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A B S T R A C T   

Huge emissions of carbon dioxide (CO2) from the utilization of fossil fuel for power generation has significantly 
contributed to global warming. In view of this, technological pathways have been initiated to mitigate the effect 
of CO2 emissions through capture, storage, and utilization. Besides, there is an increasing acceptance of carbon 
tax which is levied in the proportion of carbon emissions from the utilization of fossil fuel. In this study, the nexus 
between carbon tax, equivalent CO2 emissions from the gas-fired power plant, natural gas flow rate, and air-to- 
fuel ratio was modeled using a perceptron neural network. The effect of various combinations of identity, hy-
perbolic tangent, and sigmoid activation functions at the hidden and outer layer of the neural network on the 
performance of the models was investigated. The various network configurations were trained using the 
Levenberg-Marquardt algorithm with the network errors backpropagated to enhance the performance. The 
optimized networks consist of three input units, 15 hidden neurons, and one output unit. The network perfor-
mance in modeling the carbon tax prediction resulted in R2 of 0.999, 0.999, 0.999, 0.998, and 0.999 for model 1, 
model 2, model 3, model 4, and model 5, respectively which is an indication that the calculated carbon tax was 
strongly correlated with the predicted values. The prediction errors of 0.019, 0.009, 0.002, 0.016, 0.002 obtained 
from model 1, model 2, model 3, model 4, and model 5, respectively revealed the robustness of the models in 
predicting the carbon tax with minimum error. Among the various configurations investigated, the perceptron 
neural network configured with hyperbolic tangent and sigmoid activation function at the hidden and outer 
layers, as well as the configuration with sigmoid activation functions at the hidden and outer layers, offer the best 
performance. The sensitivity analysis shows that the flow rate of the natural gas had the most significant effect on 
the predicted carbon tax.   

Introduction 

The anthropogenic activities from the utilization of fossil fuels had 
been reported to results in serious health implications which arise from 
the emissions of gaseous pollutants [1]. Over the years various measures 
have been employed to reduce the emissions of these poisonous pol-
lutants [2–5]. These measures include the use of technological strategies 
such as the production of biofuel, synthetic fuel, the use of CO2 capture, 
storage, and utilization [6,7]. Besides, policy and legislation have also 
played a vital role in the mitigation of emissions of CO2 [7–9]. One of 
such policies is carbon tax which is a price set aside by the government 
for emitters to pay for each ton of CO2 emitted [10,11]. The carbon tax 

can either be in the form of an emission tax which is a function of the 
quantity of CO2 produces by a company or tax levied on the products or 
services that are CO2-intensive. In some jurisdictions or countries, fossil 
fuels such as gasoline, coal, and natural gas are the main target of carbon 
tax [12]. As shown in Table 1, the carbon tax has been implemented in 
countries such as Finland, Netherlands, Norway, Sweden, Denmark, 
United Kingdom, and California [13]. The carbon tax rate per metric ton 
of CO2 differs from country to country. Sweden has been reported to 
have the highest carbon tax of $104.83/metric ton of CO2 emitted which 
was implemented in 1991 [13]. The carbon tax policy has significantly 
encouraged the use of renewable energy and increased its share in the 
country’s energy mix. A total of $3.665 billion was estimated to have 
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been generated from the carbon tax levied. Besides Sweden, Finland also 
records a high carbon tax rate of $30/metric ton of CO2 emitted which 
was implemented in 1990 with total annual revenue of $750 million 
generated. It is often difficult to quantify carbon emission reductions 
that are due to carbon taxes. Although carbon tax has been adjudged as 
being economically efficient in tackling carbon emissions, perhaps it 
might address a set level of emissions reduction [14]. In a situation 
where the emission targets desired are not met carbon tax can be 
implemented in such a manner that there is an automatic increase in the 
tax rate to meet the anticipated target [13]. 

