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Abstract 

Biodiesel is a mixture of an alkyl ester of long chain fatty acids produced by 

transesterification of triglycerides with lower alcohols such as methanol, in the presence 

of acid or base catalysts. Nearly all biodiesel processes use homogeneous base catalysts 

that cannot be recovered and necessitate neutralisation of the glycerol-rich phase (a by-

product of the reaction). This increases the number of downstream separation steps, 

thereby increasing the capital cost of biodiesel production processes. Replacing liquid 

homogeneous catalysts with solid heterogeneous catalysts can intensify the process, by 

reducing the total number of process steps, eliminate or reduce waste streams and result 

in lower production costs, as the catalyst will not have to be continually replaced. 

Strong anion exchange resins with QNOH, have the potential to be developed and 

employed as heterogeneous catalyst for transesterification, as they are chemically stable 

to leaching of the functional group. In this present work, nine different synthesized 

anion exchange resins (SIER1-9) were prepared by suspension polymerization of 

vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers in the presence of n-

heptane as a pore-forming agent. These SIERs were evaluated as catalysts for 

transesterification of triacetin. It was found that the "SIER-6" catalyst prepared with 

the highest dilution degree (200%) and the lowest DVB content (10% DVB), achieved 

the highest triacetin conversion (95.6% after 4h). This catalyst had the highest true pore 

volume (0.89 cm3/g) and surface area (398.8 m2/g). In contrast, the "SIER-7" catalyst 

synthesized with the lowest dilution degree (50%), but highest DVB content (40%), 

resulted in the lowest triacetin conversion at 64.3%. Although there is a considerable 

improvement in the physicochemical properties of the IERs, such as surface area, 'true 

pore' volume and diameter, transesterification using rapeseed oil was rather poor with 

only 16 wt. % of FAME obtained over SIER-6 after 6h reaction. 

Overall, the ion exchange resin-catalyzed reaction were well-described by the Eley-

Rideal model. Significantly, the ER model data fitted the experimental data for all ion 

exchange resins studied in this work.
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CHAPTER I

INTRODUCTION 

1.1 Background: Biofuels 

The current high demand worldwide for transport fuels derived from fossil fuel has 

largely resulted from the mass production of automobiles, which began early in the 

19th century (Hirao and Pefley, 1988). The emissions produced by fossil fuel-based 

power stations and the growth in the number of automobiles, and the related use of 

petroleum fuels around the world has led to a steady increase in atmospheric 

pollution due to exhaust emissions. In 2004, 30% of total carbon dioxide discharges 

in the United Kingdom (UK) were from the transport sector, and this sector has the 

fastest growing rate of emissions (Hammond et. al., 2008). Despite a UK 

government target to reduce such emissions by 2010, an increase of 7.5% in carbon 

emissions was recorded between 1995 and 2005, accounting for 120.1 million 

tonnes of carbon dioxide emissions from road transport in the UK (Department for 

Transport, 2007). 

Fossil fuel deposits used to produce diesel and gasoline are likely to run out within a 

century (Ranganathan et al., 2008). The high demand for these finite reserves has 

recently led to steep worldwide increases in fossil fuel prices, adversely affecting the 

economic stability of countries that import crude petroleum, including the UK. In 

addition, the risk of potential disruptions in the supply of petroleum due to the 

political instability of some major exporting countries, especially in the Middle East, 

will also influence supply. This dependence on fossil fuels constitutes a threat to 

European Union (EU) and UK competitiveness (Lin et al., 2011). 

The contribution of fossil fuels to the accumulation of carbon dioxide in the 

environment, as well as the drive for future UK competitiveness, have encouraged 

the use of alternative fuels, which are more "environmental friendly". It is necessary 
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to look for alternative fuels that can be produced from local resources. Research 

into and developments of carbon neutral and renewable fuels have therefore received 

considerable interest in the scientific community. As energy demands and the price 

of fossil fuels increase, the search for alternative fuels has gained greater 

prominence. Liquid fuels derived from biomass using various chemical and 

biological processes have been identified as possible alternative energy resources. 

