finland 0 0 0.0t 1.55
Estonia 0 0.08 007 0.37
Latvia 03 0.2 023 0.26
Malta 0.1 ’ 012 0.24 013
European Union 304 551 798 1.069

Figure 1.1: Biodiesel Consumption in the European Union (Mekhilef e al., 2011)

Another contributing factor to the observed increase in biofuel usage has been the
implementation of the Renewable Transport Fuel Obligation (RTFO) by the
Department of Transport since April 2008. This is intended to deliver reductions in
carbon dioxide emissions from the road transport sector of 2.6 to 3.0 million tonnes
per annum (equivalent to carbon savings of 700,000 to 800,000 tonnes) by 2010, by
encouraging the supply of renewable fuels. Previously, the RTFO had required
2.5%, 3.75% and 5% by volume of all fuel sold on UK forecourts to be renewable
by 2008, 2009 and 2010, respectively (Department of Transport, 2008). However,
in January 2009 the RTFO programme was revised upward to 3.25%, 3.5%, 4.0%,
4.5%, and 5.0% by volume of all fuel sold on UK forecourts to be renewable by



2009/10, 2010/11, 2011/12, 2012/13, and 2013/14, respectively (Department of
Transport, 2009).

1.2 The Use of Vegetable Oils

The use of vegetable oil as a fuel began first became possible after invention by
Rudolph Diesel of an engine based on compression ignition (Pinto ef al., 2005). In
1900, Diesel’s engine was unveiled at the World Fair held in Paris, running on a
variety of peanut oil (Mittelbach and Remschmidt, 2006). For various reasons, only
a limited range of vegetable oil\s have been favoured as biodiesel feedstocks. One of
the most significant is rapeseed oil (Brassica napus), which was originally chosen
because of its low price compared to other readily available vegetable oils. It turned
out to be an ideal feedstock in terms of combustion characteristics, oxidation
stability, and low temperature behaviour, as explained bellow in section 2.2.1. Until
now, it has remained the feedstock of choice in most European countries due to

these properties (Mittelbach and Remschmidt, 2006).

It is possible to use vegetable oil directly to power diesel engines by simply blending
it with diesel fossil fuels at an appropriate ratio. However, these blends are stable
only for short-term usage due to their high viscosity, acid contamination, free fatty
acid formation (resulting in gum formation by oxidation and polymerization) and
carbon deposition (Ranganathan er al., 2008). In addition, there are several other
problems associated with the direct use of vegetable oils, especially in direct

injection engines. These include (Meher et al., 2006):

1) Coking formation on the injectors to such an extent that fuel atomization
does not occur properly or is even prevented as a result of plugged
orifices;

i1) Carbon deposits on the piston and head of the engine;

ii1) Oil ring sticking;

1v) Thickening or gelling of the lubricating oil as a result of contamination
by vegetable oils; and

v) Lubricating problems due to polymerization.

Table 1.1 below shows the fatty acid composition of several vegetable oils (Goering

et al., 1982). It should be noted that rapeseed oil is rich in unsaturated fatty acid,
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comprised of C18:1 (oleic acid), C18:2 (linoleic acid), C18:3 (a-linoleonic acid) and
C16:1 (palmitoleic acid), and a small amount of saturated acid (stearic acid, C18:0;

also known as ‘octadecanoic acid’).

Table 1.1: Fatty Acid Composition of Several Vegetable Oils (Goering et al., 1982)

Fatty acid composition

value {ppm) value

16:1 18:0 200 22:0 240 181 22:1 18:2 18:3

Vegetable oil  Fatty acid composition % by weight Acid  Phos  Peroxide

Corn 11.67 1.85 024 000 000 2516 0.00 60.60 048 0.11 7 18.4
Cottonseed 2833 089 0.00 000 000 1327 0.00 57.51 000 0.07 8 64.8
Crambe 20.7 070 209 0.80 112 1886 5B.5] 9.00 6.85 0.36 12 . 26.5
Peanut 1138 2,39 132 252 123 4828 0.00 31.95 093 020 9 82.7
Rapeseed 349 0.85 Q.00 0.00 000 644 0.00 22.30 823 1.14 18 6.2
Soybean 1175 315 060 0.00 000 2326 0.00 5553 631 020 32 44.5
Sunflower 608 326 0.00 0.00 000 1693 000 7373 000 O0.15 15 10.7

In order for the use of vegetable oil to be practical, it needs to be processed to meet
the primary criteria for biodiesel quality represented by adherence to the appropriate
standards. Examples of such standards are those set up by the American Standards
for Testing of Materials D 6751-02 (ASTM, 2002) in the US and the British
Standards Institution BS EN 14214 (BSI, 2003) in the UK, which is identical to the
European Standard EN 14214:2003. There are three processing techniques that are
used to convert vegetable oil into biodiesel, which are discussed in detail by Ma and
Hanna (1999) and Fukuda er al. (2001). Those processes are pyrolysis,

microemulsification and transesterification.