The revenue generated from carbon taxes in the various countries 
has been employed for funding carbon emission mitigation programs as 
well as being used to partly fund government budgets as obtainable in 
Sweden and Norway. Steenkamp [15] reported a classification frame-
work for the use of carbon tax revenue. The framework consists of four 
modalities namely the constrained/unconstrained, revenue-neutral/ 
revenue-raising, public preference, and thematic. Based on the pro-
posed classification framework, the authors recommended its usage by 
policymakers to identify the best alternatives for carbon revenue in a 
situation when it is expedient to formulate carbon tax policies for the 
mitigation of carbon emissions. Yamazaki [16] investigated the 
employment impact of British Columbia’s revenue-neutral carbon tax 
implemented in 2008. The study revealed that most of the industries in 
British Columbia benefited from the redistributed carbon tax revenues. 

However, the study shows that there was a fall in employment among 
the most carbon-intensive and trade-sensitive industries with the 
remittance of the carbon tax. Whereas the non-carbon intensive in-
dustries experience a rise in employment. Yuan et al. [17] reported the 
implications of revenue generated from the carbon tax. The study 
evaluated different carbon prices and emissions reduction goal scenarios 
in relation to how they significantly influence carbon reduction. There 
was an anticipation of an increase in revenue generated from the high 
carbon tax rate based on the findings. The authors confirmed that carbon 
tax revenue is a reliable revenue source to fund government fiscal 
initiatives. 

The relationship between carbon tax, revenue sharing, and various 
parameters has been investigated. Yang et al. [18] studied the influence 
of carbon tax revenue sharing in the manufacturer’s carbon emissions 
mitigation efforts. The study revealed that the abatement level promise 
strategy and abatement level requirement strategy maximized the 
manufacturer’s profits with a greater consumer environmental 

Table 1 
Summary of Carbon Tax Policy in different countries [13].  

Country/ 
Jurisdiction 

Start 
Date 

Tax Rate 
($USD unless noted 
otherwise) 

Annual 
Revenue 

Revenue 
Distribution 

Finland 1990 $30/metric ton 
CO2 (€20) 

$750 
million 
(€500 
million) 

Government 
budget; 
accompanied by 
independent cuts 
in income taxes 

Netherlands 1990 ~$20/metric ton 
CO2 in 1996 

$4.819 
billiona 

(€3.213 
billion) 

Reductions in 
other taxes; 
Climate mitigation 
programs 

Norway 1991 $15.93 to $61.76/ 
metric ton CO2 

(NOK 89 to NOK 
345) 

$900 
million 
(1994 
estimate) 

Government 
budget 

Sweden 1991 Standard rate: 
$104.83/metric 
ton CO2 (910 SEK) 
Industry rate: ~ 
$23.04/metric ton 
CO2 (~200 SEK) 

$3.665 
billion (25 
billion SEK) 

Government 
budget 

Denmark 1992 $16.41/metric ton 
CO2 (90 DKK) 

$905 
million 

Environmental 
subsidies and 
returned to 
industry 

United 
Kingdom 

2001 $0.0078/kWh for 
electricity; 
$0.0027/kWh for 
natural gas 
provided by gas 
utility; $0.0175/kg 
for liquefied 
petroleum gas or 
other gaseous 
hydrocarbons 
supplied in a liquid 
state; and 
$0.0213/kg for 
solid fuel 

$1.191 
billion 
(£714 
million) 

Reductions in 
other taxes 

BAAQMD, 
California 

2008 $0.045 per metric 
ton of CO2eb 

$1.1 
million 
(expected) 

Climate mitigation 
programs  

a Revenue in the Netherlands is from all environmentally related taxes, of 
which carbon taxes are the clear majority. 