Two types of biofuel whose development has advanced the most are biodiesel and 

bioethanol. They have already been produced commercially on an industrial scale. 

Others, such as biomethanol and biobutanol, have been subject to research but are 

not yet produced commercially (Agarwal, 2007). 

Biodiesel derived from vegetable oil, is one type of alternative fuel that could be 

produced in the UK, since there are abundant local oil crops available as feedstock, 

such as rapeseed and corn. According to Demirbas (2005), more than 350 oil crops 

can be used as feedstock for biodiesel. Among these are rapeseed, sunflower, 

soybean, jatropha, palm oil, and peanut oil. Recent increases in UK crude oil prices, 

from around £50 per barrel in 2008 to around £62 per barrel in 2011 (Energy 

Information Administration, 2011), have led to renewed interest in utilizing 

vegetable oil as a biofuel. Indeed, the use of biodiesel as an alternative fuel could 

contribute to meeting the growing demand for energy, especially in the UK transport 

sector, while at the same time reducing carbon dioxide emissions. 

There is a need to balance the usage of oil crops as a feedstock, since most such 

crops in the UK are intended for use in the food industry. The introduction of 

biodiesel has increased the demand for oil crops, created business opportunities from 

the use of biomass, and helped agricultural development in the UK. However, 

without a proper balance between food and fuel, food shortages and price increases 

may have negative effects on consumers as well as on farmers, most of whom use 

such crops to feed their livestock. Sustainable agriculture is currently a topic of 

intense debate, and policy-makers must make difficult decisions to balance future 

food and energy needs. 

Since 2005, the biodiesels market in Europe has grown rapidly to meet the European 

Biofuels Directive (2003/30/EC) target of 5.75% by volume of biofuels to be used in 

the transport sector by 2010. In the UK itself, biodiesel consumption in 2006 has 
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increased more than five fold compared to 2005, as can be seen in Figure 1. 1, before 

doubling by 2007. However, it has been reported that by 2010, the majority of EU 

members had been unable to reach the target. Because of this, the Renewable 

Energy Directive (2009/28/EC) came into force in 2011, replacing the Biofuels 

Directive, and introducing the mandatory use of renewable energy in the EU 

transport sector. The Renewable Energy Directive target for the UK is to achieve 

15% of its energy consumption from renewable resources by 2020 (European 

Commission Energy, 2011). 

Country Year 2005 (tonnes) Year 2006 (tonnes) Year 2007 (tonnes) Year 2008 (tonnes) 

Germany 209 342 393 335 
France 46.6 80 154 273 
United Kingdom 3.4 18 37 94 
Italy 233 20 IS 75 
Spain 3.1 7.32 35 70 
Poland 11 5.71 338 46 
Netherlands 0 2 30 27 
Austria 103 45 26 25 
Portugal 0 9.51 18 18 
Sweden 1.1 6.08 14 18 
Belgium 0 0.12 12 12 
Hungary 0 005 0.27 10.96 
Czech Republic 0,4 148 3.8 1025 
Greece 0.4 6.28 10.99 10.23 
Romania 0 0.37 5.41 8.14 
Slovenia 0.7 0.56 10.42 7.18 
Lithuania 1 1.88 5.69 6.19 
Luxembourg 0.1 0.07 163 5.61 
Ireland 011 0.09 134 541 
Slovenia 13 1.73 1.76 3.01 
Cyprus 0 0 011 1.92 
Finland 0 0 0.01 1.55 
Estonia 0 0.08 0.07 0.37 
Latvia 03 02 023 016 
Malta 0.1 0.12 024 0.13 
European Union 304 551 798 1.069

Figure 1.1: Biodiesel Consumption in the European Union (Mekhilef et al., 2011) 