Pyrolysis, also known as cracking, refers to a process of thermochemical
decomposition with the aid of a catalyst to simplify the chemical compounds in the
vegetable oil. This process involves heating in the absence of oxygen, resulting in
cleavage of chemical bonds to yield small molecules. This lowers the Viécosity of
the oils and at the same time increases their cetane number thus improving ignition
quality. However, problems with this technique include thé high cost of equipment

(Ma and Hanna, 1999).

Microemulsification involves the formation of thermodynamically stable dispersions
of two usually immiscible liquids, brought about by one or more surfactants

(Mittlebach and Remschmidt, 2006). The microemulsification technique is able to
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lower the viscosity of vegetable oils using solvents such as methanol, ethanol and 1-
butanol (Fukuda er al., 2001). However, microemulsification with alcohols is not
recommended for long-term use in diesel engines, due to problems of injector needle
sticking, incomplete combustion, heavy carbon deposition, and an increase in the

viscosity of the lubricating oil (Ziejewski et al., 1984).

The third technique used is the transesterification reaction, where one ester is
transformed into another through the interchange of the alkoxy moiety (Schuchardt
et al., 1998). In biodiesel production, transesterification involves the reaction
between the triglyceride molecules in the vegetable oils and alcohol in the presence
of a catalyst to produce monoesters. This technique is also known as alcoholysis,
since the ester is split using alcohol. The long, branched chain triglyceride
molecules are transformed into linear monoesters and glycerol. This topic is

discussed in detail bellow in section 2.3.1.

1.3 Intensified Biodiesel Process Using Heterogeneous Catalyst

Different types of catalyst can be used to synthesize biodiesel, including
homogeneous or heterogeneous base-catalysts and acid-catalysts, and biocatalysts.
However, most commercial biodiesel processes use homogeneous base catalysts for
transesterification, since the reaction proceeds at a much higher rate than when
homogeneous acid catalysts are used (Ma and Hanna, 1999; Kim et al., 2004). In
addition, the base catalysts are less corrosive than acidic compounds, making them
more favourable for industrial processes. Currently, most biodiesel is produced by
the transesterification of triglycerides from waste cooking oil and edible or non-
edible oils using methanol as a solvent. Nearly all the processes use homogeneous
base catalysts, such as alkaline metal alkoxides (CH30ONa), hydroxides (NaOH and
KOH), and carbonates (Na,CO; and K,CQs), since they give conversion rates to
biodiesel of over 95% (Schuchardt ef al., 1998; Rashid and Anwar, 2008).

Even though reproduction of biodiesel using homogeneous base-catalysts involves a
rapid process resulting in high conversion rates with minimal side reactions, it is still
not very commercially competitive compared to petroleum diesel due the factors

listed below (Lopez et al., 2005):



1) the catalyst cannot be recovered;

i) the use of homogeneous catalyst necessitates the neutralization of
glycerol at the end of the reaction;

iii) there is limited use of continuous processing methodologies; and

iv) the processes involved are very sensitive to the presence of water and

free fatty acids.

Figure 1.2 below shows a schematic diagram of the conventional process using a
homogeneous catalyst in biodiesel production (Gerpen, 2005). At the beginning of
the proéess, alcohol, oil, and catalyst are combined in a reactor and agitated for
approximately an hour at 60°C. After transesterification, the reaction mixture
separates spontaneously into two layers, although complete separation requires a
longer period of settling. The top layer containing esters and methanol has. to be
separated and the esters are then neutralized and washed with water to remove free
glycerol. After that it has to be dried to obtain a pure biodiesel. The bottom layer

containing glycerol needs to be neutralized in order to remove the catalyst residue.
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removal . ] -
Methanol I o
WALLT

storage

Methanolwater
reciification

¥y ¥

Crude Glyeerat {85%) g

Figure 1.2: Biodiesel Process Scheme (Gerpen, 2005)

The intensified biodiesel process using heterogeneous catalysts is shown in Figure
1.3 below. As can be seen, replacing liquid homogeneous catalysts with solid
heterogeneous catalysts is expected to yield a product that does not require

neutralization, leading to lower processing costs, because the catalyst will not have
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to be continually replaced. The separation of solid heterogeneous catalysfs can be
easily achieved by filtration, and production costs could be reduced by using
intensified operations and eliminating waste streams. However, the chemical
stability of heterogeneous catalyst is likely to play a major role in determining their

capability to be reliably reusable.

ransesterification with solid cata vYs
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Figure 1.3: Intensified Biodiesel Process Using Heterogeneous Catalyst

The use of a heterogeneous catalyst on an industrial scale has been described by Di
Serio et al., (2008). The 160 000 tonnes/year biodiesel plant operated in France by
the Institute Francais du Pétrole (IFP) is based on the Esterfip-H™ technology where
the catalyst employed is a mixed oxide of zinc and aluminum, which promotes the
transesterification reaction without catalyst loss. However, this technology operates
at 200°C to 250°C, which is much higher than in conventional methods that usually
run near the boiling point of methanol, according to most studies. It also requires
high pressure and an excess of methanol, which is removed by vaporization and

recycled back into the process along with fresh methanol (Bournay ef al., 2005).