Fig. 1. Stages involved in the Modeling the Nexus between Carbon Tax, CO2 
emissions, and gas-fired power plant parameters. 
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awareness and carbon tax. Xiang and Lawley [18] employed panel data 
regression and synthetic control model to study the effect of British 
Columbia’s carbon tax on per capita residential natural gas consump-
tion. The results from the panel data regression model showed that the 
carbon tax significantly diminished as a function the residential natural 
gas consumption. The authors established the efficacy of carbon taxes in 
reducing the consumption of fossil fuels with a particular interest in 
residential natural gas consumption. The economic impacts and political 
feasibility of carbon tax or emission trading policy mechanisms for 
greenhouse gas emissions reduction in the Mexican power sector have 
been investigated by Barragán-Beaud et al. [19]. The study suggested 
both the carbon tax and emission trading are vital in mitigating the CO2 
emissions in the Mexican power sector. Nong et al. [20] compared the 
impacts of a carbon tax that solely covers CO2 emissions and non-CO2 
greenhouse gas emissions. The study revealed that the non-CO2 emis-
sions contributed to discrepancies in the impact from country to coun-
try, with emerging economics most influenced by this issue. In a similar 
study, Zhang and Zhang [21] employed a computable general equilib-
rium model to study the relationship between carbon tax, tourism CO2 
emissions, and economic welfare. The finding shows that carbon tax 
policy could have a remarkable impact on tourism-related carbon 
emissions and economic welfare. However, there is a dearth of study on 
the nexus between carbon tax, CO2 emissions, and the various param-
eters in the industrial or power generating plants. This study therefore 

aimed at investigating the nexus between Carbon Tax, CO2 emissions, 
and Gas-fired power plant parameters using a perceptron neural 
network. The effect of various activation functions of the hidden and 
outer layer on the model output is also investigated. 

Process description, carbon tax calculation, and model 
development 

Natural gas is widely used as fuel in a gas-fired power plant for 
electricity generation using a gas turbine [22]. For a typical electricity 
generation in a natural gas-fired power plant, the natural gas is mixed 
with a stream of air using a defined air-to-fuel ratio while the flow rate 
into the turbine is regulated [23]. The air–fuel mixture is combusted and 
expanded through the turbine thereby generating electricity through the 
spinning of the magnet by the generator. Compared to other power 
plants, the gas-fired power plant is highly thermodynamically efficient. 
Besides, the combustion process comes with less emission of NOx, SOx, 
and other particulate matter. However, the utilization of natural gas for 
electricity generation often comes with CO2 emissions which are lower 
compared to using coal. In this study, the data employed were obtained 
from the simulation of a real-life natural gas power plant reported by 
Babatunde et al. [23]. A total of 57 datasets which consist of natural gas 
flow rate, the air-to-fuel ratio, and the equivalent CO2 emissions was 
employed for training the models. The carbon tax was calculated based 

Fig. 2. The configuration of the Perceptron Neural Networks.  

Table 2 
Detail of the Network Information for each of the models.  

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

Input Layer Factors 1 Flowrate Flowrate Flowrate Flowrate Flowrate 
2 Air to fuel ratio Air to fuel ratio Air to fuel ratio Air to fuel ratio Air to fuel ratio 
3 kg CO2 eq/h kg CO2 eq/h kg CO2 eq/h kg CO2 eq/h kg CO2 eq/h 

Number of Unitsa 116 116 116 116 116 
Hidden Layer(s) Number of Hidden Layers 1 1 1 1 1 

Number of Units in Hidden Layer 1a 15 15 15 15 15 
Activation Function Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent Sigmoid Sigmoid 

Output Layer Dependent Variables 1 Carbon tax Carbon tax Carbon tax Carbon tax Carbon tax 
Number of Units 1 1 1 1 1 
Rescaling Method for Scale Dependents Standardized Standardized Standardized Standardized Standardized 
Activation Function Identity Hyperbolic tangent Sigmoid Hyperbolic tangent Sigmoid 
Error Function Sum of Squares Sum of Squares Sum of Squares Sum of Squares Sum of Squares  