Another contributing factor to the observed increase in biofuel usage has been the 

implementation of the Renewable Transport Fuel Obligation (RTFO) by the 

Department of Transport since April 2008. This is intended to deliver reductions in 

carbon dioxide emissions from the road transport sector of 2.6 to 3.0 million tonnes 

per annum (equivalent to carbon savings of 700,000 to 800,000 tonnes) by 2010, by 

encouraging the supply of renewable fuels. Previously, the RTFO had required 

2.5%, 3.75% and 5% by volume of all fuel sold on UK forecourts to be renewable 

by 2008, 2009 and 2010, respectively (Department of Transport, 2008). However, 

in January 2009 the RTFO programme was revised upward to 3.25%, 3.5%, 4.0%, 

4.5%, and 5.0% by volume of all fuel sold on UK forecourts to be renewable by 
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2009/10, 2010/11, 2011/12, 2012/13, and 2013/14, respectively (Department of 

Transport, 2009). 

1.2 The Use of Vegetable Oils 

The use of vegetable oil as a fuel began first became possible after invention by 

Rudolph Diesel of an engine based on compression ignition (Pinto et al., 2005). In 

1900, Diesel's engine was unveiled at the World Fair held in Paris, running on a 

variety of peanut oil (Mittelbach and Remscbmidt, 2006). For various reasons, only 

a limited range of vegetable oils have been favoured as biodiesel feedstocks. One of 

the most significant is rapeseed oil (Brassica napus), which was originally chosen 

because of its low price compared to other readily available vegetable oils. It turned 

out to be an ideal feedstock in terms of combustion characteristics, oxidation 

stability, and low temperature behaviour, as explained bellow in section 2.2.1. Until 

now, it has remained the feedstock of choice in most European countries due to 

these properties (Mittelbach and Remschmidt, 2006). 

It is possible to use vegetable oil directly to power diesel engines by simply blending 

it with diesel fossil fuels at an appropriate ratio. However, these blends are stable 

only for short-term usage due to their high viscosity, acid contamination, free fatty 

acid formation (resulting in gum formation by oxidation and polymerization) and 

carbon deposition (Ranganathan et al., 2008). In addition, there are several other 

problems associated with the direct use of vegetable oils, especially in direct 

injection engines. These include (Meher et al., 2006): 

i) Coking formation on the injectors to such an extent that fuel atomization 

does not occur properly or is even prevented as a result of plugged 

orifices; 

ii) Carbon deposits on the piston and head of the engine; 

iii) Oil ring sticking; 

iv) Thickening or gelling of the lubricating oil as a result of contamination 

by vegetable oils; and 

v) Lubricating problems due to polymerization. 

Table 1.1 below shows the fatty acid composition of several vegetable oils (Goering 

et al., 1982). It should be noted that rapeseed oil is rich in unsaturated fatty acid, 
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comprised of C18:1 (oleic acid), C18:2 (linoleic acid), C18:3 (u-linoleonic acid) and 

C 16:1 (palmitoleic acid), and a small amount of saturated acid (stearic acid, C18:0; 

also known as 'octadecanoic acid'). 

Table 1.1: Fatty Acid Composition of Several Vegetable Oils (Goering el al., 1982) 

Fatty acid composition 

Vegetable oil Fatty acid composition % by weight Acid Phos Peroxide 
value (ppm) value 

16:1 18:0 20:0 22:0 24:0 18:1 22:1 18:2 18:3 

Corn 11.67 1.85 0.24 0.00 0.00 25.16 0.00 60.60 0.48 0.11 7 18.4 
Cottonseed 28.33 0.89 0.00 0.00 0.00 13.27 0.00 57.51 0.00 0.07 8 64.8 
Crambe 20:7 0.70 2.09 0.80 1.12 18.86 58.51 9.00 6.85 0.36 12 26.5 
Peanut 11.38 2.39 1632 2.52 1.23 48.28 0.00 31.95 0.93 0,20 9 82,7 
Rapeseed 3.49 0.85 0.00 0.00 0.00 64.4 0.00 22.30 8.23 1.14 18 30.2 
Sybean 1135 3.15 0.00 0.00 0,00 23.26 0.00 55.53 631 020 32 44.5 
Sunflower 6,08 3.26 0.00 0.00 0.00 16.93 0.00 73.73 0.00 0.15 15 10.7