Several types of heterogeneous base catalysts have been developed for the
transesterification of vegetable oils into biodiesel over the past few years, as
discussed in depth in section 2.4.2 in the literature review. Among these, solid
Bronsted base catalysts with a quaternary ammonium functional group (QN'OH")
have been identified as an alternative to homogeneous base catalysts that suitable for
transesterification in biodiesel production, due to their stability and the better

conversion rates achieved (Liu et al., 2007; Shibasaki-Kitakawa et al., 2007).



However, no published study has investigated the use of homogenedus base
catalysts with quaternary ammonium functionality (QN'OH), for the
transesterification of vegetable oils into fatty acid methyl esters, as comparison.

This is addressed in this study.

1.4 Research Objective

The objective of this research was to develop and evaluate the use of an anion
exchange resin with quaternary ammonium functional groups (QN'OH), as a
heterogeneous base catalyst for the mild temperature transesterification of

triglycerides using methanol as the solvent.

1.5 Research Scope

To achieve the objective of this study, four research aims were identified:

a) To examine the performance of homogeneous and heterogeneous base
catalysts with the quaternary ammonium functional groups (QN"OH") in the

transesterification of triglycerides.

b) To evaluate the reusability of heterogeneous base catalysts in the

transesterification of triglycerides.

c) To develop a kinetic model of transesterification in order to investigate its

mechanisms.

d) To synthesize and characterize an anion exchange resin with quaternary
ammonium functional groups (QN'OH") and to evaluate its performance and

reusability.



CHAPTER 1II

LITERATURE REVIEW

2.1 Introduction

This literature review begins with an introduction to the feedstock and triglycerides
used in this study, namely rapeseed oil and triacetin. Rapeseed oil was chosen
because it is the main feedstock used in biodiesel production in Europe and
particularly in the UK. Triacetin was used as a model triglyceride since it allows
reactions to reach completion within a practical time frame, and the reactants and

products are easily monitored and quantified.

Next, the transesterification and esterification reactions are described. The
homogeneous or heterogeneous catalysts commonly involved in transesterification
forms are also discussed. Since the study involved the synthesis of ion exchange
resins, various methods for achieving this are described. Finally, the reaction

kinetics and modelling to evaluate the performance of catalyst are discussed.

2.2 Sources of Triglycerides
2.2.1 Rapeseed Oil

Oils and fats belong to a large class of compounds known as lipids, which are
known for their energy storage capacity. Lipids are usually hydrophobic and can
casily dissolve in organic solvents. Normally, animals produce more fats, while
plants produce more oils. Both oils and fats consist mainly of triglyceride

molecules, which are triesters of glycerol and free fatty acids (Lotero et al., 2006).

After soybean and palm oil, rapeseed is the third most abundant source of vegetable

oil in the world and, along with sunflower oil is a major vegetable oil feedstock for
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biodiesel production in Europe (Piazza and Foglia, 2001). Rapeseed oil from oil
seed rape (Brassica napus L. ssp. oleifera) also known as rape oil, colza oil or
canola oil (‘Canadian Oilseed Low Acid’), originated in Northern Europe. Rapeseed
or colza oil in large doses can cause serious damage to the human liver and heart due
to its high levels of erucic acid which is around 50%. It also contains compounds
known as glycosinolates, which are toxic to humans and animals. Because of this,
new plant breeds were developed from the 1960s onwards by Canadian biologists to
produce ‘canola oil’, which has lower levels of erucic acid and trace amounts of

glucosinolates (Mittelbach and Remschmidt, 2006).

Rapeseed oil has been used since the early 13™ century, in Europe as a lamp oil, a
raw material for soap and paint production and cheap cooking oil. It is now in high
demand for the production of animal feed, vegetable oil, and biodiesel and has been
widely cultivated throughout the world. Presently, the largest modern growers are
China, Canada, and India (Food & Agriculture Organization, 2008). The production
of rapeseed has increased globally since the early 1960s, reaching a peak in 1999 of
43.2 million metric tons (Mead et al., 2008). However, production is currently
increasing again, and the Food & Agriculture Organization reported that world
production of rapeseed oil stood at 46.4 million tonnes in 2005 (Food & Agriculture

Organization, 2008).

The most favourable characteristic of rapeseed oil as a biodiesel feedstock is the
high oil content in the seed of 40% to 45% (Mittelbach and Remschmidt, 2006)
along with their chemical properties as detailed in Figure 2.1, which contribute to
the quality of the biodiesel produced by affecting the cold flow properties. These
are related to the cloud point (CP) and cold filter plugging point (CFPP). The
former indicate the temperature at which small wax crystals (approximately 0.5 mm
in width) are formed, representing the beginning of the crystallization of fatty acid
methyl ester (FAME), of saturated fatty acids; whereas the later shows the
temperature at which the fuel tends to jam the filter due to the formation of

agglomerations of crystals (Kazancev et al., 2006).
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