a Excluding the bias unit. 
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on the equivalent CO2 emissions as reported by Babatunde et al. [23]. 
The detailed stages involved in the modeling are depicted in Fig. 1. 
These stages involve data acquisition, data preprocessing, network 
configuration, network training, model performance evaluation, and 
model deployment for the prediction of the carbon tax from the gas-fired 
power plant. To ensure reliability, as well as avoiding errors and out-
liers, the dataset was pre-processed using an Excel spreadsheet before 
being employed for the modeling. A perceptron neural network 
configuration depicted in Fig. 2 was employed for the modeling of the 
Nexus between Carbon Tax, CO2 emissions, and gas-fired power plant 
parameters. The configuration consists of the input layer, the hidden 
layer, and the output layer. The details of the network information are 
depicted in Table 2. The input layer comprises a set of artificial neurons 
with each input unit (xi) associated with a weight (wi) along with the 
bias (b). The associated weights determine the extent of influence an 
input unit will have on the output. While the bias helps to evaluate the 

extent of parity between the intended values and the predictions and 
subsequently make up for the differences. There are total of 116 artificial 
neurons units in the perceptron neural network configuration. The 
hidden layer consists of 15 hidden neurons which are interconnects with 
the input layers through the various units. Each of the xi is multiplied 
with the corresponding wi and the total are summed up together with the 
bias as output of the hidden layer as shown in Eq. (1). The output of the 
hidden layer is normalized by activation function with non-linearity for 
proper computation by the neural network algorithms. Three combi-
nations of the activation functions namely identity (Eq. (2)), hyperbolic 
tangent (Eq. (3)), and sigmoid function (Eq. (4)) were employed in this 
study. The choice of identity, hyperbolic tangent, and sigmoid function 
is to determine the effect of linearity and non-linearity on the model 
output. 

The adequacy of the model was evaluated by comparing the differ-
ences between the observed output and the predicted output using the 
sum of squares error (SSE) analysis (Eq. (5)) and coefficient of deter-
mination (R2). 

ϑ =
∑n

i
(wixi)+ b (1)  

z(x) =
{

0forx < 0
xforx ≥ 0 (2) 

Fig. 3. The three-dimensional plots showing the interaction effect of (a) air-to- 
fuel ratio and fuel flow rate (b) equivalent CO2 emission and fuel flow rate (c) 
air-to-fuel ratio and equivalent CO2 emissions on the Carbon tax. 

Fig. 4. (a) The parity plot of the observed and predicted carbon tax (b) the 
residuals of predictions using hyperbolic tangent activation function at the 
hidden layer and identity activation function at the output layer. 
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z(x) = tanh(x) (3)  

z(x) =
1

1 + e− x (4)  

where ϑ is the output from the hidden layer, wi is the weight, xi is the 
input unit, b is the bias, z(x) is the transfer function. 

The network was trained using the Levenberg-Marquardt algorithm 
with the network error backpropagated [24]. The backpropagation 
helps in fine-tuning the network weights as a function of the error ob-
tained in the initial iteration [25]. The repeated back-propagation pro-
cess helps to minimize network error thereby improving the output 
generalization. To prevent overfitting, the datasets are divided into two 
portions equivalent to 70% and 30% for training and testing, respec-
tively [26]. The network configurations and the analysis were per-
formed using the neural network tool in IBM-SPSS version 22. The stages 
in the model configurations involve the pre-processing of the dataset in 
an Excel Spreadsheet, the uploading of the dataset into the neural 
network platform, the setting of the network information, training the 
model using the uploaded datasets. 