In order for the use of vegetable oil to be practical, it needs to be processed to meet 

the primary criteria for biodiesel quality represented by adherence to the appropriate 

standards. Examples of such standards are those set up by the American Standards 

for Testing of Materials D 6751-02 (ASTM, 2002) in the US and the British 

Standards Institution BS EN 14214 (BSI, 2003) in the UK, which is identical to the 

European Standard EN 14214:2003. There are three processing techniques that are 

used to convert vegetable oil into biodiesel, which are discussed in detail by Ma and 

Hanna (1999) and Fukuda et al. (2001). Those processes are pyrolysis, 

microemulsification and transesterification. 

Pyrolysis, also known as cracking, refers to a process of thermochemical 

decomposition with the aid of a catalyst to simplify the chemical compounds in the 

vegetable oil. This process involves heating in the absence of oxygen, resulting in 

cleavage of chemical bonds to yield small molecules. This lowers the viscosity of 

the oils and at the same time increases their cetane number thus improving ignition 

quality. However, problems with this technique include th6 high cost of equipment 

(Ma and Hanna, 1999). 

Microemulsificatjon involves the formation of thermodynamically stable dispersions 

of two usually immiscible liquids, brought about by one or more surfactants 

(Mittlebach and Remschmidt, 2006). The microemulsification technique is able to 
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lower the viscosity of vegetable oils using solvents such as methanol, ethanol and 1-

butanol (Fukuda et al., 2001). However, microemulsification with alcohols is not 

recommended for long-term use in diesel engines, due to problems of injector needle 

sticking, incomplete combustion, heavy carbon deposition, and an increase in the 

viscosity of the lubricating oil (Ziejewski et al., 1984). 

The third technique used is the transesterification reaction, where one ester is 

transformed into another through the interchange of the alkoxy moiety (Schuchardt 

et al., 1998). In biodiesel production, transesterification involves the reaction 

between the triglyceride molecules in the vegetable oils and alcohol in the presence 

of a catalyst to produce monoesters. This technique is also known as alcoholysis, 

since the ester is split using alcohol. The long, branched chain triglyceride 

molecules are transformed into linear monoesters and glycerol. This topic is 

discussed in detail bellow in section 2.3.1. 

1.3 Intensified Biodiesel Process Using Heterogeneous Catalyst 

Different types of catalyst can be used to synthesize biodiesel, including 

homogeneous or heterogeneous base-catalysts and acid-catalysts, and biocatalysts. 

However, most commercial biodiesel processes use homogeneous base catalysts for 

transesterification, since the reaction proceeds at a much higher rate than when 

homogeneous acid catalysts are used (Ma and Hanna, 1999; Kim et al., 2004). In 

addition, the base catalysts are less corrosive than acidic compounds, making them 

more favourable for industrial processes. Currently, most biodiesel is produced by 

the transesterification of triglycerides from waste cooking oil and edible or non-

edible oils using methanol as a solvent. Nearly all the processes use homogeneous 

base catalysts, such as alkaline metal alkoxides (CH 3 0Na), hydroxides (NaOH and 

KOH), and carbonates (Na2CO3 and K2CO3), since they give conversion rates to 

biodiesel of over 95% (Schuchardt et al., 1998; Rashid and Anwar, 2008). 