SSE =
∑n

i=1

(

yi − ÿi

)
2 (5)  

Results and discussion 

Three-dimensional parametric analysis 

The relationship between the air-to-fuel ratio, the flowrate of the 
natural gas, the equivalent CO2 emissions are represented using the 
three-dimensional plots shown in Fig. 3. The interaction between the 
natural gas flow rate and the air-to-fuel ratio resulted in a carbon tax of 
$1.09×103/h. The increase in the flow rate of the natural gas implies 
more consumption thereby increasing the CO2 emissions and the carbon 
tax as shown in Fig. 3 (a). It can be seen that the natural gas flow rate has 
more impact on the CO2 emissions compared to the air-to-fuel ratio. The 
influence of the natural gas flow rate on the carbon tax is further 
ascertained in Fig. 3 (b) through the equivalent CO2 emission. An in-
crease in the equivalent CO2 emissions per kg of the natural gas utilized 
invariable leads to an increase in the carbon tax. According to the United 
States Energy Information Administration, about 0.91 lb of CO2 is 
emitted per kWh electricity generation from the utilization of natural 
gas as fuel [27]. This amounts to 560 million metric tons of CO2 emis-
sions from the generation of 1,358,047 million kWh electricity using 
natural gas. The nature of the fuel source significantly influences the 
amount of CO2 emitted per kWh at a stipulated time. The report also 
shows that the use of coal, natural gas, and petroleum fuels for elec-
tricity generation contributed about 99% of US CO2 emissions from 
electricity. As a result of this, various states have implemented a carbon 

Fig. 5. (a) The parity plot of the observed and predicted carbon tax (b) the 
residuals of predictions using hyperbolic tangent activation function at the 
hidden layer and hyperbolic tangent activation at the output layer. 

Fig. 6. (a) The parity plot of the observed and predicted carbon tax (b) the 
residuals of predictions using hyperbolic tangent activation function at the 
hidden layer and sigmoid activation at the output layer. 
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tax policy that is intended to reduce CO2 emissions. Fig. 3 (c) shows the 
carbon tax based on the interaction between the air-to-fuel ratio and 
equivalent CO2 emissions. In the interaction, it can be seen that the 
carbon tax increases with an increase in the air-to-fuel ratio. 

Effect of activation functions on the model performance 

The performance of the perceptron neural network configured using 
hyperbolic tangent activation function at the hidden later and identity 
activation function at the outer layer is depicted in Fig. 4. The regression 
plot showing the calculated carbon tax and the predicted carbon tax is 
depicted in Fig. 4 (a). With an R2 of 0.999, the calculated carbon tax is 
strongly correlated with the predicted values. This shows that there is 
high synergy between the hyperbolic tangent activation function used at 
the hidden later and the identity activation function used at the outer 
layer. As shown in Fig. 4 (b), the residuals of the predicted values are 
mostly between ± $5/h of carbon tax resulting in a prediction of error 
0.019 based on the SSE. This is an indication of the strong robustness of 
the perceptron neural network configurations having hyperbolic tangent 
activation function used at the hidden later and identity activation 
function used at the outer layer. The combined hyperbolic tangent and 
identity activation function has been employed in the neural network 
configuration used for modeling the performance and emissions 
assessment of a single-cylinder diesel engine [28]. The neural network 
model had a high accuracy prediction of the emissions assessments in all 

the engine loads. 
The performance of the perceptron neural network configured with 

hyperbolic tangent function at both the hidden layer and the outer layer 
is depicted with the regression and residual plots depicted in Fig. 5 (a) 
and (b), respectively. Similar to the perceptron neural network config-
urations with hyperbolic tangent activation function at the hidden layer 
and identity activation function at the output layer, using hyperbolic 
tangent function at both the hidden layer and the outer layer of the 
neural network also resulted in a robust prediction with R2 of 0.999. The 
high R2 is an indication that both the calculated carbon tax and the 
predicted carbon tax are in strong agreement. However, using hyper-
bolic tangent activation function at the hidden and output layers 
resulted in a lower predicted error of 0.009 which revealed an improved 
performance. The disparity between the calculated and the predicted 
carbon tax as indicated by the residual plots in Fig. 5 (b) is within ± $5/ 
h. The use of hyperbolic tangent activation function in the neural 
network configuration for the prediction of the carbon price has been 
reported by Liu and Shen [29]. The performance of the perceptron 
neural network configured with hyperbolic tangent activation function 
and sigmoid activation functions at the hidden and outer layers, 
respectively depicted in Fig. 6. The regression plot in Fig. 6 (a) shows 
that the calculated carbon tax and the predicted values are in close 
agreement as indicated by R2 of 0.999. This implies that there is synergy 
in the use of hyperbolic tangent activation function and sigmoid acti-
vation functions in hidden and outer layers, respectively. This synergy 

Fig. 7. (a) The parity plot of the observed and predicted carbon tax (b) the 
residuals of predictions using sigmoid activation function at the hidden layer 
and hyperbolic tangent activation at the output layer. 

Fig. 8. (a) The parity plot of the observed and predicted carbon tax (b) the 
residuals of predictions using sigmoid activation function at the hidden layer 
and sigmoid activation at the output layer. 
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further resulted in a lower prediction error of 0.002 as indicated by the 
SEE and the residual shown in Fig. 6 (b). The use of hyperbolic tangent 
activation function and sigmoid activation functions offer better pre-
diction compared to the two previous configurations. Neural network 
configuration with sigmoid as the activation function at the outer layer 
has been reported to be robust in predicting carbon emission intensity 
[30]. The model was found to be efficient in predicting the carbon 
emission intensity for Australia, Brazil, China, India, and the USA with 
R2 of 0.80, 0.91, 0.95, 0.99, and 0.87, respectively. Zagrebina et al. [31] 
employed a recurrent neural network configured with hyperbolic and 
sigmoid activation functions for the prediction of energy consumption. A 
robust prediction of the energy consumption was obtained with a rela-
tive error of 2.10%. 

Fig. 7 depicted the regression plot of the observed and predicted 
carbon tax and the residuals of predictions using the sigmoid activation 

Fig. 9. Comparison of the various models used for the prediction of the carbon tax from the gas-fired power plant.  

Table 3 
Performance analysis of the effect of activation functions on the various model 
used.  

Model Network layer Activation Function SSE R2 

1 Hidden layer Hyperbolic tangent 0.019 0.999 
Output layer Identity 

2 Hidden layer Hyperbolic tangent 0.009 0.999 
Output layer Hyperbolic tangent 

3 Hidden layer Hyperbolic tangent 0.002 0.999 
Output layer Sigmoid 

4 Hidden layer Sigmoid 0.016 0.998 
Output layer Hyperbolic tangent 

5 Hidden layer Sigmoid 0.002 0.999 
Output layer Sigmoid  

Fig. 10. Level of importance analysis of the various parameters.  
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function at the hidden layer and hyperbolic tangent activation functions 
at the output layer of the perceptron neural network. As shown in Fig. 7 
(a), the calculated carbon tax is strongly correlated with the predicted 
values by the neural network model. This is evidence from the R2 of 
0.999 which indicates that the model can be generalized over 99% of the 
dataset with minimum prediction errors of 0.016. Fig. 7 (b) depicts that 
the residuals which show the disparity between the calculated and the 
predicted carbon tax is within ± $5/h. The use of a feedforward neural 
network model configured with hyperbolic tangent activation function 
at the outer layer has been employed for the prediction of building en-
ergy consumption in selected campuses located in the USA and China 
has been reported by Li et al. [31]. In comparison to other existing 
models, the model was reported to display superior performance in 
predicting the building energy consumption terms with high accuracy 
and convergence speed. Fig. 8 depicts the regression plot of the observed 
and predicted carbon tax and the residuals of predictions using the 
sigmoid activation function at the hidden layer and sigmoid activation at 
the output layer of the perceptron neural network used for modeling the 
prediction of the carbon using the gas-plant parameters. As shown in 
Fig. 8 (a), the calculated carbon tax and the predicted values are strongly 
correlated as indicated by the R2 of 0.999. This implies that the datasets 
obtained from the simulated gas-fired power plant are well trained the 
neural network configuration. This can further be ascertained from the 
prediction error of 0.002. As indicated in Fig. 8 (b), the residuals be-
tween the calculated and the predicted carbon tax is in the range of ±
$5/h. The performance of the model as indicated by the accurate pre-
diction of the carbon tax can be attributed to the well-trained model that 
learned the relationship between the input parameters and the output. 
The performance of the neural network model configured with sigmoid 
activation function at the hidden layer and sigmoid activation at the 
output layer is comparable with that reported in the literature. The 
modeling of energy consumption of air conditioning system using feed- 
forward neural network configured with sigmoid activation function at 
the hidden and the outer layer has been reported Chaudhuri et al. [32]. 
The neural network model was reported to accurately model the pre-
diction of the building energy consumption with a prediction error of 
4.97. This implies that the relationship between the input and the output 
model was a well model by using the neural network model. The pre-
diction of cooling energy consumption in a building has been modeled 
using a neural network configured with sigmoid activation in both the 
hidden and output layers has been reported by Deb et al. [33]. The study 
revealed that the trained neural network was able to robustly predict the 
energy consumption in the building. 