Even though reproduction of biodiesel using homogeneous base-catalysts involves a 

rapid process resulting in high conversion rates with minimal side reactions, it is still 

not very commercially competitive compared to petroleum diesel due the factors 

listed below (Lopez et al., 2005):



i) the catalyst cannot be recovered; 

-	 ii) the use of homogeneous catalyst necessitates the neutralization of 

glycerol at the end of the reaction; 

iii) there is limited use of continuous processing methodologies; and 

iv) the processes involved are very sensitive to the presence of water and 

free fatty acids. 

Figure 1.2 below shows a schematic diagram of the conventional process using a 

homogeneous catalyst in biodiesel production (Gerpen, 2005). At the beginning of 

the process, alcohol, oil, and catalyst are combined in a reactor and agitated for 

approximately an hour at 60°C. After transesterification, the reaction mixture 

separates spontaneously into two layers, although complete separation requires a 

longer period of settling. The top layer containing esters and methanol has to be 

separated and the esters are then neutralized and washed with water to remove free 

glycerol. After that it has to be dried to obtain a pure biodiesel. The bottom layer 

containing glycerol needs to be neutralized in order to remove the catalyst residue. 
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Figure 1.2: Biodiesel Process Scheme (Gerpen, 2005) 

The intensified biodiesel process using heterogeneous catalysts is shown in Figure 

1.3 below. As can be seen, replacing liquid homogeneous catalysts with solid 

heterogeneous catalysts is expected to yield a product that does not require 

neutralization, leading to lower processing costs, because the catalyst will not have 
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to be continually replaced. The separation of solid heterogeneous catalysts can be 

easily achieved by filtration, and production costs could be reduced by using 

intensified operations and eliminating waste streams. However, the chemical 

stability of heterogeneous catalyst is likely to play a major role in determining their 

capability to be reliably reusable. 

- Oil  Transestedfication with solid catalyst 

MeOl-1	 - catalyst 
Filter Catalyst Separation) t—	 Recycle 

Recycle

Flash (MeOH Separation) 

Separation 

- Upperl- Thase	 Lowe"17P M 
(Biodiesel)	 (Glycerol) 

Figure 1.3: Intensified Biodiesel Process Using Heterogeneous Catalyst 

The use of a heterogeneous catalyst on an industrial scale has been described by Di 

Serio et al., (2008). The 160 000 tonnes/year biodiesel plant operated in France by 

the Institute Francais du Pétrole (IFP) is based on the Esterflp-H TM technology where 

the catalyst employed is a mixed oxide of zinc and aluminum, which promotes the 

transesterification reaction without catalyst loss. However, this technology operates 

at 200°C to 250°C, which is much higher than in conventional methods that usually 

run near the boiling point of methanol, according to most studies. It also requires 

high pressure and an excess of methanol, which is removed by vaporization and 

recycled back into the process along with fresh methanol (Bournay et al., 2005). 

Several types of heterogeneous base catalysts have been developed for the 

transesterification of vegetable oils into biodiesel over the past few years, as 

discussed in depth in section 2.4.2 in the literature review. Among these, solid 

Brønsted base catalysts with a quaternary ammonium functional group (QNOW) 

have been identified as an alternative to homogeneous base catalysts that suitable for 

transesterification in biodiesel production, due to their stability and the better 

conversion rates achieved (Liu et al., 2007; Shibasaki-Kitakawa et al., 2007). 
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However, no published study has investigated the use of homogeneous base 

catalysts with quaternary ammonium functionality (QNOW), for the 

transesterification of vegetable oils into fatty acid methyl esters, as comparison. 

This is addressed in this study. 

1.4 Research Objective 

The objective of this research was to develop and evaluate the use of an anion 

exchange resin with quaternary ammonium functional groups (QNOW), as a 

heterogeneous base catalyst for the mild temperature transesterification of 

triglycerides using methanol as the solvent. 

1.5 Research Scope 

To achieve the objective of this study, four research aims were identified: 

a) To examine the performance of homogeneous and heterogeneous base 

catalysts with the quaternary ammonium functional groups (QNOH) in the 

transesterification of triglycerides. 

b) To evaluate the reusability of heterogeneous base catalysts in the 

transesterification of triglycerides. 

c) To develop a kinetic model of transesterification in order to investigate its 

mechanisms. 

d) To synthesize and characterize an anion exchange resin with quaternary 

ammonium functional groups (QNOW) and to evaluate its performance and 

reusability.

we



CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

This literature review begins with an introduction to the feedstock and triglycerides 

used in this study, namely rapeseed oil and triacetin. Rapeseed oil was chosen 

because it is the main feedstock used in biodiesel production in Europe and 

particularly in the UK. Triacetin was used as a model triglyceride since it allows 

reactions to reach completion within a practical time frame, and the reactants and 

products are easily monitored and quantified. 

Next, the transesterification and esterification reactions are described. The 

homogeneous or heterogeneous catalysts commonly involved in transesterification 

forms are also discussed. Since the study involved the synthesis of ion exchange 

resins, various methods for achieving this are described. Finally, the reaction 

kinetics and modelling to evaluate the performance of catalyst are discussed. 

2.2 Sources of Triglycerides 

2.2.1 Rapeseed Oil 

Oils and fats belong to a large class of compounds known as lipids, which are 

known for their energy storage capacity. Lipids are usually hydrophobic and can 

easily dissolve in organic solvents. Normally, animals produce more fats, while 

plants produce more oils. Both oils and fats consist mainly of triglyceride 

molecules, which are triesters of glycerol and free fatty acids (Lotero et al., 2006). 

After soybean and palm oil, rapeseed is the third most abundant source of vegetable 

oil in the world and, along with sunflower oil is a major vegetable oil feedstock for 

10



biodiesel production in Europe (Piazza and Foglia, 2001). Rapeseed oil from oil 

seed rape (Brassica napus L. ssp. oleifera) also known as rape oil, coiza oil or 

canola oil ('Canadian Oilseed Low Acid'), originated in Northern Europe. Rapeseed 

or colza oil in large doses can cause serious damage to the human liver and heart due 

to its high levels of erucic acid which is around 50%. It also contains compounds 

known as glycosinolates, which are toxic to humans and animals. Because of this, 

new plant breeds were developed from the 1960s onwards by Canadian biologists to 

produce 'canola oil', which has lower levels of erucic acid and trace amounts of 

glucosinolates (Mittelbach and Remschmidt, 2006). 

Rapeseed oil has been used since the early 13th century, in Europe as a lamp oil, a 

raw material for soap and paint production and cheap cooking oil. It is now in high 

demand for the production of animal feed, vegetable oil, and biodiesel and has been 

widely cultivated throughout the world. Presently, the largest modern growers are 

China, Canada, and India (Food & Agriculture Organization, 2008). The production 

of rapeseed has increased globally since the early 1960s, reaching a peak in 1999 of 

43.2 million metric tons (Mead et al., 2008). However, production is currently 

increasing again, and the Food & Agriculture Organization reported that world 

production of rapeseed oil stood at 46.4 million tonnes in 2005 (Food & Agriculture 

Organization, 2008). 

The most favourable characteristic of rapeseed oil as a biodiesel feedstock is the 

high oil content in the seed of 40% to 45% (Mittelbach and Remschmidt, 2006) 

along with their chemical properties as detailed in Figure 2. 1, which contribute to 

the quality of the biodiesel produced by affecting the cold flow properties. These 

are related to the cloud point (CP) and cold filter plugging point (CFPP). The 

former indicate the temperature at which small wax crystals (approximately 0.5 mm 

in width) are formed, representing the beginning of the crystallization of fatty acid 

methyl ester (FAME), of saturated fatty acids; whereas the later shows the 

temperature at which the fuel tends to jam the filter due to the formation of 

agglomerations of crystals (Kazancev et al., 2006).
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