The comparison of the five models configured using the different 
combinations of the activation function is depicted in Fig. 9. The per-
formance analysis of the five models summarized in Table 3 shows that 
the configured neural network with different combinations of the acti-
vation functions was employed to model the relationship between the 
air-to-fuel ratio, natural gas flowrate, the equivalent CO2 emissions, and 
the carbon tax. The R2 of 0.999, 0.999, 0.999, 0.998, and 0.999 obtained 
for model 1, model 2, model 3, model 4, and model 5, respectively in-
dicates that the calculated carbon tax was strongly correlated with the 
predicted values. The prediction errors of 0.019, 0.009, 0.002, 0.016, 
0.002 obtained from model 1, model 2, model 3, model 4, and model 5, 
respectively revealed the robustness of the models in predicting the 
carbon tax with minimum error. Model 3 which is a neural network 
configured with hyperbolic tangent and sigmoid activation functions at 
the input and outer layers as well as model 5 which is a neural network 
configured with sigmoid activation function at both hidden and output 
layers can be adjudged to have the best performance since they have the 
least predictive errors. The level of importance analysis shown in Fig. 10 
revealed that all the input parameters significantly influence the pre-
dicted carbon tax. The gas flow rate with the highest level of importance 
of 0.4 displayed the most significant influence on the predicted carbon 
tax. 

Conclusion 

In this study, the nexus between carbon tax, natural flow rate, air-to- 
fuel flow rate, and CO2 emissions in the gas-fired power plant has been 
modeled using a perceptron neural network. The effect of employing 
various configurations of activation functions at the hidden and outer 
layers of the neural network to enhance its performance was also eval-
uated. The optimized network which consists of three input nodes, 20 
neurons at the hidden layer, and one output unit had a robust perfor-
mance in modeling the relationship between the input parameters and 
the output. The network models configured with the various activation 
functions displayed robust performance in predicting the carbon tax 
based on the well-trained relationship between the input parameters and 
the output. The model configured with hyperbolic tangent and sigmoid 
activation function at the hidden and outer layers as well as the 
configuration with sigmoid activation functions at the hidden and outer 
layers offer the best performance with minimum prediction errors of 
0.002. The R2 of 0.999 for both models revealed that the calculated 
carbon tax and the predicted value are strongly correlated. The sensi-
tivity analysis shows that the flow rate of the natural gas had the most 
significant effect on the predicted carbon tax. This study has established 
that there exists a relationship between the input parameters and the 
output of the datasets used in this study. Hence, given a dataset of the 
various parameters investigated, algorithms of the best model can be 
deployed to predict carbon tax which can be employed for a variety of 
CO2 emissions mitigation programs. Besides being used for the predic-
tion of carbon tax based on the parameters in a gas-fired power plant, 
the best-configured perceptron neural network algorithms can be 
extended as a tool for carbon tax prediction in other power generating 
plants such as coal-fired power plants, diesel-fired plants, and so on. 
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